JP2892868B2 - Manufacturing method of molded catalyst - Google Patents

Manufacturing method of molded catalyst

Info

Publication number
JP2892868B2
JP2892868B2 JP3244363A JP24436391A JP2892868B2 JP 2892868 B2 JP2892868 B2 JP 2892868B2 JP 3244363 A JP3244363 A JP 3244363A JP 24436391 A JP24436391 A JP 24436391A JP 2892868 B2 JP2892868 B2 JP 2892868B2
Authority
JP
Japan
Prior art keywords
catalyst
weight
parts
water
absorption capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3244363A
Other languages
Japanese (ja)
Other versions
JPH0596183A (en
Inventor
啓幸 内藤
眞人 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP3244363A priority Critical patent/JP2892868B2/en
Publication of JPH0596183A publication Critical patent/JPH0596183A/en
Application granted granted Critical
Publication of JP2892868B2 publication Critical patent/JP2892868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は気孔を有し、成型性に優
れ、かつ機械的強度の高い成型触媒の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a molded catalyst having pores, excellent moldability and high mechanical strength.

【0002】[0002]

【従来の技術】一般に、工業的に用いられる成型触媒
は、触媒原料組成物と成型助剤とを混合し、成型した後
に熱処理して使用されるが、これを輸送したり、反応器
に充填する際に粉化・崩壊することがない機械的強度を
有する必要がある。
2. Description of the Related Art Generally, a molded catalyst used industrially is used by mixing a catalyst raw material composition and a molding aid, molding and then heat-treating the mixture. It is necessary to have a mechanical strength that does not cause powdering and collapse when performing.

【0003】成型触媒の機械的強度を上げる方法として
は、触媒原料組成物に成型助剤を添加した乾式打錠成型
法が挙げられる。例えば、特公昭56−38261号公
報にはタルクとグラファイトを添加成型する方法が提案
されている。しかし、乾式打錠成型法は、触媒に強度を
持たせるために成型圧力を上げると、反応やガスの拡散
に有効な細孔を潰し易いという欠点を有する。
As a method for increasing the mechanical strength of a molded catalyst, there is a dry tableting method in which a molding aid is added to a raw material catalyst composition. For example, Japanese Patent Publication No. 56-38261 proposes a method of adding and molding talc and graphite. However, the dry tableting method has a drawback that when the molding pressure is increased in order to impart strength to the catalyst, pores effective for reaction and gas diffusion are easily crushed.

【0004】これを解決する方法として押出成型法が挙
げられる。押出成型するに際しては、種々の成型助剤が
用いられており、例えば、特開昭60−150834号
公報には成型助剤としてグラファイトを添加する方法、
特公平2−36296号公報にはウィスカを添加する方
法が提案されている。これらの成型助剤を添加したもの
は、押出成型を行うことにより機械的強度に優れた成型
触媒が得られることを報告している。
[0004] As a method for solving this problem, there is an extrusion molding method. In extrusion molding, various molding aids are used. For example, JP-A-60-150834 discloses a method of adding graphite as a molding aid,
Japanese Patent Publication No. 2-36296 proposes a method of adding whiskers. It has been reported that a molding catalyst having excellent mechanical strength can be obtained by adding the molding aid to an extrusion molding.

【0005】しかしながら、これらの公報には成型性に
ついての記載は見られない。また、特公昭63−221
87号公報には吸水能が150重量倍以上の樹脂と珪藻
土を含有させて押出成型し、成型性に優れた触媒を得る
方法を提案しているが、機械的強度の向上に対しての記
載は見られない。
[0005] However, there is no description about moldability in these publications. In addition, JP-B 63-221
No. 87 proposes a method in which a resin having a water absorption capacity of 150 weight times or more and diatomaceous earth are extruded and a catalyst having excellent moldability is obtained to improve the mechanical strength. Is not seen.

【0006】[0006]

【発明が解決しようとする課題】本発明は、気孔を有
し、成型性に優れかつ機械的強度の高い成型触媒の製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a molded catalyst having pores, excellent moldability and high mechanical strength.

【0007】[0007]

【課題を解決するための手段】本発明は、触媒原料組成
物、ポリビニールアルコール及び吸水能が140重量倍
以下の樹脂からなる成型助剤並びに水とを混練した後、
押出成型することを特徴とする成型触媒の製造方法にあ
る。
According to the present invention, a catalyst raw material composition, polyvinyl alcohol, a molding aid comprising a resin having a water absorption capacity of 140 times by weight or less, and water are kneaded.
A method for producing a molded catalyst characterized by extrusion molding.

【0008】本発明に用いられる触媒原料組成物の種類
については特に限定されるものではない。例えば、公知
の不飽和アルデヒドを気相接触酸化して不飽和カルボン
酸を製造する際の触媒、例えば、メタクロレインを酸化
してメタクリル酸を製造する際の触媒として用いられ
る、リン、モリブデン、バナジウムを含むヘテロポリ酸
をベースとした触媒や、また、アクロレインを酸化して
アクリル酸を製造する際に用いられるモリブデン、バナ
ジウムを含む触媒などが挙げられる。
[0008] The type of the catalyst raw material composition used in the present invention is not particularly limited. For example, a catalyst for producing an unsaturated carboxylic acid by gas phase catalytic oxidation of a known unsaturated aldehyde, for example, used as a catalyst for producing methacrylic acid by oxidizing methacrolein, phosphorus, molybdenum, vanadium And a catalyst containing molybdenum and vanadium used when oxidizing acrolein to produce acrylic acid.

【0009】本発明は成型助剤として、ポリビニールア
ルコールと吸水能が140重量倍以下の樹脂を用いる。
ポリビニールアルコールとしては、水に溶解した形で使
用されるので水溶性であれば特に限定はなく、例えば、
ナカライテスク(株)製商品番号283−10,283
−11、和光純薬(株)製160−03055等が挙げ
られる。
In the present invention, polyvinyl alcohol and a resin having a water absorption capacity of 140 times by weight or less are used as molding aids.
Polyvinyl alcohol is not particularly limited as long as it is water-soluble because it is used in a form dissolved in water.
Product number 283-10,283 manufactured by Nakarai Tesque Co., Ltd.
-11, 160-03055 manufactured by Wako Pure Chemical Industries, Ltd., and the like.

【0010】吸水能を持つ樹脂とは、水に溶解せず、水
中(脱イオン水)において自重の最大140重量倍の水
を吸収して膨潤するものである。吸水能を持つ樹脂には
多くの種類が存在し、例えばポリアクリル酸ソーダ、酢
酸ビニル−アクリル酸エステル共重合体ケン化物、澱粉
−アクリル酸グラフト重合体、イソブチレン−無水マレ
イン酸共重合架橋物、澱粉−アクリロニトリルグラフト
共重合体などがある。
The resin having a water absorbing ability is a resin which does not dissolve in water but absorbs water up to 140 times its own weight in water (deionized water) and swells. There are many types of resins having a water absorbing ability, for example, sodium polyacrylate, saponified vinyl acetate-acrylate copolymer, starch-acrylic acid graft polymer, isobutylene-maleic anhydride copolymer crosslinked product, Starch-acrylonitrile graft copolymer and the like.

【0011】これらの中には吸水能が自重の1000重
量倍以上になるものもあるが、本発明においては、特に
吸水能が比較的小さい140重量倍以下の樹脂からなる
ものが必要である。吸水能が140重量倍を超えると成
型触媒の機械的強度の点で好ましくない。吸水能の下限
としては自重の70重量倍程度のものまで使用できる。
Some of these resins have a water-absorbing capacity of 1000 times or more of their own weight, but in the present invention, it is particularly necessary to use a resin having a relatively small water-absorbing capacity of 140 times or less. If the water absorption capacity exceeds 140 times by weight, it is not preferable in terms of the mechanical strength of the molded catalyst. As the lower limit of the water absorption capacity, a substance having a water absorption capacity of about 70 times its own weight can be used.

【0012】本発明においては成型助剤の添加量は特に
制限はなく、目的に応じて任意に選択することができる
が、触媒原料組成物100重量部に対して0.5〜10
重量部の範囲、特に1〜5重量部の範囲で添加するのが
好ましい。0.5重量部未満では押出時の成型性が悪く
なる傾向にあり、また、10重量部を超えると成型触媒
の機械的強度が低下する傾向にある。
In the present invention, the amount of the molding aid is not particularly limited and can be arbitrarily selected according to the purpose.
It is preferable to add in the range of parts by weight, particularly in the range of 1 to 5 parts by weight. If the amount is less than 0.5 part by weight, the moldability at the time of extrusion tends to deteriorate, and if it exceeds 10 parts by weight, the mechanical strength of the molded catalyst tends to decrease.

【0013】本発明において、触媒原料組成物と成型助
剤を混練する際に添加する水の量は、特に限定はなく、
押出成型がスムーズにおこなえる範囲で適当量を添加す
れば良い。
In the present invention, the amount of water added when kneading the catalyst raw material composition and the molding aid is not particularly limited.
An appropriate amount may be added as long as extrusion molding can be performed smoothly.

【0014】次いで混練物は、押出造粒機、真空押出機
等の一般粒体用成型機を用いて、リング状、円柱状、円
筒状、星型状等の任意の形状の触媒に押出成型する。
Next, the kneaded material is extruded into a catalyst having an arbitrary shape such as a ring shape, a column shape, a cylindrical shape, or a star shape using a general granule forming machine such as an extrusion granulator or a vacuum extruder. I do.

【0015】このようにして得られた押出成型触媒は次
いで熱処理される。本発明においては熱処理条件には特
に限定はなく、公知の処理条件を適用することができ
る。通常熱処理条件としては60〜150℃の温度で乾
燥後、300〜500℃の温度で窒素や空気気流中で焼
成される。このような熱処理により、反応に有効な気孔
が形成されるものと予想される。
The extruded catalyst thus obtained is then heat-treated. In the present invention, the heat treatment conditions are not particularly limited, and known treatment conditions can be applied. Usually, as a heat treatment condition, after drying at a temperature of 60 to 150 ° C., firing is performed at a temperature of 300 to 500 ° C. in a nitrogen or air stream. It is expected that such heat treatment will form pores effective for the reaction.

【0016】なお、本発明は上記混合の際に、従来公知
の成型助剤をさらに添加しても差し支えない。ただしそ
の添加量は、本発明が特定する成型助剤の効果を損なう
ほどにしてはならない。
In the present invention, a conventionally known molding aid may be further added during the mixing. However, the amount of addition should not be so great as to impair the effect of the molding aid specified by the present invention.

【0017】以下、実施例および比較例によって本発明
をさらに詳細に説明する。文中「部」とあるのは重量部
を意味する。なお、成型触媒の機械的強度の測定は次の
方法で行なった。圧壊強度:成型触媒一個の縦軸方向お
よび縦軸垂直方向に荷重をかけ、ひび割れを生じたとき
の荷重を測定した。落下粉化率:垂直に立てた内径27
mmで長さが5000mmの鉄パイプの上部から成型触
媒2000g(a)を落下させ8メッシュの篩で受け止
め、篩上に残った触媒の重量(b)を計り、次の式によ
り落下粉化率を測定した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. “Parts” in the text means parts by weight. The mechanical strength of the molded catalyst was measured by the following method. Crushing strength: A load was applied in the direction of the vertical axis and the vertical direction of the vertical axis of one molded catalyst, and the load when cracks were generated was measured. Falling powdering ratio: Internal diameter 27 standing upright
2,000 g (a) of a molded catalyst was dropped from the upper part of an iron pipe having a length of 5000 mm and received by an 8 mesh sieve, and the weight (b) of the catalyst remaining on the sieve was measured. Was measured.

【0018】[0018]

【数1】 (Equation 1)

【0019】また、成型触媒は外径5mm、内径2m
m、平均長さ5mmとなるように切断し、各測定に用い
た。
The molded catalyst has an outer diameter of 5 mm and an inner diameter of 2 m.
m, and cut to an average length of 5 mm, and used for each measurement.

【0020】[0020]

【実施例】【Example】

[実施例1]パラモリブデン酸アンモニウム100部、
メタバナジン酸アンモニウム3.3部及び硝酸セシウム
9.2部を純水100部に溶解した。これに85%リン
酸8.2部を純水30部に溶解した溶液を加え、混合液
を加熱しながら蒸発乾固した。得られた固形物を粉末状
に粉砕し、この粉末100部にポリビニールアルコール
(ナカライテスク製283−11)2部、吸水能が70
重量倍のポリアクリル酸ソーダ3部と適量の水を加え、
十分に混練した後、押出成型機より押出し切断した。こ
の成型品を100℃で乾燥後、空気気流中380℃で5
時間焼成して完成触媒を得た。この触媒原料組成物の押
出時の成型性は表1に示すように極めて良好であり、ま
た成型触媒の機械的強度も優れていた。
[Example 1] 100 parts of ammonium paramolybdate,
3.3 parts of ammonium metavanadate and 9.2 parts of cesium nitrate were dissolved in 100 parts of pure water. A solution prepared by dissolving 8.2 parts of 85% phosphoric acid in 30 parts of pure water was added thereto, and the mixture was evaporated to dryness while heating. The obtained solid was pulverized into a powder, and 100 parts of this powder was mixed with 2 parts of polyvinyl alcohol (283-11 manufactured by Nacalai Tesque) and the water absorption capacity was 70%.
Add 3 parts by weight of sodium polyacrylate and an appropriate amount of water,
After sufficient kneading, the mixture was extruded and cut from an extruder. After drying this molded product at 100 ° C.,
After calcination for a time, a completed catalyst was obtained. The moldability during extrusion of the catalyst raw material composition was extremely good as shown in Table 1, and the mechanical strength of the molded catalyst was also excellent.

【0021】[実施例2]実施例1においてポリビニー
ルアルコール、吸水能が70重量倍のポリアクリル酸ソ
ーダの使用量をそれぞれ0.5部、1.5部にする外は
同様にして押出成型を行なった。得られた結果を表1に
示す。
Example 2 Extrusion molding was performed in the same manner as in Example 1 except that the amounts of polyvinyl alcohol and sodium polyacrylate having a water absorption capacity of 70 parts by weight were changed to 0.5 parts and 1.5 parts, respectively. Was performed. Table 1 shows the obtained results.

【0022】[実施例3]実施例1においてポリビニー
ルアルコール、吸水能が70重量倍のポリアクリル酸ソ
ーダの使用量をそれぞれ5.0部、4.0部にする外は
同様にして押出成型を行なった。得られた結果を表1に
示す。
Example 3 Extrusion molding was conducted in the same manner as in Example 1 except that the amounts of polyvinyl alcohol and sodium polyacrylate having a water absorption capacity of 70 times by weight were changed to 5.0 parts and 4.0 parts, respectively. Was performed. Table 1 shows the obtained results.

【0023】[実施例4]実施例1においてポリビニー
ルアルコール、吸水能が70重量倍のポリアクリル酸ソ
ーダの使用量をそれぞれ0.2部、0.5部にする外は
同様にして押出成型を行なった。得られた結果を表1に
示す。
Example 4 Extrusion molding was carried out in the same manner as in Example 1 except that the amounts of polyvinyl alcohol and sodium polyacrylate having a water absorption capacity of 70 times by weight were changed to 0.2 part and 0.5 part, respectively. Was performed. Table 1 shows the obtained results.

【0024】[実施例5]実施例1においてポリビニー
ルアルコール、吸水能が70重量倍のポリアクリル酸ソ
ーダの使用量をそれぞれ5.0部、6.0部にする外は
同様にして押出成型を行なった。得られた結果を表1に
示す。
Example 5 Extrusion molding was carried out in the same manner as in Example 1 except that the amounts of polyvinyl alcohol and sodium polyacrylate having a water absorption capacity of 70 times by weight were changed to 5.0 parts and 6.0 parts, respectively. Was performed. Table 1 shows the obtained results.

【0025】[実施例6]実施例1においてポリビニー
ルアルコール、吸水能が70重量倍のポリアクリル酸ソ
ーダの使用量をともに0.2部にする外は同様にして押
出成型を行なった。得られた結果を表1に示す。
Example 6 Extrusion molding was performed in the same manner as in Example 1 except that the amounts of polyvinyl alcohol and sodium polyacrylate having a water absorption capacity of 70 times by weight were both changed to 0.2 part. Table 1 shows the obtained results.

【0026】[実施例7] パラモリブデン酸アンモニウム100部およびメタバナ
ジン酸アンモニウム16.6部を純水1000部に溶解
した。これに硝酸第二鉄21.0部を純水200部に溶
解した溶液を加え、更に酸化ゲルマニウム1.0部を加
えた。次に20%シリカゲル61.0部を加え、混合液
を加熱撹拌しながら蒸発乾固した。得られた固形物を粉
末状に粉砕し、この粉末100部にポリビニールアルコ
ール(和光純薬製160−03055)2部、吸水能が
70重量倍のポリアクリル酸ソーダ3部と適量の水を加
え、十分に混練した後、押出成型機より押出し切断し
た。この成型品を130℃で乾燥後、空気気流中380
℃で5時間焼成して完成触媒を得た。この触媒原料組成
物の押出時の成型性は表1に示すように極めて良好であ
り、また成型触媒の機械的強度も優れていた。 得られた
触媒の酸素以外の元素の組成はMo 12 Fe 1.1
Si 4.3 Ge 0.2 であった本成型触媒を反応管に
充填し、アクロレイン5%、酸素10%、水蒸気30
%、窒素55%(容量%)の混合ガスを反応温度270
℃、接触時間3.6秒で通じた。生成物を捕集し、ガス
クロマトグラフィーで分析したところ、アクロレイン反
応率99.1%,アクリル酸選択率95.5%であっ
た。
Example 7 100 parts of ammonium paramolybdate and 16.6 parts of ammonium metavanadate were dissolved in 1000 parts of pure water. A solution of 21.0 parts of ferric nitrate dissolved in 200 parts of pure water was added thereto, and 1.0 part of germanium oxide was further added. Next, 61.0 parts of 20% silica gel was added, and the mixture was evaporated to dryness while heating and stirring. The obtained solid was pulverized into a powder, and 100 parts of the powder was mixed with 2 parts of polyvinyl alcohol (160-03055 manufactured by Wako Pure Chemical Industries, Ltd.), 3 parts of sodium polyacrylate having a water absorption capacity of 70 times by weight, and an appropriate amount of water. After sufficient kneading, the mixture was extruded and cut by an extruder. After drying this molded product at 130 ° C.,
Calcination at 5 ° C. for 5 hours gave a finished catalyst. This catalyst raw material composition
The moldability during extrusion of the product is extremely good as shown in Table 1.
Also, the mechanical strength of the molded catalyst was excellent. Got
The composition of the elements other than oxygen in the catalyst is Mo 12 V 3 Fe 1.1
It was a Si 4.3 Ge 0.2. This molded catalyst in the reaction tube
Fill, acrolein 5%, oxygen 10%, steam 30
% And nitrogen 55% (volume%) at a reaction temperature of 270.
C. and a contact time of 3.6 seconds. Collect the product and gas
Chromatographic analysis showed that acrolein anti-
The reaction rate was 99.1% and the selectivity for acrylic acid was 95.5%.
Was.

【0027】[実施例8]実施例7において吸水能が7
0重量倍のポリアクリル酸ソーダの代わりに、吸水能が
120重量倍のポリ酢酸ビニル−アクリル酸エステル共
重合体ケン化物を用いる外は同様にして押出成型を行な
った。
Example 8 In Example 7, the water absorption capacity was 7
Extrusion molding was carried out in the same manner except that a saponified polyvinyl acetate-acrylate copolymer having a water absorption capacity of 120 weight times was used instead of the 0 weight weight sodium polyacrylate.

【0028】[0028]

【表1】 [Table 1]

【0029】[比較例1]実施例1においてポリビニー
ルアルコールと吸水能が70重量倍のポリアクリル酸ソ
ーダを共に用いない外は同様にして押出成型を行なっ
た。得られた結果を表2に示す。
[Comparative Example 1] Extrusion molding was performed in the same manner as in Example 1 except that neither polyvinyl alcohol nor sodium polyacrylate having a water absorption capacity of 70 times by weight was used. Table 2 shows the obtained results.

【0030】[比較例2]実施例1においてポリビニー
ルアルコールを用いない外は同様にして押出成型を行な
った。得られた結果を表2に示す。
Comparative Example 2 Extrusion molding was performed in the same manner as in Example 1 except that polyvinyl alcohol was not used. Table 2 shows the obtained results.

【0031】[比較例3] 実施例1において吸水能が70重量倍のポリアクリル酸
ソーダを用いない外は同様にして押出成型及び反応を行
なった。得られた結果を表2に示す。また、メタクロレ
イン反応率80.0%、メタクリル酸選択率75.0%
であった。
Comparative Example 3 Extrusion molding and reaction were carried out in the same manner as in Example 1 except that sodium polyacrylate having a water absorption capacity of 70 times by weight was not used. Table 2 shows the obtained results. In addition, metachlore
In reaction rate 80.0%, methacrylic acid selectivity 75.0%
Met.

【0032】[比較例4]実施例1においてポリビニー
ルアルコールの代わりに水溶性デンプンを用いる外は同
様にして押出成型を行なった。得られた結果を表2に示
す。
Comparative Example 4 Extrusion molding was performed in the same manner as in Example 1 except that water-soluble starch was used instead of polyvinyl alcohol. Table 2 shows the obtained results.

【0033】[比較例5]実施例1においてポリビニー
ルアルコールの代わりにヒドロキシプロピルセルロース
を用いる外は同様にして押出成型を行なった。得られた
結果を表2に示す。
Comparative Example 5 Extrusion molding was carried out in the same manner as in Example 1 except that hydroxypropyl cellulose was used instead of polyvinyl alcohol. Table 2 shows the obtained results.

【0034】[比較例6]実施例1において吸水能が7
0重量倍のポリアクリル酸ソーダの代わりに吸水能が3
00重量倍のポリアクリル酸ソーダを用いる外は同様に
して押出成型を行なった。得られた結果を表2に示す。
[Comparative Example 6] In Example 1, the water absorption capacity was 7
Water absorption capacity is 3 instead of 0 weight times sodium polyacrylate
Extrusion molding was carried out in the same manner except that sodium polyacrylate was used at a weight ratio of 00. Table 2 shows the obtained results.

【0035】[比較例7] 実施例8において吸水能が120重量倍のポリ酢酸ビニ
ル−アクリル酸エステルの代わりに吸水能が重量100
0倍のポリ酢酸ビニル−アクリル酸エステル共重合体ケ
ン化物を用いる外は同様にして押出成型及び反応を行な
った。得られた結果を表2に示す。また、アクロレイン
反応率99.0%、アクリル酸選択率95.3%であっ
た。 なお、実施例及び比較例における反応率、選択率は
下記の定義に従った。
[Comparative Example 7] Instead of polyvinyl acetate-acrylate having a water absorption capacity of 120 times by weight in Example 8, the water absorption capacity was 100 weight.
Extrusion molding and reaction were carried out in the same manner except that a saponified polyvinyl acetate-acrylate copolymer of 0 times was used. Table 2 shows the obtained results. Also, acrolein
The conversion was 99.0% and the selectivity for acrylic acid was 95.3%.
Was. The reaction rate and selectivity in Examples and Comparative Examples are
The following definitions were followed.

【0036】[0036]

【表2】 [Table 2]

【0037】表1、表2における成型性のランクづけの
目安は次の通りである。 ○ 押し出しがスムーズで歩留りが良い。 △ 押し出しがスムーズでなく、歩留りがやや悪く、混
練物と水との分離が見られる。 × 押し出しが出来ない。
The guideline for ranking the moldability in Tables 1 and 2 is as follows. ○ Smooth extrusion and good yield. Δ The extrusion was not smooth, the yield was slightly poor, and separation of the kneaded material and water was observed. × Cannot be extruded.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 触媒原料組成物、ポリビニールアルコー
ル及び吸水能が140重量倍以下の樹脂からなる成型助
剤並びに水とを混練した後、押出成型することを特徴と
する成型触媒の製造方法。
1. A method for producing a molded catalyst, comprising kneading a catalyst raw material composition, a polyvinyl alcohol, a molding aid composed of a resin having a water absorption capacity of 140 times by weight or less, and water, followed by extrusion molding.
JP3244363A 1991-08-29 1991-08-29 Manufacturing method of molded catalyst Expired - Lifetime JP2892868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3244363A JP2892868B2 (en) 1991-08-29 1991-08-29 Manufacturing method of molded catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3244363A JP2892868B2 (en) 1991-08-29 1991-08-29 Manufacturing method of molded catalyst

Publications (2)

Publication Number Publication Date
JPH0596183A JPH0596183A (en) 1993-04-20
JP2892868B2 true JP2892868B2 (en) 1999-05-17

Family

ID=17117582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3244363A Expired - Lifetime JP2892868B2 (en) 1991-08-29 1991-08-29 Manufacturing method of molded catalyst

Country Status (1)

Country Link
JP (1) JP2892868B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4253176B2 (en) 2002-11-12 2009-04-08 株式会社日本触媒 Catalyst for producing acrylic acid and method for producing acrylic acid
JP4295521B2 (en) 2003-02-13 2009-07-15 株式会社日本触媒 Catalyst for producing acrylic acid and method for producing acrylic acid
US7378367B2 (en) 2004-03-25 2008-05-27 Nippon Shokubai Co., Ltd. Catalyst for production of acrylic acid and process for production of acrylic acid using the catalyst

Also Published As

Publication number Publication date
JPH0596183A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
KR101095152B1 (en) Method for the production of annular-shaped super catalysts
JP3892244B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
TW200524672A (en) Preparation of annular unsupported catalysts
EP3488926B1 (en) Catalyst, acrylic acid production method, and catalyst production method
WO2005049200A1 (en) Method for the production of acrolein by the heterogeneously-catalysed gas-phase partial oxidation of propene
JP2892868B2 (en) Manufacturing method of molded catalyst
JP4933709B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
KR100904578B1 (en) Method for preparing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, catalyst prepared by the method, and method for synthesis of unsaturated aldehyde and unsaturated carboxylic acid using the catalyst
KR100826760B1 (en) Process for producing catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
US20050261520A1 (en) Process for producing catalyst for production of unsaturated carboxylic acid
JP3260185B2 (en) Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof
JP2005187460A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JPH0810621A (en) Production of catalyst for producing unsaturated carboxylic acid
JPH11239724A (en) Production of catalyst for synthesizing unsaturated aldehyde and/or unsaturated carboxylic acid, and production of unsaturated aldehyde and/or unsaturated carboxylic acid
JPWO2020196853A1 (en) A catalyst molded body, a catalyst molded body for producing methacrolein and / or methacrylic acid, and a method for producing methacrolein and / or methacrylic acid.
JP4970986B2 (en) Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP3313863B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
KR20040042833A (en) Catalyst and process for production of acrylic acid
JP2005186064A (en) Production method for catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JPS5927217B2 (en) Production method of catalyst for methacrylic acid production
JP2004130261A (en) Method of manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP2008302313A (en) Catalyst for producing methacrylic acid, method for manufacturing the same, and method for manufacturing methacrylic acid
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2010188227A (en) Method for producing catalyst for producing methacrylic acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13