JP2897649B2 - Motion compensated predictive coding device - Google Patents

Motion compensated predictive coding device

Info

Publication number
JP2897649B2
JP2897649B2 JP20595494A JP20595494A JP2897649B2 JP 2897649 B2 JP2897649 B2 JP 2897649B2 JP 20595494 A JP20595494 A JP 20595494A JP 20595494 A JP20595494 A JP 20595494A JP 2897649 B2 JP2897649 B2 JP 2897649B2
Authority
JP
Japan
Prior art keywords
motion
prediction
signal
image signal
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20595494A
Other languages
Japanese (ja)
Other versions
JPH0851630A (en
Inventor
賢二 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP20595494A priority Critical patent/JP2897649B2/en
Publication of JPH0851630A publication Critical patent/JPH0851630A/en
Application granted granted Critical
Publication of JP2897649B2 publication Critical patent/JP2897649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、画像情報の記録、再
生、表示を行うシステムにおいて、フレーム間やフィー
ルド間予測を用いて画像をより少ない情報量でディジタ
ル化する高能率符号化装置であって、特に動き補償処理
を行うものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-efficiency coding apparatus for digitizing an image with a smaller amount of information using inter-frame or inter-field prediction in a system for recording, reproducing and displaying image information. In particular, the present invention relates to a device that performs a motion compensation process.

【0002】[0002]

【従来の技術】[Prior art]

<動き補償予測符号化装置>動画像の高能率符号化で
は、フレーム間やフィールド間(以下、フレーム間で代
表させる)の高い相関を利用し、フレーム間予測を行
う。特に最近では、画像の動きに合わせて予測に使うフ
レームの信号を空間的に移動させてから、フレーム間予
測を行う動き補償フレーム間予測が一般的となってい
る。
<Motion Compensated Prediction Coding Device> In high-efficiency coding of a moving image, inter-frame prediction is performed using a high correlation between frames or between fields (hereinafter, represented by frames). In particular, recently, motion-compensated inter-frame prediction in which inter-frame prediction is performed after spatially moving a frame signal used for prediction in accordance with the motion of an image has become common.

【0003】この様な動き補償フレーム間予測(以下、
動き補償予測と略す)を行う符号化装置の例を図4に示
す。画像入力1より入力された画像信号は、予測減算器
2と動きベクトル(以下、MVと略す)検出器23に与
えられる。予測減算器2では動き補償器24から与えら
れるフレーム間予測信号が入力画像信号から減算され、
予測残差信号がDCT3に与えられる。DCT3では8
×8画素のブロック単位で2次元離散コサイン変換(D
CT)が行われ、変換された予測残差信号(DCT係
数)が量子化器4に与えられる。量子化器4では所定の
ステップ幅で信号が量子化され、固定長符号が逆量子化
器13と可変長符号化器5に与えられる。
[0003] Such motion-compensated inter-frame prediction (hereinafter, referred to as
FIG. 4 shows an example of an encoding device that performs motion compensation prediction. The image signal input from the image input 1 is provided to a prediction subtractor 2 and a motion vector (hereinafter abbreviated as MV) detector 23. The prediction subtractor 2 subtracts the inter-frame prediction signal given from the motion compensator 24 from the input image signal,
The prediction residual signal is provided to DCT3. 8 in DCT3
Two-dimensional discrete cosine transform (D
CT), and the transformed prediction residual signal (DCT coefficient) is provided to the quantizer 4. In the quantizer 4, the signal is quantized with a predetermined step width, and a fixed-length code is given to the inverse quantizer 13 and the variable-length encoder 5.

【0004】可変長符号化器5では固定長符号が可変長
符号化されて圧縮された符号となり多重化器6に与えら
れる。可変長符号化の具体的な方法は、DCTの2次元
配列をジグザグスキャンで1次元配列の信号列にし、非
0値はその値を、0はその連続数(ランレングス)をハ
フマン符号で符号化する。多重化器6では、予測残差の
符号とMV符号化器15から与えられるMV情報の符号
を多重化し、符号列として符号出力7から出力する。
[0004] In the variable-length encoder 5, the fixed-length code is subjected to variable-length encoding and becomes a compressed code, which is provided to a multiplexer 6. A specific method of variable-length coding is to convert a two-dimensional array of DCT into a one-dimensional array of signal strings by zigzag scanning, code the non-zero value with its value, and use the Huffman code to code its continuous number (run-length) with 0. Become The multiplexer 6 multiplexes the code of the prediction residual and the code of the MV information supplied from the MV encoder 15 and outputs the multiplexed code from the code output 7 as a code string.

【0005】一方、逆量子化器13では固定長符号が代
表値に置き換えられ、逆DCT12に与えられる。逆D
CT12ではDCT3の逆変換が行われ、再生された予
測残差信号が加算器11に与えられる。加算器11では
動き補償器24から与えられるフレーム間予測信号が予
測残差信号に加算され、再生された画像信号となり、画
像メモリ10に与えられる。画像メモリ10ではフレー
ム間予測に使われる画像が蓄えられ、必要に応じてMV
検出器23と動き補償器24に与えられる。
On the other hand, in the inverse quantizer 13, the fixed-length code is replaced with a representative value, which is supplied to the inverse DCT 12. Reverse D
In the CT 12, the inverse transform of the DCT 3 is performed, and the reproduced prediction residual signal is supplied to the adder 11. The adder 11 adds the inter-frame prediction signal supplied from the motion compensator 24 to the prediction residual signal, forms a reproduced image signal, and supplies the reproduced image signal to the image memory 10. The image memory 10 stores an image used for inter-frame prediction, and stores the MV as needed.
It is provided to a detector 23 and a motion compensator 24.

【0006】MV検出器23は入力画像信号と、画像メ
モリ10に蓄えられ予測に用いられる再生画像信号の間
のMVを求める。求められたMVは動き補償器24とM
V符号化器15に与えられる。MV符号化器15では復
号装置で動き補償を行うために必要なMV値の情報を符
号化し、符号を多重化器6に与える。動き補償器24
は、画像メモリ10に蓄えられた再生画像信号を、MV
値に従って空間的に移動させ、フレーム間予測信号とし
て予測減算器2と加算器11に与える。
The MV detector 23 calculates the MV between the input image signal and the reproduced image signal stored in the image memory 10 and used for prediction. The obtained MV is the motion compensator 24 and M
It is provided to the V encoder 15. The MV encoder 15 encodes information of the MV value required for performing motion compensation in the decoding device, and supplies the code to the multiplexer 6. Motion compensator 24
Converts the reproduced image signal stored in the image memory 10 into an MV
It is moved spatially according to the value, and given to the prediction subtractor 2 and the adder 11 as an inter-frame prediction signal.

【0007】MV精度および動き補償器24の動作は、
復号装置と同じ動き補償処理(すなわち、復号装置側の
精度)とするため、伝送精度(すなわち、伝送規格)に
合わせたものとする。伝送規格としてはMPEGなどの
国際標準を用いるのが一般的で、その場合のMV精度は
1/2画素数単位となる。1/2画素精度でのMV検出
は、一度画素精度でMVを求め、そのMVの周辺のみ1
/2画素精度で再度求め直す。また、動き補償器24で
の1/2画素位置の画素の作り方も規定され、隣接画素
の単純加算(Bi−Linear)によって作られる。
この様なMV検出や動き補償処理は、DCTブロックを
4個連結した16×16画素のマクロブロック単位で行
われる。
The operation of the MV accuracy and motion compensator 24 is as follows.
In order to perform the same motion compensation processing as that of the decoding device (that is, the accuracy on the decoding device side), it is assumed that transmission accuracy (that is, transmission standard) is matched. As a transmission standard, an international standard such as MPEG is generally used, and in this case, the MV precision is in units of 1/2 pixel. In the MV detection with 1/2 pixel accuracy, the MV is obtained once with the pixel accuracy, and only the MV around the MV is 1
Recalculate again with / 2 pixel accuracy. In addition, a method of forming a pixel at a half pixel position in the motion compensator 24 is also defined, and the pixel is formed by simple addition (Bi-Linear) of adjacent pixels.
Such MV detection and motion compensation processing are performed in units of 16 × 16 pixel macroblocks in which four DCT blocks are connected.

【0008】なお、MV検出では再生画像信号が劣化し
ていると、適切なMVが求まらないことがあるので、予
測で用いるのと同じフレームの入力画像信号を別の画像
メモリに蓄積し、再生画像信号の代わりに用いることも
ある。
In the MV detection, if the reproduced image signal is degraded, an appropriate MV may not be obtained. Therefore, the input image signal of the same frame used for prediction is stored in another image memory. May be used instead of the reproduced image signal.

【0009】<復号化装置>次に、図4の符号化装置に
対応する復号化装置ついて説明する。図5は、その復号
化装置の一例を示す構成図である。符号入力51より与
えられた画像データは多重分離器52で予測算差の符号
と、MV情報の符号に分離され、予測算差の符号は可変
長復号器53に、MV値の符号はMV復号器55に与え
られる。可変長復号器53では可変長符号が固定長に戻
され、得られた固定長符号が逆量子化器13に与えられ
る。MV復号器55ではMV情報が復号され、得られた
MV値が動き補償器24に与えられる。
<Decoding Apparatus> Next, a decoding apparatus corresponding to the encoding apparatus shown in FIG. 4 will be described. FIG. 5 is a configuration diagram showing an example of the decoding device. The image data given from the code input 51 is demultiplexed by the demultiplexer 52 into a code for the prediction difference and a code for the MV information. The code for the prediction difference is sent to the variable-length decoder 53, and the code for the MV value is MV decoded. To the container 55. In the variable length decoder 53, the variable length code is returned to the fixed length, and the obtained fixed length code is supplied to the inverse quantizer 13. The MV decoder 55 decodes the MV information, and supplies the obtained MV value to the motion compensator 24.

【0010】逆量子化器13では、固定長符号に対応す
る量子化代表値が求められ、逆DCT12に与えられ
る。逆DCT12では図4のDCT3の逆変換処理が行
われ、これにより再生された予測残差信号が加算器11
に与えられる。加算器11では動き補償器24から与え
られるフレーム間予測信号が加算され、再生された画像
信号が画像出力54から出力されると共に画像メモリ1
0に与えられる。画像メモリ10ではフレーム間予測に
使われる再生画像が蓄えられ、必要に応じて動き補償器
24に出力される。動き補償器24では再生画像をMV
値に従って動き補償してフレーム間予測信号を作り、加
算器11に与える。MV値は符号化装置と同じものが使
われ、フレーム間予測信号は符号化装置と同じものにな
る。
In the inverse quantizer 13, a representative quantized value corresponding to the fixed-length code is obtained and supplied to the inverse DCT 12. In the inverse DCT 12, the inverse transform of the DCT 3 in FIG. 4 is performed, and the reproduced prediction residual signal is added to the adder 11.
Given to. The adder 11 adds the inter-frame prediction signal supplied from the motion compensator 24, outputs a reproduced image signal from the image output 54, and outputs the image signal from the image memory 1
0 is given. The reproduced image used for the inter-frame prediction is stored in the image memory 10 and output to the motion compensator 24 as needed. The motion compensator 24 converts the reproduced image to MV
Motion compensation is performed according to the value to generate an inter-frame prediction signal, which is provided to the adder 11. The same MV value as that of the encoding device is used, and the inter-frame prediction signal becomes the same as that of the encoding device.

【0011】[0011]

【発明が解決しようとする課題】動き補償予測符号化で
は、予測残差成分を符号化し、復号画像が入力信号によ
り近くなるようにする。この予測残差成分には、絵柄そ
のものがフレームごとに変化する本質的な画像の変化の
他に、動き補償処理が必ずしも理想的でないために起こ
る精度限界による誤差が含まれる。本質的な画像の変化
はフレーム毎に徐々に変化するものなので、忠実に符号
化することで、次のフレームの予測誤差を少なくでき
る。しかし、動き補償処理の精度限界による誤差はフレ
ーム毎に変化するので、符号化してもそのフレームの忠
実度が向上するだけで、次のフレームの予測には貢献し
ない。本質的な画像の変化はフレーム間で相関をもつ
が、精度限界による誤差はフレーム間で相関をもたない
ためである。
In the motion compensation prediction coding, a prediction residual component is coded so that a decoded image is closer to an input signal. The prediction residual component includes an error due to an accuracy limit that occurs because the motion compensation processing is not always ideal, in addition to an essential image change in which a picture itself changes for each frame. Since the essential change in the image gradually changes from frame to frame, by faithfully encoding, the prediction error of the next frame can be reduced. However, since the error due to the accuracy limit of the motion compensation process changes for each frame, even if the encoding is performed, only the fidelity of the frame is improved and does not contribute to the prediction of the next frame. This is because an essential image change has a correlation between frames, but an error due to an accuracy limit has no correlation between frames.

【0012】本発明は以上の点に着目してなされたもの
で、伝送精度より高い精度で動き補償を行うことで、動
き補償処理の精度限界による誤差を符号化せず、その分
本質的な画像の変化をより忠実に符号化することで、次
のフレーム間予測効率を改善し、総合的な符号化効率を
向上させた動き補償予測符号化装置を提供することを目
的とする。
The present invention has been made in view of the above points. By performing motion compensation with higher accuracy than the transmission accuracy, the error due to the accuracy limit of the motion compensation process is not coded, and the An object of the present invention is to provide a motion-compensated prediction encoding device that improves the next inter-frame prediction efficiency by encoding a change in an image more faithfully, thereby improving the overall encoding efficiency.

【0013】[0013]

【課題を解決するための手段】本発明は、動画像を画像
間予測符号化する際に、伝送精度より高い精度で、入力
画像信号と予測に用いる画像信号の間の動きベクトルを
求め、その動きベクトルに従って予測に用いる画像信号
を動き補償した信号でフレーム間予測符号化を行い、一
方、求めた動きベクトルを伝送精度に丸め、伝送精度に
なった動きベクトル値を符号化して伝送する動き補償予
測符号化装置である。
According to the present invention, a motion vector between an input image signal and an image signal used for prediction is obtained with higher accuracy than transmission accuracy when a moving image is subjected to inter-picture prediction coding. Motion compensation that performs inter-frame prediction coding using a signal obtained by motion-compensating an image signal used for prediction according to a motion vector, and rounds the obtained motion vector to transmission accuracy, and encodes and transmits a motion vector value that has reached transmission accuracy. It is a prediction encoding device.

【0014】また、動画像を画像間予測符号化する際
に、伝送精度で入力画像信号と予測に用いる画像信号の
間の動きベクトルを求め、その動きベクトルに従って予
測に用いる画像信号を動き補償した伝送精度のフレーム
間予測信号を得て、そのフレーム間予測信号と入力画像
信号の間で、伝送精度より高い精度で微小動きベクトル
を求め、その微小動きベクトルに従って予測信号または
入力画像信号を高精度で動き補償した信号でフレーム間
予測符号化を行い、この符号化に対応する局部復号では
伝送精度の予測信号を用いる動き補償予測符号化装置で
ある。
In addition, when a moving image is subjected to inter-picture prediction coding, a motion vector between an input image signal and an image signal used for prediction is obtained with transmission accuracy, and the image signal used for prediction is motion-compensated according to the motion vector. Obtain an inter-frame prediction signal of transmission accuracy, obtain a fine motion vector with higher accuracy than the transmission accuracy between the inter-frame prediction signal and the input image signal, and obtain a high-precision prediction signal or input image signal according to the fine motion vector. This is a motion-compensated predictive coding apparatus that performs inter-frame predictive coding using a signal that has been motion-compensated in (1) and uses a predicted signal of transmission accuracy in local decoding corresponding to this coding.

【0015】[0015]

【作用】本発明の符号化装置では、伝送精度より高い精
度で動き補償を行うので、精度限界による誤差は軽減さ
れる。そのため、従来その誤差の符号化に費やされてい
た符号はいらなくなり、その分が画像本来の変化の符号
化に使えることになる。しかし、復号側の動き補償は伝
送精度と同じ精度で行れるので、精度限界による誤差は
従来と同じだけ存在し、符号化されていないので忠実度
が悪いものとなる。
In the coding apparatus according to the present invention, since motion compensation is performed with higher accuracy than transmission accuracy, an error due to an accuracy limit is reduced. Therefore, the code conventionally used for encoding the error is no longer needed, and the code can be used for encoding the original change of the image. However, since motion compensation on the decoding side can be performed with the same precision as the transmission precision, errors due to the precision limit exist as much as in the past, and since they are not encoded, the fidelity is poor.

【0016】結果として予測残差成分の中で、本質的な
画像の変化はより忠実に符号化され、精度限界による誤
差は忠実に符号化されなくなる。精度限界による誤差は
次の画像のフレーム間予測に影響を与えず、一方、本質
的な画像の変化がより忠実に符号化されていることは予
測効率改善に寄与し、総合的に予測効率が改善される。
As a result, in the prediction residual components, essential image changes are more faithfully encoded, and errors due to accuracy limits are not faithfully encoded. The error due to the accuracy limit does not affect the inter-frame prediction of the next image, while the fact that the essential image changes are more faithfully encoded contributes to the improvement of the prediction efficiency, and the overall prediction efficiency is reduced. Be improved.

【0017】[0017]

【実施例】【Example】

<符号化装置1>図1は符号化装置の第1の実施例を示
す構成図である。図4の従来例と同じ部分には、同じ番
号を付してある。図4の従来例とはMV検出器23、動
き補償器24の代わりに精細MV検出器8、精細動補償
器9があり、さらにMV値丸め器14が存在する点が構
成上異なる。図1で、図4の従来例と動作上異なるのは
フレーム間予測処理で、予測残差の符号化動作は従来例
と同じである。
<Encoder 1> FIG. 1 is a block diagram showing a first embodiment of the encoder. The same portions as those in the conventional example of FIG. 4 are denoted by the same reference numerals. 4 differs from the conventional example of FIG. 4 in that a fine MV detector 8 and a fine motion compensator 9 are provided instead of the MV detector 23 and the motion compensator 24, and an MV value rounder 14 is present. In FIG. 1, the operation different from the conventional example of FIG. 4 is the inter-frame prediction processing, and the encoding operation of the prediction residual is the same as the conventional example.

【0018】画像入力1より入力された画像信号は予測
減算器2で精細動補償器9から与えられるフレーム間予
測信号が減算され、予測残差信号となりDCT3に与え
られる。DCT3、量子化器4、可変長符号化器5、多
重化器6、逆量子化器13、逆DCT12、加算器1
1、画像メモリ10の動作は従来例と同じである。
The image signal input from the image input 1 is subtracted by the prediction subtractor 2 from the inter-frame prediction signal supplied from the fine motion compensator 9 to become a prediction residual signal, which is supplied to the DCT 3. DCT 3, quantizer 4, variable length encoder 5, multiplexer 6, inverse quantizer 13, inverse DCT 12, adder 1
1. The operation of the image memory 10 is the same as that of the conventional example.

【0019】一方、精細MV検出器8、精細動補償器9
の構成と動作は、基本的には従来例のMV検出器23、
動き補償器24と同じであるが、その精度などが異な
る。動きベクトル(MV)の精度は、従来例では伝送精
度(伝送規格の精度)である1/2画素精度であるが、
本実施例では伝送精度(伝送規格)より高い精度である
1/6画素精度とする。その様子を図6に示す。1/6
画素精度のMV検出は、一度画素精度でMVを求め、そ
のMVの周辺のみ1/6画素精度で、再度求め直す。精
細MV検出器8で求められた高精度MV情報は、精細動
補償器9とMV値丸め器14に与えられる。
On the other hand, the fine MV detector 8 and the fine motion compensator 9
Is basically the same as the conventional MV detector 23,
It is the same as the motion compensator 24, but differs in its accuracy and the like. The accuracy of the motion vector (MV) is 1/2 pixel accuracy which is the transmission accuracy (the accuracy of the transmission standard) in the conventional example.
In this embodiment, 1/6 pixel accuracy, which is higher than the transmission accuracy (transmission standard), is used. FIG. 6 shows this state. 1/6
In the MV detection with the pixel accuracy, the MV is obtained once with the pixel accuracy, and the MV around the MV is obtained again with the 1/6 pixel accuracy. The high-precision MV information obtained by the fine MV detector 8 is provided to the fine motion compensator 9 and the MV rounder 14.

【0020】精細動補償器9では、精細MV検出器8に
合わせてMVの精度を細かくし、さらに本来の画素以外
の位置の画素の作り方も高精度化される。具体的には、
図7に示される様に、従来例が隣接画素のみによるBi
−Linear(単なる2次の線形補間)であったのに
対し(同図(A))、さらに周辺の画素も用いた高精度
(高次)のリサンプル処理によって作られる(同図
(B))。
In the fine motion compensator 9, the precision of the MV is made finer in accordance with the fine MV detector 8, and the method of forming pixels at positions other than the original pixels is also improved. In particular,
As shown in FIG. 7, the conventional example has a Bi
-Linear (simple quadratic linear interpolation) ((A) in the figure), and is created by high-precision (higher-order) resampling processing using peripheral pixels ((B) in the figure). ).

【0021】MV値丸め器14は、高精度の動きベクト
ル値を伝送精度(伝送規格)に合わせるために下位情報
を捨てて(丸めて)精度を落とし、伝送精度と同じ精度
の動きベクトル値として、MV値符号化器15に与え
る。具体的には、図6で破線で囲われた1/6画素精度
での9個のMVが、1/2画素精度で同一MVと見なさ
れる。MV値符号化器15は従来例と同様にMV値を符
号化する。
The MV rounder 14 discards (rounds) lower information in order to match a high-precision motion vector value with the transmission accuracy (transmission standard) and lowers the accuracy. , MV value encoder 15. Specifically, nine MVs with 1 / pixel accuracy surrounded by a broken line in FIG. 6 are regarded as the same MV with 画素 pixel accuracy. The MV value encoder 15 encodes the MV value as in the conventional example.

【0022】本実施例では、符号化装置と復号化装置で
動き補償の動作が異なる。フレーム間予測は巡回動作と
なるので、符号化装置と復号化装置の間の違いは累積さ
れる。そこで、MV値の丸めによる誤差が、片方に偏ら
ないようにする必要があり、精度を伝送精度の偶数倍の
精度である1/6画素としているのはこのためである。
1/6画素精度を1/2画素精度に丸めた場合には、1
/2画素精度間にある偶数個の1/6画素の各点が2分
されて両側の1/2画素精度にされ、誤差のバランスが
とれる。この誤差はフレーム間で相関はないので、累積
しても大きな問題は起こらない。
In this embodiment, the motion compensation operation differs between the encoding device and the decoding device. Since inter-frame prediction is a cyclic operation, differences between the encoding device and the decoding device are cumulative. Therefore, it is necessary to prevent the error due to the rounding of the MV value from being biased to one side, and the precision is set to 1/6 pixel which is an even multiple of the transmission precision.
When 1/6 pixel precision is rounded to 1/2 pixel precision, 1
Each of the even number of 1/6 pixel points that are between the / 2 pixel precision is divided into two to obtain 1/2 pixel precision on both sides, and the error is balanced. Since this error has no correlation between frames, even if it accumulates, no major problem occurs.

【0023】なお、動き補償の方法は、片方向予測の他
にMPEGなどで用いられる双方向予測(B−pict
ure)でも同様である。
The motion compensation method includes bidirectional prediction (B-pict) used in MPEG and the like in addition to unidirectional prediction.
ure).

【0024】<符号化装置2>図2は符号化装置の第2
の実施例を示す構成図である。図4の従来例と同じ部分
には、同じ番号を付してある。図4の従来例とは微小M
V検出器21と微小動き補償器22がある点が構成上異
なる。同図で、動作上従来例と異なるのは微小MV検出
器21と微小動き補償器22だけで、MV検出器23、
動き補償器24を含め他の部分の構成及び動作は従来例
と同じである。
<Encoding device 2> FIG. 2 shows a second example of the encoding device.
FIG. 3 is a configuration diagram showing an example of the embodiment. The same portions as those in the conventional example of FIG. 4 are denoted by the same reference numerals. 4 compared to the conventional example of FIG.
The configuration differs in that a V detector 21 and a minute motion compensator 22 are provided. In the figure, only the micro MV detector 21 and the micro motion compensator 22 are different from the conventional example in operation.
The configuration and operation of the other parts including the motion compensator 24 are the same as in the conventional example.

【0025】画像入力1より入力された画像信号は予測
減算器2、微小MV検出器21、MV検出器23に与え
られる。予測減算器2では、入力画像から高精度な動き
補償が行われたフレーム間予測画像が減算され、予測残
差がDCT3に与えられる。DCT3、量子化器4、可
変長符号化器5、多重化器6、MV符号化器15、逆量
子化器13、逆DCT12、加算器11、画像メモリ1
0、MV検出器23の動作は従来例と同じである。動き
補償器24の動作も従来例と同じであるが、動き補償器
24からのフレーム間予測信号は予測減算器2の代わり
に微小MV検出器21と微小動補償器22に与えられ
る。
The image signal input from the image input 1 is given to the prediction subtractor 2, the minute MV detector 21, and the MV detector 23. The prediction subtracter 2 subtracts an inter-frame prediction image on which high-precision motion compensation has been performed from the input image, and supplies a prediction residual to the DCT 3. DCT 3, quantizer 4, variable length encoder 5, multiplexer 6, MV encoder 15, inverse quantizer 13, inverse DCT 12, adder 11, image memory 1
0, the operation of the MV detector 23 is the same as in the conventional example. The operation of the motion compensator 24 is the same as that of the conventional example, but the inter-frame prediction signal from the motion compensator 24 is given to the minute MV detector 21 and the minute motion compensator 22 instead of the prediction subtractor 2.

【0026】微小MV検出器21は、フレーム間予測信
号と、入力信号の間の微小な動きのずれを微小MVとし
て求める。ここで、フレーム間予測信号は、すでに伝送
精度の1/2画素精度で動き補償されているので、微小
MVはそれより細かなものとなり、精度は伝送精度より
細かくする。具体的な精度を実施例1と同様に1/6画
素精度とすると、MVは水平及び垂直に−2/6,−1
/6,0,+1/6,+2/6の5種類の値が設定さ
れ、5×5の25種類のベクトルの中からMVが選ばれ
る。
The minute MV detector 21 obtains a minute movement deviation between the inter-frame prediction signal and the input signal as a minute MV. Here, since the inter-frame prediction signal has already been motion-compensated with half-pixel accuracy of the transmission accuracy, the minute MV becomes finer than that, and the accuracy is made finer than the transmission accuracy. Assuming that the specific accuracy is 1/6 pixel accuracy as in the first embodiment, the MV is -2/6, -1 in the horizontal and vertical directions.
Five values of / 6, 0, + /, +2/6 are set, and MV is selected from 25 types of 5 × 5 vectors.

【0027】微小動き補償器22は微小MV検出器21
から与えられる微小MVの精度で、実施例1と同様に高
次リサンプルにより動き補償を行う。この様に本実施例
は、第1の実施例の精細MV検出器8、精細動補償器9
で行われていた処理で、伝送精度より高精度の処理部分
を分離し、予測減算器2の方のみに適用したものであ
る。この場合では、加算器11には動き補償器24から
のフレーム間予測信号が入力されるので、局部復号画像
は従来例と同じになり、符号化装置と復号化装置の間の
誤差は起こらなくなる。
The minute motion compensator 22 is a minute MV detector 21
The motion compensation is performed by higher-order resampling with the precision of the small MV given by As described above, in the present embodiment, the fine MV detector 8 and the fine motion compensator 9 of the first embodiment are used.
In the processing performed in step (1), the processing part having higher precision than the transmission precision is separated and applied only to the predictive subtractor 2. In this case, since the inter-frame prediction signal from the motion compensator 24 is input to the adder 11, the locally decoded image becomes the same as the conventional example, and no error occurs between the encoding device and the decoding device. .

【0028】<符号化装置3>図3は符号化装置の第3
の実施例を示す構成図である。図2の第2の実施例と同
じ部分には、同じ番号を付してある。図3で、第2の実
施例とは微小動き補償器22の挿入位置が構成上異な
る。
<Encoding device 3> FIG. 3 shows a third example of the encoding device.
FIG. 3 is a configuration diagram showing an example of the embodiment. The same parts as those in the second embodiment of FIG. 2 are denoted by the same reference numerals. In FIG. 3, the insertion position of the minute motion compensator 22 differs from that of the second embodiment in terms of configuration.

【0029】画像入力1より入力された画像信号は微小
動補償器22、微小MV検出器21、MV検出器23に
与えられる。微小動補償器22では、微小MV検出器2
1から与えられる微小MV値に従って、図2の場合と同
様に1画素以下の微小な動き補償が行われ、その結果が
予測減算器2に与えられる。予測減算器2では入力画像
そのままの代わりに、微小な動き補償が行われた入力画
像からフレーム間予測画像が減算され、予測残差がDC
T3に与えられる。DCT3、量子化器4、可変長符号
化器5、多重化器6、MV符号化器15、逆量子化器1
3、逆DCT12、加算器11、画像メモリ10、MV
検出器23、動き補償器24の動作は第2の実施例と同
じである。
An image signal input from the image input 1 is supplied to a minute motion compensator 22, a minute MV detector 21, and an MV detector 23. In the minute motion compensator 22, the minute MV detector 2
According to the minute MV value given from 1, minute motion compensation of one pixel or less is performed in the same manner as in the case of FIG. 2, and the result is given to the prediction subtractor 2. In the prediction subtractor 2, instead of the input image as it is, the inter-frame prediction image is subtracted from the input image on which the minute motion compensation has been performed, and the prediction residual is DC.
Provided to T3. DCT 3, quantizer 4, variable length encoder 5, multiplexer 6, MV encoder 15, inverse quantizer 1
3, inverse DCT 12, adder 11, image memory 10, MV
The operations of the detector 23 and the motion compensator 24 are the same as in the second embodiment.

【0030】微小MV検出器21は、図2の場合と基本
的には同じであるが、予測信号を基準にして入力画像信
号の方を動かすためのMVを求めるので、入力が逆にな
る。本実施例は、第2の実施例同様に、局部復号画像は
従来例と同じになり、符号化装置と復号化装置の間の誤
差は起こらない。さらに、予測信号と入力信号の両方に
リサンプル処理が適用されることで、周波数特性のバラ
ンスがとれるといった利点もある。これは、動き補償の
リサンプル処理によって起こる周波数特性劣化に関し
て、従来例や実施例1では予測信号の方のみに起こり、
ミスマッチとなりやすかったものが、予測信号と入力信
号の両方に適用されることで、バランスがとれるためで
ある。
The minute MV detector 21 is basically the same as the case of FIG. 2, but the input is reversed because the MV for moving the input image signal is calculated based on the prediction signal. In the present embodiment, similarly to the second embodiment, the locally decoded image is the same as the conventional example, and no error occurs between the encoding device and the decoding device. Furthermore, by applying the resampling process to both the prediction signal and the input signal, there is an advantage that the frequency characteristics can be balanced. This is related to the frequency characteristic degradation caused by the resampling process of the motion compensation, and occurs only in the prediction signal in the conventional example and the first embodiment.
This is because what is likely to cause a mismatch can be balanced by being applied to both the prediction signal and the input signal.

【0031】また、双方の信号の周波数特性の劣化によ
り、各信号で独立に存在する折り返し歪み成分が抑圧さ
れるので、本来の画像の動きでない誤差成分はより少な
くなり、本実施例の目的に適した処理となる。
Further, since the aliasing distortion component which exists independently in each signal is suppressed due to the deterioration of the frequency characteristics of both signals, the error component which is not the motion of the original image is reduced. It is a suitable process.

【0032】<復号化装置>図1〜図3に示した動き補
償予測符号化装置に対応する復号化装置は、図4の従来
例と同じなり、新たな復号化装置が必要となるわけでは
ない。
<Decoding Device> The decoding device corresponding to the motion-compensated predictive coding device shown in FIGS. 1 to 3 is the same as the conventional example shown in FIG. 4, and does not necessarily require a new decoding device. Absent.

【0033】[0033]

【発明の効果】本発明の符号化装置では、伝送精度(伝
送規格)より高い精度で動き補償を行うので、予測残差
成分の中で、本質的な画像の変化はより忠実に符号化さ
れ、精度限界による誤差は忠実に符号化されなくなる。
精度限界による誤差は次の画像のフレーム間予測に影響
を与えず、一方、本質的な画像の変化がより忠実に符号
化されることでフレーム間予測が改善され、総合的に予
測効率が向上する。予測効率が改善されることで、符号
化すべき予測残差が少なくなり、符号化効率が改善され
る。
According to the encoding apparatus of the present invention, motion compensation is performed with higher accuracy than the transmission accuracy (transmission standard). Therefore, in the prediction residual component, an essential image change is more faithfully encoded. The error due to the accuracy limit is not faithfully encoded.
Errors due to the accuracy limit do not affect the inter-frame prediction of the next image, while improving the inter-frame prediction by encoding the essential image changes more faithfully and improving the overall prediction efficiency I do. By improving the prediction efficiency, the prediction residual to be coded is reduced, and the coding efficiency is improved.

【0034】一方、各フレームにおいては、精度限界に
よる誤差の増加は空間的な位置のずれを招くことになる
が、伝送精度(伝送規格)の動き補償精度が1/2画素
なら視覚的にはあまり問題とならず、本質的な画像変化
の忠実度は向上しているので、主観的な画質も望ましい
ものになる。その結果、より少ない符号量で必要な再生
画質を得ることが可能になる。
On the other hand, in each frame, an increase in the error due to the accuracy limit leads to a spatial displacement, but if the motion compensation accuracy of the transmission accuracy (transmission standard) is 1/2 pixel, it is visually apparent. Because it is less of a problem and the essential image change fidelity is improved, subjective image quality is also desirable. As a result, it is possible to obtain a required reproduction image quality with a smaller code amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例である符号化装置の構成
例を示す図である。
FIG. 1 is a diagram illustrating a configuration example of an encoding device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例である符号化装置の構成
例を示す図である。
FIG. 2 is a diagram illustrating a configuration example of an encoding device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例である符号化装置の構成
例を示す図である。
FIG. 3 is a diagram illustrating a configuration example of an encoding device according to a third embodiment of the present invention.

【図4】従来の符号化装置の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of a conventional encoding device.

【図5】従来の復号化装置の構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of a conventional decoding device.

【図6】精細動きベクトルとその丸め処理の様子を示す
図である。
FIG. 6 is a diagram showing a fine motion vector and a state of a rounding process thereof.

【図7】従来例と実施例のリサンプル処理の様子を示す
図である。
FIG. 7 is a diagram illustrating a state of a resampling process according to a conventional example and an embodiment.

【符号の説明】[Explanation of symbols]

1…画像入力、2…予測減算器、3…DCT、4…量子
化器、5…可変長符号化器、6…多重化器、7…符号出
力、8…精細MV検出器、9…精細動補償器、10…画
像メモリ、11…加算器、12…逆DCT、13…逆量
子化器、14…MV丸め器、15…MV符号化器、21
…微小MV検出器、22…微小動補償器、23…MV検
出器、24…動き補償器、51…符号入力、52…多重
分離器、53…可変長復号器、54…画像出力、55…
MV復号器。
REFERENCE SIGNS LIST 1 image input, 2 predictive subtractor, 3 DCT, 4 quantizer, 5 variable length encoder, 6 multiplexer, 7 code output, 8 fine MV detector, 9 fine Motion compensator, 10 image memory, 11 adder, 12 inverse DCT, 13 inverse quantizer, 14 MV rounder, 15 MV encoder, 21
... minute MV detector, 22 ... minute motion compensator, 23 ... MV detector, 24 ... motion compensator, 51 ... code input, 52 ... demultiplexer, 53 ... variable length decoder, 54 ... image output, 55 ...
MV decoder.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】動画像を動き補償画像間予測符号化する装
置において、 伝送精度よりも高い精度で、入力画像信号と予測に用い
る画像信号との間の動きベクトルを求める手段と、 前記動きベクトルに従って予測に用いる画像信号を動き
補償し、伝送精度よりも高い精度で予測信号を得る動き
補償手段と、 前記動きベクトルを伝送精度に丸め、伝送精度になった
動きベクトル値を符号化する手段と、 入力画像信号から前記予測信号を減算した残差を符号化
する予測符号化手段とからなることを特徴とする動き補
償予測符号化装置。
An apparatus for motion-compensated inter-picture predictive coding of a moving image, comprising: means for obtaining a motion vector between an input image signal and an image signal used for prediction with higher accuracy than transmission accuracy; Motion compensation means for performing motion compensation on an image signal used for prediction in accordance with the above, and obtaining a prediction signal with higher accuracy than transmission accuracy, and means for rounding the motion vector to transmission accuracy and encoding a motion vector value having reached transmission accuracy. And a predictive coding means for coding a residual obtained by subtracting the predictive signal from the input image signal.
【請求項2】動画像を動き補償画像間予測符号化する装
置において、 伝送精度で、入力画像信号と予測に用いる再生画像信号
との間の動きベクトルを求める手段と、 前記動きベクトルに従って予測に用いる画像信号を動き
補償し、伝送精度の予測信号を得る動き補償手段と、 入力画像信号と前記伝送精度の予測信号との間で、前記
動きベクトルより高い精度で画素間隔以下の微小動きベ
クトルを求める手段と、 前記微小動きベクトルに従って前記伝送精度の予測信号
をリサンプルにより動き補償し、微小動き補償予測信号
を得る微小動き補償手段と、 入力画像信号から前記微小動き補償予測信号を減算した
残差を符号化する予測符号化手段と、 前記伝送精度の予測信号を用いて、前記予測符号化手段
に対応する復号処理を行い再生画像信号を得る局部復号
手段とからなることを特徴とする動き補償予測符号化装
置。
2. An apparatus for motion-compensated inter-picture predictive coding of a moving image, comprising: means for obtaining a motion vector between an input image signal and a reproduced image signal used for prediction with transmission accuracy; A motion compensating unit that motion-compensates an image signal to be used and obtains a prediction signal of transmission accuracy; Means for determining, a motion compensation of the prediction signal of the transmission accuracy by resampling according to the micro motion vector, and a micro motion compensation means for obtaining a micro motion compensation prediction signal; and a residual obtained by subtracting the micro motion compensation prediction signal from the input image signal. A predictive coding unit for coding the difference, and a decoding process corresponding to the predictive coding unit performed by using the predicted signal of the transmission accuracy. Motion compensated predictive coding apparatus characterized by comprising a local decoding means for obtaining.
【請求項3】動画像を動き補償画像間予測符号化する装
置において、 入力画像信号と予測に用いる画像信号との間の動きベク
トルを求める手段と、 前記動きベクトルに従って予測に用いる画像信号を動き
補償し、予測信号を得る動き補償手段と、 入力画像信号と前記動き補償手段で得られた予測信号と
の間で、前記動きベクトルより高い精度で画素間隔以下
の微小動きベクトルを求める手段と、 前記微小動きベクトルに従って入力画像信号をリサンプ
ルにより動き補償し、微小動き補償信号を得る微小動き
補償手段と、 前記微小動き補償信号から前記予測信号を減算した残差
を符号化する予測符号化手段とからなることを特徴とす
る動き補償予測符号化装置。
3. An apparatus for motion-compensated inter-picture predictive coding of a moving image, comprising: means for obtaining a motion vector between an input image signal and an image signal used for prediction; A motion compensating means for compensating and obtaining a prediction signal; and a means for obtaining a fine motion vector having a pixel interval or less between the input image signal and the prediction signal obtained by the motion compensating means with higher accuracy than the motion vector. A motion compensation means for re-sampling the input image signal in accordance with the motion vector to obtain a motion compensation signal; and a prediction encoding means for encoding a residual obtained by subtracting the prediction signal from the motion compensation signal. A motion-compensated predictive coding apparatus comprising:
JP20595494A 1994-08-08 1994-08-08 Motion compensated predictive coding device Expired - Fee Related JP2897649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20595494A JP2897649B2 (en) 1994-08-08 1994-08-08 Motion compensated predictive coding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20595494A JP2897649B2 (en) 1994-08-08 1994-08-08 Motion compensated predictive coding device

Publications (2)

Publication Number Publication Date
JPH0851630A JPH0851630A (en) 1996-02-20
JP2897649B2 true JP2897649B2 (en) 1999-05-31

Family

ID=16515458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20595494A Expired - Fee Related JP2897649B2 (en) 1994-08-08 1994-08-08 Motion compensated predictive coding device

Country Status (1)

Country Link
JP (1) JP2897649B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288727A (en) * 2006-04-20 2007-11-01 Tama Tlo Kk Method and device for encoding motion compensating image

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1941797A (en) * 1997-03-17 1998-10-12 Mitsubishi Denki Kabushiki Kaisha Image encoder, image decoder, image encoding method, image decoding method and image encoding/decoding system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288727A (en) * 2006-04-20 2007-11-01 Tama Tlo Kk Method and device for encoding motion compensating image
JP4645515B2 (en) * 2006-04-20 2011-03-09 日本ビクター株式会社 Motion compensated image coding method and motion compensated image coding apparatus

Also Published As

Publication number Publication date
JPH0851630A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
JP3856262B2 (en) Motion compensation encoding apparatus, motion compensation encoding method, and motion compensation code recording medium
JP2897763B2 (en) Motion compensation coding device, decoding device, coding method and decoding method
Le Gall The MPEG video compression algorithm
US8194748B2 (en) Apparatus for scalable encoding/decoding of moving image and method thereof
US7379501B2 (en) Differential coding of interpolation filters
JPH11275592A (en) Moving image code stream converter and its method
US6650708B1 (en) Video signal encoding apparatus
JP2005506815A5 (en)
US20060291563A1 (en) Interpolation apparatus and method for motion vector compensation
KR20040106364A (en) System and method for providing single-layer video encoded bitstreams suitable for reduced-complexity decoding
JP2005507589A5 (en)
KR20040054746A (en) Method and apparatus for spatial scalable compression
JPH06197334A (en) Picture signal coding method, picture signal decoding method, picture signal coder, picture signal decoder and picture signal recording medium
JPH04177992A (en) Picture coder having hierarchical structure
US20060133475A1 (en) Video coding
JP2006279573A (en) Encoder and encoding method, and decoder and decoding method
KR19990072968A (en) Picture signal processing system, decoder, picture signal processing method, and decoding method
KR100386583B1 (en) Apparatus and method for transcoding video
US6219103B1 (en) Motion-compensated predictive coding with video format conversion
JP3348612B2 (en) Inter-block prediction coding device, inter-block prediction decoding device, inter-block prediction coding method, inter-block prediction decoding method, and inter-block prediction coding / decoding device
JPH09182085A (en) Image encoding device, image decoding device, image encoding method, image decoding method, image transmitting method and recording medium
JPH0818979A (en) Image processor
US6804299B2 (en) Methods and systems for reducing requantization-originated generational error in predictive video streams using motion compensation
JPH10136379A (en) Moving image coding method and its device
JP2897649B2 (en) Motion compensated predictive coding device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees