JP2892087B2 - Resin-sealed semiconductor device and method of manufacturing the same - Google Patents

Resin-sealed semiconductor device and method of manufacturing the same

Info

Publication number
JP2892087B2
JP2892087B2 JP2062535A JP6253590A JP2892087B2 JP 2892087 B2 JP2892087 B2 JP 2892087B2 JP 2062535 A JP2062535 A JP 2062535A JP 6253590 A JP6253590 A JP 6253590A JP 2892087 B2 JP2892087 B2 JP 2892087B2
Authority
JP
Japan
Prior art keywords
resin
sealing resin
layer
semiconductor device
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2062535A
Other languages
Japanese (ja)
Other versions
JPH03265162A (en
Inventor
新悦 藤枝
道也 東
宏 下澤
章 善積
カオ・ミン・タイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2062535A priority Critical patent/JP2892087B2/en
Publication of JPH03265162A publication Critical patent/JPH03265162A/en
Application granted granted Critical
Publication of JP2892087B2 publication Critical patent/JP2892087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は樹脂封止型半導体装置およびその製造方法に
関する。
The present invention relates to a resin-sealed semiconductor device and a method of manufacturing the same.

(従来の技術) 近年、半導体装置の樹脂封止に関する分野において
は、半導体素子の高集積度化に伴って素子上の各種機能
単位の微細化、素子自体の大型化が急速に進んでいる。
また、ASIC(Application Specific IC)と言われるゲ
ートアレイやスタンダードセル方式LSIに代表される表
面実装型パッケージを実装する際には、ベーパーフェイ
ズリフロー、赤外線リフロー、半田浸漬などの工程が採
用されている。これらの工程ではパッケージが高温(21
5〜260℃)にさらされる。このため、エポキシ樹脂で封
止した樹脂封止型半導体装置では該樹脂を透過して内部
に侵入した微量の水分が急激に気化し、封止樹脂層にク
ラッチが入る。その結果、前記クラックが外部にまで達
すると、耐湿信頼性が保障できないという大きな問題点
が生じる。また、樹脂の膨れが生じて実装できないとい
う現象も発生する。更に、アルミニウムなどの配線層の
パッシベーション膜として用いられているPSG(リンけ
い酸ガラス)やSiN(窒化けい素)にクラックが生じた
り、Auボンディングワイヤーの断線が生ずるなどの問題
が多発する。
(Prior Art) In recent years, in the field of resin encapsulation of a semiconductor device, miniaturization of various functional units on an element and enlargement of the element itself have been rapidly progressing along with high integration of a semiconductor element.
Also, when mounting a surface mount package represented by a gate array called an ASIC (Application Specific IC) or a standard cell LSI, processes such as vapor phase reflow, infrared reflow, and solder immersion are employed. . In these processes, the package is hot (21
5 to 260 ° C). For this reason, in a resin-sealed semiconductor device sealed with an epoxy resin, a small amount of moisture permeating through the resin and entering the interior is rapidly vaporized, and a clutch enters the sealing resin layer. As a result, when the crack reaches the outside, there is a large problem that the moisture resistance reliability cannot be guaranteed. In addition, a phenomenon occurs in which the resin cannot be mounted due to swelling of the resin. Further, cracks occur in PSG (phosphosilicate glass) or SiN (silicon nitride) used as a passivation film of a wiring layer of aluminum or the like, and problems such as disconnection of an Au bonding wire frequently occur.

これらの対策として、封止樹脂の内部封入物に対す
る応力を小さくし、かつ封止樹脂と素子上のPSG、SiN、
ポリイミド膜及びリードフレームとの密着性を上げる;
実装温度に対応した高温強度及び吸湿高温強度を付与
し、かつ吸湿量を低減する;などの要求が大型パッケー
ジ用の封止樹脂を中心として高まってきている。
As a countermeasure, reduce the stress of the sealing resin against the internal enclosure, and use PSG, SiN,
Improve adhesion with polyimide film and lead frame;
Demands for providing high-temperature strength and high-moisture-absorbing high-temperature strength corresponding to the mounting temperature and reducing the amount of moisture absorption are increasing, mainly for sealing resins for large packages.

これらの観点から、封止樹脂としては例えばマレイミ
ド樹脂をはじめ、PPS(ポリフェニレンサルファイド)
系やPPO(ポリヒドロキシフェニレンエーテル)系、ま
たは液晶ポリマーの実用化が検討されている。更に、最
近では、マレイミド樹脂とエポキシ樹脂との組合わせた
樹脂、又はビスマレイミド樹脂と4,4−ジアミノジフェ
ニルメタンとを組合せたアミノビスマレイミド樹脂が封
止樹脂として提案されている。しかしながら、これらの
樹脂を用いてトランスファモールド成形を行なうと、リ
ードフレーム等に対する密着性の改善化が逆に型離れを
阻害するという問題を生じる。従って、これら樹脂で
は、リードフレーム等に対する密着性の向上と型離れの
容易性との相反する特性を満足することができなかっ
た。
From these viewpoints, as the sealing resin, for example, maleimide resin, PPS (polyphenylene sulfide)
Practical use of a liquid crystal polymer, a PPO (polyhydroxyphenylene ether), or a liquid crystal polymer is being studied. Further, recently, a resin obtained by combining a maleimide resin and an epoxy resin, or an aminobismaleimide resin obtained by combining a bismaleimide resin and 4,4-diaminodiphenylmethane has been proposed as a sealing resin. However, when transfer molding is performed using these resins, there arises a problem that improvement in adhesion to a lead frame or the like adversely inhibits mold release. Therefore, these resins could not satisfy the contradictory characteristics of improvement in adhesion to a lead frame or the like and ease of mold release.

一方、実装する際の問題点をパッケージ構造で改良し
た樹脂封止型半導体装置(例えば特開昭60−208847号)
が提案されている。この半導体装置は、ダイパットの下
側のモールド樹脂(封止樹脂)部に円柱又は多角形状の
穴を設けて極度に肉厚の薄い部分又はモールド樹脂がな
い部分を形成し、加熱に際してモールド樹脂内部の水分
の蒸発によって発生するガスを前述した極度に薄くした
部分などから逃散させる構造になっている。また、トラ
ンスファモールド成形法からパッケージ表面に金属性被
覆層を形成することによって、外部にまで達するクラッ
クの発生を防止して耐湿信頼性の向上を図った樹脂封止
型半導体装置も考えられる。しかしながら、いずれの樹
脂封止型半導体装置も生産性及び耐湿信頼性の点から十
分に満足するものではなかった。
On the other hand, a resin-encapsulated semiconductor device in which mounting problems have been improved with a package structure (for example, Japanese Patent Application Laid-Open No. 60-208847)
Has been proposed. In this semiconductor device, a column or a polygonal hole is provided in a molding resin (sealing resin) portion on a lower side of a die pad to form an extremely thin portion or a portion having no molding resin. The structure is such that gas generated by the evaporation of moisture escapes from the extremely thin portion described above. Further, a resin-encapsulated semiconductor device in which a metallic coating layer is formed on a package surface by a transfer molding method to prevent the occurrence of cracks reaching the outside and improve the moisture resistance reliability is also conceivable. However, none of the resin-encapsulated semiconductor devices has been sufficiently satisfactory in terms of productivity and moisture resistance reliability.

(発明が解決しようとする課題) 本発明は、前記課題を解決するためになされたもの
で、パッケージ内部への水分の侵入を抑えて実装時の加
熱に際しての樹脂のクラック発生を防止した耐湿信頼性
が良好な樹脂封止型半導体装置およびかかる半導体装置
を容易に製造し得る方法を提供しようとするものであ
る。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned problems, and has been proposed in order to prevent moisture from entering the inside of a package and to prevent cracking of a resin upon heating during mounting. It is an object of the present invention to provide a resin-encapsulated semiconductor device having good characteristics and a method for easily manufacturing such a semiconductor device.

[発明の構成] (課題を解決するための手段) 本発明に係わる樹脂封止型半導体装置は、外部リード
が接続された半導体素子と、 前記外部リードの接続部を含む前記半導体素子の少な
くとも表面を封止した封止樹脂層と、 前記封止樹脂層上に金属層を介して積層された絶縁層
と を具備したことを特徴とするものである。
[Configuration of the Invention] (Means for Solving the Problems) A resin-encapsulated semiconductor device according to the present invention includes a semiconductor element to which an external lead is connected, and at least a surface of the semiconductor element including a connection portion of the external lead. And an insulating layer laminated on the sealing resin layer via a metal layer.

本発明に係わる別の樹脂封止型半導体装置は、封止樹
脂層、金属層、及び絶縁層をこの順に積層したプレート
材料を前記封止樹脂層が外部リードが接続された半導体
素子に対向するように配置し、加熱圧着して前記外部リ
ードの接続部を含む前記半導体素子の少なくとも表面を
封止したことを特徴とするものである。
In another resin-encapsulated semiconductor device according to the present invention, a plate material in which an encapsulation resin layer, a metal layer, and an insulation layer are laminated in this order is formed by opposing a semiconductor element having the encapsulation resin layer to which external leads are connected. And at least the surface of the semiconductor element including the connection part of the external lead is sealed by heat compression.

本発明に係わる樹脂封止型半導体装置の製造方法は、
封止樹脂層、金属層、及び絶縁層をこの順に積層したプ
レート材料を作製する工程と、 前記プレート材料を外部リードを接続した半導体素子
に前記封止樹脂層が前記外部リードの接続部を含む少な
くとも表面に対向するように配置した後、加熱圧着して
封止する工程と を具備したことを特徴とするものである。
The method for manufacturing a resin-encapsulated semiconductor device according to the present invention includes:
A step of preparing a plate material in which a sealing resin layer, a metal layer, and an insulating layer are laminated in this order; and the sealing resin layer includes a connection portion of the external lead to a semiconductor element to which the plate material is connected to an external lead. And arranging at least so as to face the surface, followed by heat-pressing and sealing.

前記封止樹脂層を形成する封止樹脂としては、エポキ
シ系樹脂、フェノール系樹脂、マレイミド系封止樹脂、
シリコーン系封止樹脂などが挙げられ、更にその他の熱
可塑性樹脂、エンジニアリングプラッスチックなども挙
げられる。これらの中でも耐湿信頼性をより向上させる
観点から、半導体素子及び金属との密着性が高く、かつ
樹脂自体の吸湿量が少ないものが望ましい。かかる封止
樹脂層の厚さは、パッケージの厚みに応じて適宜に設定
される。但し、前記封止樹脂層の厚さの下限値について
は加熱圧着工程において前記金属層と半導体素子のボン
ディングワイヤー等との接触を防止できる厚さにする必
要がある。
As a sealing resin for forming the sealing resin layer, an epoxy resin, a phenol resin, a maleimide sealing resin,
Examples include silicone-based sealing resins, and further include other thermoplastic resins, engineering plastics, and the like. Among these, from the viewpoint of further improving the moisture resistance reliability, those having high adhesion to the semiconductor element and the metal and having a small amount of moisture absorption by the resin itself are desirable. The thickness of the sealing resin layer is appropriately set according to the thickness of the package. However, the lower limit of the thickness of the sealing resin layer needs to be a thickness that can prevent contact between the metal layer and a bonding wire or the like of a semiconductor element in the thermocompression bonding step.

前記金属層を形成する金属としては、例えば鉄、ニッ
ケル、銅、金、銀、アルミニウム、スズ、ケイ素、ステ
ンレス、鉛、及びこれらの合金などが挙げられる。これ
らの中でも薄型に加工でき、かつ軽量であるものが望ま
しい。かかる金属層の厚さは、1000μm以下にすること
が望ましい。
Examples of the metal forming the metal layer include iron, nickel, copper, gold, silver, aluminum, tin, silicon, stainless steel, lead, and alloys thereof. Among these, those which can be processed to be thin and are lightweight are desirable. It is desirable that the thickness of the metal layer be 1000 μm or less.

前記絶縁層としては、金属酸化物層、ポリイミド膜な
とが挙げられる。前記金属酸化物層は前記金属層の表面
を酸化して形成した金属酸化膜であってもよい。かかる
絶縁層は、十分な絶縁性を確保する観点から、体積抵抗
率が1.0×108Ω・cm以上であるものが望ましい。また、
その厚さは、5μm以下にすることが望ましい。なお、
前記絶縁層は前記金属層の両面に酸化膜等の形態で設け
てもよい。
Examples of the insulating layer include a metal oxide layer and a polyimide film. The metal oxide layer may be a metal oxide film formed by oxidizing a surface of the metal layer. From the viewpoint of securing sufficient insulating properties, such an insulating layer desirably has a volume resistivity of 1.0 × 10 8 Ω · cm or more. Also,
It is desirable that the thickness be 5 μm or less. In addition,
The insulating layer may be provided on both surfaces of the metal layer in the form of an oxide film or the like.

前記プレート材料は、例えば金属層と絶縁層とを予め
積層した後、該金属層側に封止樹脂層を積層して作製す
ることができる。前記封止樹脂層を積層する方法として
は、金属層表面に封止樹脂をコーティングする方法、金
属層表面に封止樹脂を粉体塗装する方法、金属層表面に
封止樹脂の圧縮成形体を熱融着する方法などが挙げられ
る。
The plate material can be produced, for example, by laminating a metal layer and an insulating layer in advance, and then laminating a sealing resin layer on the metal layer side. As a method of laminating the sealing resin layer, a method of coating the sealing resin on the surface of the metal layer, a method of powder coating the sealing resin on the surface of the metal layer, and a compression molding of the sealing resin on the surface of the metal layer For example, a method of heat fusion may be used.

本発明に係る樹脂封止型半導体装置は、一つの前記プ
レート材料で半導体素子を片側から封止した形態と、二
つの前記プレート材料で半導体素子を両側から封止した
形態とがある。これらの形態は前記半導体素子の取付け
状態に応じて選択される。例えば、半導体素子がリード
フレームとボンディングされた状態では、これら部材を
二つのプレート材料で挟む形態が採用される。半導体素
子がフィルムキャリアとボンディングされた状態では、
これら部材の片側(素子のフィルムキャリアとのボンデ
ィング面)にプレート材料を配置するか、これら部材を
二つのプレート材料で挟む形態が採用される。半導体素
子が回路基板に実装された状態では、素子側にプレート
材料を配置する形態が採用される。このような樹脂封止
型半導体装置の製造方法を以下に(1)〜(4)の方法
として具体的に例示する。
The resin-sealed semiconductor device according to the present invention includes a form in which a semiconductor element is sealed from one side with one plate material and a form in which a semiconductor element is sealed from both sides with two plate materials. These modes are selected according to the mounting state of the semiconductor element. For example, in a state where the semiconductor element is bonded to the lead frame, a mode is adopted in which these members are sandwiched between two plate materials. In the state where the semiconductor element is bonded to the film carrier,
Either a plate material is disposed on one side of these members (the bonding surface of the element with the film carrier), or these members are sandwiched between two plate materials. In a state where the semiconductor element is mounted on the circuit board, a form in which a plate material is arranged on the element side is adopted. The method for manufacturing such a resin-encapsulated semiconductor device will be specifically described below as methods (1) to (4).

(1)第1図(a)に示すように、絶縁層1、金属層
2、及び封止樹脂層3をこの順に積層した二つのプレー
ト材料4を該封止樹脂層3が対向するように配置し、こ
れらプレート材料4の間に半導体素子5を配置する。前
記半導体素子5は、リードフレームのダイパット6上に
載置され、かつ上面の電極がリード7にワイヤー8でボ
ンディングされている。次いで、二つのプレート材料4
の封止樹脂層3をプレート加熱、又は赤外線加熱などに
より加熱して軟化溶融状態にし、前記半導体素子5を二
つのプレート材料4で挟み込んで圧着する。このときの
封止樹脂層3の軟化溶融状態は、通常、封止樹脂がプレ
ート材料から滴下せず、しかも圧着したときにボンディ
ングワイヤーなどが変形しない程度の範囲内に調整す
る。こうした工程により、第1図(b)に示すように、
前記半導体素子5、ダイパット6及びワイヤー8が封止
樹脂層3内に封止され、その外側に金属層2及び絶縁層
1が漸次配置された樹脂封止型半導体装置を得る。
(1) As shown in FIG. 1 (a), two plate materials 4 in which an insulating layer 1, a metal layer 2, and a sealing resin layer 3 are laminated in this order so that the sealing resin layer 3 faces each other. The semiconductor elements 5 are arranged between the plate materials 4. The semiconductor element 5 is mounted on a die pad 6 of a lead frame, and an electrode on the upper surface is bonded to a lead 7 with a wire 8. Then, two plate materials 4
The sealing resin layer 3 is heated by plate heating or infrared heating so as to be in a softened and molten state, and the semiconductor element 5 is sandwiched between two plate materials 4 and pressed. The softening and melting state of the sealing resin layer 3 at this time is usually adjusted within a range where the sealing resin does not drop from the plate material and the bonding wires and the like do not deform when pressed. Through these steps, as shown in FIG. 1 (b),
The semiconductor element 5, the die pad 6, and the wire 8 are sealed in the sealing resin layer 3, and a resin-sealed semiconductor device in which the metal layer 2 and the insulating layer 1 are gradually disposed outside the semiconductor element 5, the die pad 6, and the wire 8 is obtained.

(2)第2図(a)に示すように、バンプ9でフィルム
キャリヤ10とボンディングされたTAB(Tape Automated
Bonding)タイプの半導体素子5を用いた以外は前記
(1)の方法と同様に行なう。こうした工程により、第
2図(b)に示すように、半導体素子5及びバンプ9が
封止樹脂層3内に封止され、その外側に金属層2及び絶
縁層1が漸次配置された樹脂封止型半導体装置を得る。
(2) As shown in FIG. 2 (a), TAB (Tape Automated) bonded to the film carrier 10 by the bump 9
Bonding) is performed in the same manner as in the method (1) except that the semiconductor element 5 is used. By these steps, as shown in FIG. 2 (b), the semiconductor element 5 and the bump 9 are sealed in the sealing resin layer 3, and the metal layer 2 and the insulating layer 1 are gradually disposed outside the resin sealing. A semiconductor device having a stop type is obtained.

(3)第3図(a)に示すように、絶縁層1、金属層
2、及び封止樹脂層3をこの順に積層したプレート材料
4を、該封止樹脂層3がTABタイプの半導体素子5のボ
ンディング側に対向するように配置する。次いで、プレ
ート材料4の封止樹脂層3を加熱して軟化溶融状態に
し、圧着する。こうした工程により、第3図(b)に示
すように、半導体素子5のボンディング面及び側面、並
びにバンプ9が封止樹脂層3に封止され、半導体素子5
のボンディング面側に封止樹脂層3を介して金属層2及
び絶縁層1が漸次配置された樹脂封止型半導体装置を得
る。
(3) As shown in FIG. 3 (a), a plate material 4 in which an insulating layer 1, a metal layer 2, and a sealing resin layer 3 are laminated in this order is used. 5 so as to face the bonding side. Next, the sealing resin layer 3 of the plate material 4 is heated to be in a softened and molten state, and then pressed. Through these steps, as shown in FIG. 3 (b), the bonding surface and side surfaces of the semiconductor element 5 and the bumps 9 are sealed in the sealing resin layer 3, and the semiconductor element 5
To obtain a resin-sealed semiconductor device in which the metal layer 2 and the insulating layer 1 are gradually arranged on the bonding surface side via the sealing resin layer 3.

(4)第4図(a)に示すように、絶縁層1、金属層
2、及び封止樹脂層3をこの順に積層したプレート材料
4を該封止樹脂層3が半導体素子5上面側に対向するよ
うに配置する。前記半導体素子5は、基板11上に実装さ
れ、かつ上面の電極が基板11上の配線12にワイヤー8で
ボンディングされている。次いで、プレート材料4の封
止樹脂層3を加熱して軟化溶融状態にし、圧着する。こ
うした工程により、第4図(b)に示すように、半導体
素子5、ワイヤー8、及び配線12が基板11上で封止樹脂
層3に封止され、半導体素子5上面側に封止樹脂層3を
介して金属層2及び絶縁層1が漸次配置された樹脂封止
型半導体装置を得る。
(4) As shown in FIG. 4 (a), a plate material 4 in which an insulating layer 1, a metal layer 2, and a sealing resin layer 3 are laminated in this order is applied to the sealing resin layer 3 on the upper surface side of the semiconductor element 5. They are arranged so as to face each other. The semiconductor element 5 is mounted on a substrate 11, and electrodes on the upper surface are bonded to wires 12 on the substrate 11 by wires 8. Next, the sealing resin layer 3 of the plate material 4 is heated to be in a softened and molten state, and then pressed. By these steps, as shown in FIG. 4 (b), the semiconductor element 5, the wires 8, and the wirings 12 are sealed on the substrate 11 by the sealing resin layer 3, and the sealing resin layer is formed on the upper surface of the semiconductor element 5. A resin-sealed semiconductor device in which the metal layer 2 and the insulating layer 1 are gradually arranged via 3 is obtained.

(作用) 本発明によれば、絶縁層、金属層、及び封止樹脂層を
この順に積層したプレート材料を該封止樹脂層側から半
導体素子に加熱圧着して封止した構成になることによっ
て、パッケージ内部への水分の侵入を前記金属層により
抑制できる。その結果、実装時における加熱に際して微
量な残留水分の急激な気化による封止樹脂層のクラック
発生を防止でき、耐湿信頼性の優れた樹脂封止型半導体
装置を得ることができる。また、前記金属層は前記絶縁
層で被覆されているためピンなどの接触による誤動作を
防止できる。
(Operation) According to the present invention, a plate material in which an insulating layer, a metal layer, and a sealing resin layer are laminated in this order is heated and pressed from the sealing resin layer side to a semiconductor element to seal the semiconductor element. In addition, the penetration of moisture into the package can be suppressed by the metal layer. As a result, cracks in the sealing resin layer due to rapid evaporation of a small amount of residual moisture upon heating during mounting can be prevented, and a resin-encapsulated semiconductor device having excellent moisture resistance reliability can be obtained. Further, since the metal layer is covered with the insulating layer, malfunction due to contact with a pin or the like can be prevented.

更に、前記プレート材料を用いることによって、従来
のトランスファモールド成形法のような封止樹脂の型離
れを考慮する必要がないため、封止樹脂として半導体素
子やボンディングワイヤーとの密着性に優れたものを選
択することができる。その結果、かかる点からも耐湿信
頼性を向上できる。また、トランスファモールド成形法
と比べて短時間成形が可能であるため容易に製造するこ
とができる。
Furthermore, by using the above-mentioned plate material, it is not necessary to consider the mold separation of the sealing resin as in the conventional transfer molding method, so that the sealing resin has excellent adhesion to a semiconductor element or a bonding wire. Can be selected. As a result, the moisture resistance reliability can be improved from this point as well. In addition, since molding can be performed in a shorter time as compared with the transfer molding method, it can be easily manufactured.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例1 ダイパットサイズが15.5mm角であって板厚が150μm
の4.2アロイ製リードフレームに、25μm径のボンディ
ングワイヤーでボンディングされた半導体素子(チップ
サイズ15mm角、パッシベーション膜:表面ポリイミド
膜)を作製した。また、アルマイト処理により表面が酸
化層(絶縁層)で覆われた板厚が400μmのアルミプレ
ート(金属層)の片面に下記第1表に示す物性のエポキ
シ系樹脂組成物を加熱コーティグして封止樹脂層を形成
することにより二枚のプレート材料を作製した。
Example 1 The die pad size is 15.5 mm square and the plate thickness is 150 μm
A semiconductor element (15 mm square chip size, passivation film: surface polyimide film) bonded to a 4.2 alloy lead frame by a bonding wire having a diameter of 25 μm was prepared. An epoxy resin composition having the physical properties shown in Table 1 below is coated on one side of an aluminum plate (metal layer) having a thickness of 400 μm, the surface of which is covered with an oxide layer (insulating layer) by alumite treatment, and sealed. Two plate materials were produced by forming a resin stopper layer.

次いで、前記構成の二枚のプレート材料を前述した第
1図(a)に示すようにそれら封止樹脂層3が互いに対
向するように配置し、これらプレート材料4間にリード
フレームに取付けられた半導体素子5を配置した。次い
で、図示しない上下加熱プレートにより温度170℃、圧
力5kg/cm2の条件下で、加熱圧着して封止した後、175℃
で4時間アフターキュアーし、封止樹脂を十分に硬化し
て第1図(b)に示すパッケージ形状が32mm×32mm×3.
6mmでQFP184ピンの樹脂封止型半導体装置を製造した。
Next, as shown in FIG. 1 (a), the two plate materials having the above structure were arranged so that their sealing resin layers 3 face each other, and were attached to a lead frame between these plate materials 4. The semiconductor element 5 was arranged. Then, the upper and lower heating plates (not shown) were heated and pressed under a temperature of 170 ° C. and a pressure of 5 kg / cm 2 , and then sealed at 175 ° C.
After curing for 4 hours, the sealing resin is sufficiently cured, and the package shape shown in FIG. 1 (b) is 32 mm × 32 mm × 3.
A 6 mm QFP 184-pin resin-sealed semiconductor device was manufactured.

実施例2 板厚が400μmのアルミプレート(金属層)の一方の
面に絶縁層としてポリイミド樹脂を5μmの厚さでコー
ティングし、前記アルミプレートの他方の面に実施例1
と同じエポキシ系樹脂組成物を加熱コーティングして封
止樹脂層を形成することにより二枚のプレート材料を作
製した。これ以外は実施例1と同様にして第1図(b)
に示す樹脂封止型半導体装置を製造した。
Example 2 One side of an aluminum plate (metal layer) having a thickness of 400 μm was coated with a polyimide resin as an insulating layer to a thickness of 5 μm, and the other side of the aluminum plate was coated with an example 1
Two plate materials were produced by heating and coating the same epoxy resin composition as in Example 1 to form a sealing resin layer. Other than the above, FIG.
Was manufactured.

実施例3 実施例1のプレート材料の封止樹脂層を薄くしてパッ
ケージ形状を32mm×32mm×2mmとした以外は実施例1と
同様にして第1図(b)に示す樹脂封止型半導体装置を
製造した。
Example 3 A resin-encapsulated semiconductor shown in FIG. 1 (b) in the same manner as in Example 1 except that the sealing resin layer of the plate material of Example 1 was thinned to make the package shape 32 mm × 32 mm × 2 mm. The device was manufactured.

実施例4 実施例1のプレート材料の封止樹脂層を薄くしてパッ
ケージ形状を32mm×32mm×1mmとした以外は実施例1と
同様にして第1図(b)に示す樹脂封止型半導体装置を
製造した。
Example 4 A resin-encapsulated semiconductor shown in FIG. 1 (b) in the same manner as in Example 1 except that the sealing resin layer of the plate material of Example 1 was thinned to make the package shape 32 mm × 32 mm × 1 mm. The device was manufactured.

実施例5 板厚が200μmの銅プレート(金属層)の一方の面に
絶縁層としてポリイミド樹脂を5μmの厚さでコーティ
ングし、前記銅プレートの他方の面に実施例1と同じエ
ポキシ系樹脂組成物を加熱コーティングして封止樹脂層
を形成することにより二枚のプレート材料を作製した。
これ以外は実施例1と同様にして第1図(b)に示す樹
脂封止型半導体装置を製造した。
Example 5 One side of a copper plate (metal layer) having a thickness of 200 μm was coated with a polyimide resin as an insulating layer at a thickness of 5 μm, and the other surface of the copper plate was the same epoxy resin composition as in Example 1. An object was heated and coated to form a sealing resin layer, thereby producing two plate materials.
Except for this, the resin-encapsulated semiconductor device shown in FIG. 1B was manufactured in the same manner as in Example 1.

実施例6 板厚が150μmのステンレスプレート(金属層)の一
方の面に絶縁層としてポリイミド樹脂を5μmの厚さで
コーティングし、前記ステンレスプレートの他方の面に
実施例1と同じエポキシ系樹脂組成物を加熱コーティン
グして封止樹脂層を形成することにより二枚のプレート
材料を作製した。これ以外は実施例1と同様にして第1
図(b)に示す樹脂封止型半導体装置を製造した。
Example 6 One side of a stainless steel plate (metal layer) having a thickness of 150 μm was coated with a polyimide resin as an insulating layer at a thickness of 5 μm, and the other surface of the stainless steel plate was the same epoxy resin composition as in Example 1. An object was heated and coated to form a sealing resin layer, thereby producing two plate materials. Except for this, the first method is the same as in the first embodiment.
A resin-sealed semiconductor device shown in FIG.

比較例1 実施例1で用いたエポキシ系樹脂組成物に内部離型剤
であるカルナバワックスを0.4重量部添加したものを封
止樹脂として用い、金型温度が170℃のトランスファモ
ールド成形法により実施例1と同じ半導体素子を封止樹
脂層内に封止してパッケージ形状が32mm×32mm×3.6mm
でQFP184ピンの樹脂封止型半導体装置を製造した。
Comparative Example 1 The epoxy resin composition used in Example 1 and 0.4 parts by weight of carnauba wax as an internal mold release agent added thereto were used as a sealing resin, and the transfer was performed by a transfer molding method at a mold temperature of 170 ° C. The same semiconductor element as in Example 1 is sealed in a sealing resin layer, and the package shape is 32 mm × 32 mm × 3.6 mm
Manufactured a resin-sealed semiconductor device with 184 pins of QFP.

比較例2 比較例1の封止樹脂層を薄くしてパッケージ形状を32
mm×32mm×2mmとした以外は比較例1と同様にして樹脂
封止型半導体装置を製造した。
Comparative Example 2 The package shape was reduced by reducing the thickness of the sealing resin layer of Comparative Example 1 to 32.
A resin-encapsulated semiconductor device was manufactured in the same manner as in Comparative Example 1 except that the size was changed to mm × 32 mm × 2 mm.

比較例3 比較例1の封止樹脂層を薄くしてパッケージ形状を32
mm×32mm×1mmとした以外は比較例1と同様にして樹脂
封止型半導体装置を製造した。
Comparative Example 3 The package shape was reduced by reducing the thickness of the sealing resin layer of Comparative Example 1 to 32.
A resin-encapsulated semiconductor device was manufactured in the same manner as in Comparative Example 1 except that the size was changed to mm × 32 mm × 1 mm.

実施例1〜6及び比較例1〜3の樹脂封止型半導体装
置の製造時の封止工程におけるパッケージ成形時間を下
記第2表に示す。
Table 2 below shows the package molding time in the sealing step at the time of manufacturing the resin-sealed semiconductor devices of Examples 1 to 6 and Comparative Examples 1 to 3.

実施例1〜6及び比較例1〜3の樹脂封止型半導体装
置について、封止樹脂の吸水率、半導体素子のパッシベ
ーション膜であるポリイミド膜との密着性、及びリード
フレームとの密着性を調べた。また、温度85℃、相対湿
度85%で200時間吸湿処理した後、215℃でVPS処理(ベ
ーパーフェイズリフロー処理)を行ない、VPS処理直後
の外部に達するクラック発生を観察して不良品の発生を
調べた。更に、温度121℃で2気圧のプレッシャークッ
カー内で耐湿信頼性テストを行ない不良品の発生を調べ
た。これらの結果を下記第2表に示す。
With respect to the resin-encapsulated semiconductor devices of Examples 1 to 6 and Comparative Examples 1 to 3, the water absorption of the encapsulating resin, the adhesion with the polyimide film which is the passivation film of the semiconductor element, and the adhesion with the lead frame were examined. Was. In addition, after performing moisture absorption treatment at a temperature of 85 ° C and relative humidity of 85% for 200 hours, VPS treatment (vapor phase reflow treatment) is performed at 215 ° C. Examined. Further, a moisture resistance reliability test was performed in a pressure cooker at a temperature of 121 ° C. and a pressure of 2 atm, and occurrence of defective products was examined. The results are shown in Table 2 below.

第2表から明らかなように実施例1〜6の樹脂封止型
半導体装置は金属層を有するため水分の侵入が抑えら
れ、比較例1〜3の樹脂封止型半導体装置と比べて封止
樹脂の吸水率が小さいのがわかる。また、実施例1〜6
の樹脂封止型半導体装置は、型離れのよい封止樹脂を用
いる必要がないので半導体素子及びボンディングワイヤ
ーとの密着性に優れた封止樹脂が用いることができる。
その結果、パッケージ内部の水部の急激な気化によるVP
S処理後の外部に達するクラックの発生が少なく、耐湿
信頼性にも優れることが確認できる。更に、実施例1〜
6の樹脂封止型半導体装置は、トランスファモールド成
形法よりも短い成形時間で容易に製造することができる
のがわかる。
As is clear from Table 2, the resin-sealed semiconductor devices of Examples 1 to 6 have a metal layer, so that the invasion of water is suppressed, and the resin-sealed semiconductor devices of Comparative Examples 1 to 3 are sealed. It can be seen that the water absorption of the resin is small. Examples 1 to 6
In the resin-sealed type semiconductor device described above, there is no need to use a sealing resin with good mold release, so that a sealing resin having excellent adhesion to a semiconductor element and a bonding wire can be used.
As a result, VP caused by rapid vaporization of the water inside the package
It can be confirmed that the occurrence of cracks reaching the outside after the S treatment is small and that the moisture resistance reliability is excellent. Further, Examples 1 to
It can be seen that the resin-encapsulated semiconductor device of No. 6 can be easily manufactured in a shorter molding time than the transfer molding method.

[発明の効果] 以上詳述した如く、本発明によればパッケージ内部へ
の水分の侵入を抑えて実装時の加熱に際しての樹脂のク
ラック発生が防止されて耐湿信頼性に優れ、今後の半導
体素子の大型化や薄型化指向に十分に対応可能な樹脂封
止型半導体装置、並びにかかる樹脂封止型半導体装置を
容易に製造することが可能な方法を提供することができ
る。
[Effects of the Invention] As described in detail above, according to the present invention, the invasion of moisture into the package is suppressed, and the occurrence of cracks in the resin at the time of heating during mounting is prevented. It is possible to provide a resin-encapsulated semiconductor device that can sufficiently cope with an increase in the size and thickness of the device, and a method that can easily manufacture such a resin-encapsulated semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b)は本発明に係る樹脂封止型半導体
装置の製造工程を示す断面図、第2図(a),(b)は
本発明に係る樹脂封止型半導体装置の他の製造工程を示
す断面図、第3図(a),(b)は本発明に係る樹脂封
止型半導体装置の他の製造工程を示す断面図、第4図
(a),(b)は本発明に係る樹脂封止型半導体装置の
他の製造工程を示す断面図である。 1……絶縁層、2……金属層、3……封止樹脂層、4…
…プレート材料、5……半導体素子、6……ダイパッ
ト、7……リード、8……ワイヤー、9……バンプ、10
……フィルムキャリヤ、11……基板、12……配線。
1 (a) and 1 (b) are cross-sectional views showing a manufacturing process of a resin-sealed semiconductor device according to the present invention, and FIGS. 2 (a) and (b) are resin-sealed semiconductor devices according to the present invention. 3 (a) and 3 (b) are cross-sectional views showing another manufacturing process of the resin-sealed semiconductor device according to the present invention, and FIGS. 4 (a) and 4 (b) () Is a cross-sectional view showing another manufacturing step of the resin-encapsulated semiconductor device according to the present invention. 1 ... insulating layer, 2 ... metal layer, 3 ... sealing resin layer, 4 ...
... Plate material, 5 ... Semiconductor element, 6 ... Die pad, 7 ... Lead, 8 ... Wire, 9 ... Bump, 10
…… Film carrier, 11… Substrate, 12… Wiring.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 善積 章 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (72)発明者 カオ・ミン・タイ 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (56)参考文献 特開 昭63−250847(JP,A) 特開 昭58−199543(JP,A) 特開 昭57−79651(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 23/28,21/56 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Akira Zenzumi 1 Toshiba Research Institute, Komukai-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Kao-Min-Thai Thailand Komukai, Sachi-ku, Kawasaki-shi, Kanagawa No. 1, Toshiba Town Inside Toshiba Research Institute, Inc. (56) References JP-A-63-250847 (JP, A) JP-A-58-199543 (JP, A) JP-A-57-79651 (JP, A) (58) ) Surveyed field (Int.Cl. 6 , DB name) H01L 23 / 28,21 / 56

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】外部リードが接続された半導体素子と、 前記外部リードの接続部を含む前記半導体素子の少なく
とも表面を封止した封止樹脂層と、 前記封止樹脂層上に金属層を介して積層された絶縁層と を具備したことを特徴とする樹脂封止型半導体装置。
A semiconductor element to which an external lead is connected; a sealing resin layer sealing at least a surface of the semiconductor element including a connection portion of the external lead; and a metal layer interposed on the sealing resin layer. A resin-encapsulated semiconductor device, comprising: an insulating layer laminated by stacking.
【請求項2】封止樹脂層、金属層、及び絶縁層をこの順
に積層したプレート材料を前記封止樹脂層が外部リード
が接続された半導体素子に対向するように配置し、加熱
圧着して前記外部リードの接続部を含む前記半導体素子
の少なくとも表面を封止したことを特徴とする樹脂封止
型半導体装置。
2. A plate material in which a sealing resin layer, a metal layer, and an insulating layer are laminated in this order is disposed so that the sealing resin layer faces a semiconductor element to which external leads are connected, and is heated and pressed. A resin-encapsulated semiconductor device, wherein at least a surface of the semiconductor element including a connection portion of the external lead is sealed.
【請求項3】封止樹脂層、金属層、及び絶縁層をこの順
に積層したプレート材料を作製する工程と、 前記プレート材料を外部リードを接続した半導体素子に
前記封止樹脂層が前記外部リードの接続部を含む少なく
とも表面に対向するように配置した後、加熱圧着して封
止する工程と を具備したことを特徴とする樹脂封止型半導体装置の製
造方法。
3. A step of producing a plate material in which a sealing resin layer, a metal layer, and an insulating layer are laminated in this order; and said sealing resin layer is attached to a semiconductor element to which an external lead is connected. A step of arranging at least a surface including the connection portion and facing the surface, and then performing heat-compression bonding to seal the resin-sealed semiconductor device.
JP2062535A 1990-03-15 1990-03-15 Resin-sealed semiconductor device and method of manufacturing the same Expired - Fee Related JP2892087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2062535A JP2892087B2 (en) 1990-03-15 1990-03-15 Resin-sealed semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2062535A JP2892087B2 (en) 1990-03-15 1990-03-15 Resin-sealed semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03265162A JPH03265162A (en) 1991-11-26
JP2892087B2 true JP2892087B2 (en) 1999-05-17

Family

ID=13203003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2062535A Expired - Fee Related JP2892087B2 (en) 1990-03-15 1990-03-15 Resin-sealed semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2892087B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685114A (en) * 1992-09-01 1994-03-25 Toshiba Corp Resin seal semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPH03265162A (en) 1991-11-26

Similar Documents

Publication Publication Date Title
US6784554B2 (en) Semiconductor device and manufacturing method thereof
CA1167571A (en) Integrated circuit package
US4363076A (en) Integrated circuit package
US4437235A (en) Integrated circuit package
US6025648A (en) Shock resistant semiconductor device and method for producing same
WO2007023852A1 (en) Semiconductor device and method for manufacturing same
US20120252165A1 (en) Method for manufacturing a semiconductor device
US7679188B2 (en) Semiconductor device having a bump formed over an electrode pad
JPH0215660A (en) Semiconductor device
US20130277828A1 (en) Methods and Apparatus for bump-on-trace Chip Packaging
JP4594777B2 (en) Manufacturing method of multilayer electronic component
JP3207286B2 (en) Resin-sealed semiconductor device
JP2892087B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
US10854576B2 (en) Semiconductor device and manufacturing method thereof
CN110634880A (en) Semiconductor device and method for manufacturing the same
JP2002064162A (en) Semiconductor chip
JP3539528B2 (en) Semiconductor device and manufacturing method thereof
JP3155811B2 (en) Method for manufacturing resin-encapsulated semiconductor device
JP2937398B2 (en) Manufacturing method of encapsulated semiconductor device
JP2000036506A (en) Manufacture of semiconductor device
JPH0551179B2 (en)
JPH05283562A (en) Resin-sealed semiconductor device
JPH0345542B2 (en)
JP2713879B2 (en) Multi-chip package with direct electrical connection between internal leads and board bonding pads
JPH0685114A (en) Resin seal semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees