JP2889952B2 - Damage / breakage position detection device - Google Patents

Damage / breakage position detection device

Info

Publication number
JP2889952B2
JP2889952B2 JP8347496A JP8347496A JP2889952B2 JP 2889952 B2 JP2889952 B2 JP 2889952B2 JP 8347496 A JP8347496 A JP 8347496A JP 8347496 A JP8347496 A JP 8347496A JP 2889952 B2 JP2889952 B2 JP 2889952B2
Authority
JP
Japan
Prior art keywords
optical fiber
damage
aircraft
damaged
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8347496A
Other languages
Japanese (ja)
Other versions
JPH09273906A (en
Inventor
丈夫 瀬沼
英二 清水
邦彦 ▲真▼野
文夫 中村
哲郎 久野
久子 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOEICHO GIJUTSU KENKYU HONBUCHO
Mitsubishi Heavy Industries Ltd
Oki Electric Industry Co Ltd
Original Assignee
BOEICHO GIJUTSU KENKYU HONBUCHO
Mitsubishi Heavy Industries Ltd
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOEICHO GIJUTSU KENKYU HONBUCHO, Mitsubishi Heavy Industries Ltd, Oki Electric Industry Co Ltd filed Critical BOEICHO GIJUTSU KENKYU HONBUCHO
Priority to JP8347496A priority Critical patent/JP2889952B2/en
Publication of JPH09273906A publication Critical patent/JPH09273906A/en
Application granted granted Critical
Publication of JP2889952B2 publication Critical patent/JP2889952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は損傷・破損位置検
出装置に係り、さらに詳しくは航空機の機体の歪や亀裂
或いは欠落等の損傷の位置や損傷状態などを検出する損
傷・破損位置検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damaged / damaged position detecting device, and more particularly, to a damaged / damaged position detecting device for detecting a damaged position such as a distortion, a crack or a chip of an aircraft body, and a damaged state. Things.

【0002】[0002]

【従来の技術】大気中を高速度で飛行する航空機は、常
時機体に強い風圧を受けて航行している。したがって、
特に側方に張り出した主翼や尾翼の表面に、飛行時間に
比例して歪や亀裂等が生じる確率が高い。従来、このよ
うな航空機の機体の変形や亀裂等による損傷状態の把握
には、主として整備員の目視検査により人為的に行われ
ていた。また、超音波探傷装置や磁粉探傷装置などによ
る機械的な検査方法により行われることもある。
2. Description of the Related Art An aircraft that flies at high speed in the atmosphere always travels under strong wind pressure on its body. Therefore,
In particular, there is a high probability that distortion, cracks, and the like will occur on the surfaces of the main wing and tail wing that protrude laterally in proportion to the flight time. Heretofore, in order to grasp the state of damage due to such deformation or cracking of the body of an aircraft, it has been performed artificially mainly by visual inspection of maintenance personnel. Further, the inspection may be performed by a mechanical inspection method using an ultrasonic inspection device, a magnetic particle inspection device, or the like.

【0003】[0003]

【発明が解決しようとする課題】上述のように従来のこ
の種の航空機に発生する機体の故障状況の発見には、主
に視覚により人為的に行われていた。したがって、整備
員の熟練度が要求された。この外、上記のような機械的
な検査方法もあるが、いずれの場合も飛行場や整備格納
庫などの地上において実施されていた。このため、従来
の損傷・破損位置検出方式では航空機の飛行を長時間休
止させなければならない等の問題点があった。
SUMMARY OF THE INVENTION As described above, the discovery of a fault condition of an airframe occurring in a conventional aircraft of this type has been performed mainly visually and artificially. Therefore, the skill of the maintenance staff was required. In addition to the above, there are mechanical inspection methods as described above, but in all cases, the inspection methods are performed on the ground such as an airfield or a maintenance hangar. For this reason, the conventional method for detecting a damaged / damaged position has a problem that the flight of the aircraft must be suspended for a long time.

【0004】この発明はこのような従来の損傷・破損検
出方式の欠点を解消するためになされたもので、地上に
おける整備中は勿論のこと、飛行中においても機体の損
傷箇所を即時に検出できる航空機における損傷・破損位
置検出装置を実現することを目的にしたものである。
The present invention has been made to solve the above-mentioned drawbacks of the conventional damage / damage detection method, and can immediately detect a damaged portion of the airframe not only during maintenance on the ground but also during flight. It is intended to realize a damage / breakage position detection device for an aircraft.

【0005】[0005]

【課題を解決するための手段】この発明は、機体の表層
面または表層中に光ファイバケーブルを設け、この光フ
ァイバケーブルをマトリックス状に配置した航空機にお
ける損傷・破損位置検出装置において、光ファイバケー
ブルに凹曲面状の細径部で形成されてモード変換機能を
備えた応力感応部を設けた航空機における損傷・破損位
置検出装置を構成したものである。また、上記手段にお
いて、応力感応部をマトリックス状に配置した光ファイ
バケーブルの交点付近に配置した航空機における損傷・
破損位置検出装置を構成したものである。
SUMMARY OF THE INVENTION The present invention relates to an apparatus for detecting a damaged / damaged position in an aircraft in which an optical fiber cable is provided on a surface layer or in a surface layer of an airframe and the optical fiber cables are arranged in a matrix. And a damaged / damaged position detecting device for an aircraft provided with a stress-sensitive portion formed of a concave curved small-diameter portion and having a mode conversion function. Further, in the above-mentioned means, damage and damage to the aircraft arranged near the intersection of the optical fiber cables in which the stress sensitive portions are arranged in a matrix.
This constitutes a damage position detecting device.

【0006】外力により航空機の機体の一部に凹みの損
傷を受けると、検出装置のマトリックスの領域内に配置
されたX成分とY成分の光ファイバケーブルに曲げ応力
が生じる。このため、マトリックスを形成するX,Y両
成分の応力感応部を透過する測定用の光の透過光量が曲
り角度に応じて減衰して、この減衰量が受光器で検出さ
れる。したがって、減衰したXとYの複数成分に対応す
る領域が、凹み損傷を受けたものと判定される。このと
きの、XとYの複数成分の減衰量の多寡により、損傷域
内の損傷状態も推定される。
[0006] When a dent is damaged in a part of the fuselage of an aircraft by an external force, a bending stress is generated in the X-component and Y-component optical fiber cables arranged in the area of the matrix of the detection device. For this reason, the transmitted light amount of the measuring light passing through the stress sensitive portions of both the X and Y components forming the matrix is attenuated according to the bending angle, and the amount of attenuation is detected by the light receiver. Therefore, the region corresponding to the attenuated plural components of X and Y is determined to have received the dent damage. At this time, the damage state in the damage area is also estimated based on the amount of attenuation of the multiple components of X and Y.

【0007】また、機体の一部が剥離または欠落で破損
すると、破損箇所に通じるX,Y成分の応力感応部の透
過光が散乱したり反射する。散乱光や反射光を受光した
X,Y成分に囲まれた部分が、破壊して脱落したものと
判断されるようになっている。
Further, when a part of the fuselage is damaged due to peeling or missing, the transmitted light of the X- and Y-component stress-sensitive parts leading to the damaged part is scattered or reflected. The portion surrounded by the X and Y components that receive the scattered light and the reflected light is determined to be broken and dropped.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態1 図1は、この発明の実施形態1を適用した航空機の構成
説明図、図2は図1の一部の拡大説明図である。図1と
図2において、1は航空機である。10は航空機1の胴
体、11は主翼、12はエンジン、13と14は水平尾
翼と垂直尾翼である。図では航空機1として、左右にエ
ンジン12を設けた双発機が例示されている。15は補
助翼、16はフラップ、17はスポイラ、18は水平尾
翼に設けられた昇降舵、19は方向舵である。
Embodiment 1 FIG. 1 is an explanatory diagram of a configuration of an aircraft to which Embodiment 1 of the present invention is applied, and FIG. 2 is an enlarged explanatory diagram of a part of FIG. 1 and 2, reference numeral 1 denotes an aircraft. 10 is a fuselage of the aircraft 1, 11 is a main wing, 12 is an engine, and 13 and 14 are a horizontal tail and a vertical tail. In the drawing, a twin-engine aircraft provided with engines 12 on the left and right is illustrated as an aircraft 1. Reference numeral 15 denotes an auxiliary wing, 16 denotes a flap, 17 denotes a spoiler, 18 denotes a hoist provided on a horizontal tail, and 19 denotes a rudder.

【0009】図1において2は本発明に係る損傷・破損
位置検出装置(以下、検出装置)、図2において3はこ
の検出装置2の要素を構成する光ファイバからなる光フ
ァイバケーブルである。光ファイバケーブル3の具体的
な構造とセンサ部を拡大して示した斜視図が、図3と図
4に示されている。図3と図4において、3aは被覆、
31は光ファイバケーブル3のコア、32はクラッド、
33は境界層である。クラッド32は、中心のコア31
の周囲を包囲している。
In FIG. 1, reference numeral 2 denotes a damaged / damaged position detecting device (hereinafter referred to as a detecting device) according to the present invention, and in FIG. 2, reference numeral 3 denotes an optical fiber cable composed of optical fibers constituting elements of the detecting device 2. FIGS. 3 and 4 are enlarged perspective views showing a specific structure of the optical fiber cable 3 and a sensor section. 3 and 4, 3a is a coating,
31 is the core of the optical fiber cable 3, 32 is the clad,
33 is a boundary layer. The clad 32 is the central core 31
Surrounding the area.

【0010】図3および図4において、34はセンサを
構成する応力感応部(応力センサ)である。応力感応部
34は光ファイバケーブル3に部分的に長手方向の張力
と熱を加えて凹曲面状の細径部で構成され、図示のよう
に光ファイバケーブル3の長さ方向に沿ってある間隔を
隔てて設けられている。そして、光ファイバケーブル3
の応力感応部34に半径方向の外力が加わると、この外
力に対応する応力σが発生してコア31内を矢印方向に
透過する光Lの透過光量が曲げ角度に応じて変化する。
このときの光Lの透過光量vと応力σの関係が図5に示
されている。図5に示すように透過光量vは、応力σの
増加にほぼ比例して減少するような特性を有する。
In FIGS. 3 and 4, reference numeral 34 denotes a stress sensitive portion (stress sensor) constituting the sensor. The stress responsive portion 34 is formed of a concave-shaped small-diameter portion by partially applying tension and heat in the longitudinal direction to the optical fiber cable 3, and has a certain interval along the length direction of the optical fiber cable 3 as shown in the figure. Are provided at intervals. And the optical fiber cable 3
When an external force in the radial direction is applied to the stress sensitive portion 34, a stress σ corresponding to the external force is generated, and the amount of light L transmitted through the core 31 in the direction of the arrow changes according to the bending angle.
FIG. 5 shows the relationship between the transmitted light amount v of the light L and the stress σ at this time. As shown in FIG. 5, the transmitted light amount v has such a characteristic that it decreases almost in proportion to the increase in the stress σ.

【0011】一般に、この種の光ファイバに外力が加わ
ると、光ファイバの内部に応力が生じて“モード変換”
現象が発生する。“モード変換”現象が発生すると、境
界層の全反射角が変化する。この結果、光ファイバの内
部を透過する光が境界層で乱反射したり外周のクラッド
を透過して外部に散逸し、放射損失と呼ばれる光エネル
ギの損失を生じる。また、光ファイバの軸方向から圧力
が与えられた場合には、軸心に数μm程度の曲りができ
て境界層に凹凸が生じる。そして、同様な“モード変
換”現象に基いて透過光量が変化し、“マイクロベンデ
ング損失”と呼ばれる光損失が発生する。
Generally, when an external force is applied to this type of optical fiber, stress is generated inside the optical fiber and "mode conversion" occurs.
The phenomenon occurs. When the "mode conversion" phenomenon occurs, the total reflection angle of the boundary layer changes. As a result, light passing through the inside of the optical fiber is irregularly reflected at the boundary layer or transmitted through the outer cladding and is scattered to the outside, resulting in a loss of light energy called radiation loss. Also, when pressure is applied from the axial direction of the optical fiber, a bend of about several μm is formed in the axial center, and unevenness occurs in the boundary layer. Then, the amount of transmitted light changes based on a similar “mode conversion” phenomenon, and an optical loss called “microbending loss” occurs.

【0012】光ファイバケーブル3に設けられた細径の
応力感応部34は、上記のような光エネルギの損失に伴
う透過光量vの変化を高感度に検出する。一方、光Lを
コア31内に透過させている光ファイバケーブル3が途
中で切断されると(図6のp点参照)、進行中の光Lが
切断面で散乱や反射される。この結果、切断面の散乱光
と反射光が光ファイバケーブル3の内部を逆方向の進行
して、入射側に戻されることになる。
The small-diameter stress sensing portion 34 provided on the optical fiber cable 3 detects a change in the amount of transmitted light v due to the loss of light energy as described above with high sensitivity. On the other hand, when the optical fiber cable 3 transmitting the light L into the core 31 is cut off (see the point p in FIG. 6), the light L in progress is scattered or reflected on the cut surface. As a result, the scattered light and the reflected light of the cut surface travel inside the optical fiber cable 3 in the opposite direction and return to the incident side.

【0013】このような光ファイバケーブル3は例え
ば、図2に示すように複合材等で作られた水平尾翼13
の表層面または表層中に埋め込まれている。図示された
水平方向の光ファイバケーブル3はX成分、垂直方向は
Y成分である。両成分はX方向とY方向に行と列に交差
させて、マトリックスMを形成して水平尾翼13等のほ
ぼ全面を覆うようになっている。図2の30はY成分の
光ファイバ束で、Y成分の入出力用の光ファイバケーブ
ル3が纏められている。
The optical fiber cable 3 is, for example, a horizontal tail 13 made of a composite material as shown in FIG.
Embedded in or on the surface. The illustrated horizontal optical fiber cable 3 has an X component, and the vertical optical fiber cable 3 has a Y component. Both components cross the rows and columns in the X direction and the Y direction to form a matrix M and cover almost the entire surface of the horizontal tail 13 and the like. Reference numeral 30 in FIG. 2 denotes a Y-component optical fiber bundle in which Y-component input / output optical fiber cables 3 are collected.

【0014】X成分とY成分からなる光ファイバケーブ
ル3を配置した本発明の実施形態1の検出装置の構成を
示すブロック図を、図6と図7に示す。図6において、
X1 ,X2 …Xm は上記マトリックスMを形成するため
のX成分の光ファイバケーブル3で、Y1 ,Y2 …Yn
はY成分(ただし、m,n は正の整数)、Cは両成分X1
,X2 …Xm とY1 ,Y2 …Yn の交点[xm ,yn
]である(以下、図8も参照)。そして、前記のX,
Y両成分内の多数の応力感応部34がそれぞれ各交点C
[xm ,yn ]の付近に配置されて、各交点C[xm,
yn ]付近の透過光量vの変化を検出するようになって
いる。
FIGS. 6 and 7 are block diagrams showing the configuration of the detection apparatus according to the first embodiment of the present invention in which the optical fiber cable 3 composed of the X component and the Y component is arranged. In FIG.
.., Xm are X-component optical fiber cables 3 for forming the matrix M. Y1, Y2,.
Is the Y component (where m and n are positive integers), and C is both components X1
, X2... Xm and Y1, Y2.
(See also FIG. 8). And the X,
A number of stress-sensitive parts 34 in both Y components
[Xm, yn], each intersection C [xm,
[yn] is detected.

【0015】また、図6および図7において、4はX成
分用の制御処理器、5はY成分の制御処理器、6は統合
処理器、7はフライトコントローラ等である。41はX
成分側の光源、42は光アンプ、43は分岐器である。
44は光カプラ、45は受光器、46はホト・ダイオー
ド等の受光素子である。光カプラ44と受光器45およ
び受光素子46は、いずれもマトリックスMを構成する
X成分側の光ファイバケーブル3の本数に対応してm個
で構成されている。制御処理器4の内部には、X成分側
の電気信号と光信号を相互的に変換する変換器等が設け
られている。
In FIGS. 6 and 7, reference numeral 4 denotes a control processor for the X component, 5 denotes a control processor for the Y component, 6 denotes an integrated processor, and 7 denotes a flight controller and the like. 41 is X
A light source on the component side, 42 is an optical amplifier, and 43 is a branching device.
44 is an optical coupler, 45 is a light receiver, 46 is a light receiving element such as a photodiode. Each of the optical coupler 44, the light receiver 45, and the light receiving element 46 is composed of m pieces corresponding to the number of the optical fiber cables 3 on the X component side constituting the matrix M. Inside the control processor 4, a converter or the like for mutually converting an electric signal and an optical signal on the X component side is provided.

【0016】図7にY成分側のブロック図を示す。Y成
分側はX成分側と類似した構成になっているので、光源
51等に対応する符号を付して詳しい説明は省略する。
ただし、光ファイバケーブル3のY成分はn本で、マト
リックスMの図の縦軸を構成する。そして、制御処理器
5の出力端子は制御処理器4の出力端と共に、図6の統
合処理器6を介してフライトコントローラ等7に接続さ
れる。S1 は凹凸等の変形検出部、S2 は機体の剥離や
欠落等の破損検出部である。
FIG. 7 shows a block diagram of the Y component side. Since the Y component side has a configuration similar to that of the X component side, reference numerals corresponding to the light source 51 and the like are assigned and detailed description is omitted.
However, the Y component of the optical fiber cable 3 is n and forms the vertical axis of the matrix M. The output terminal of the control processor 5 is connected to an output terminal of the control processor 4 and a flight controller 7 via the integrated processor 6 of FIG. S1 is a deformation detecting unit for irregularities or the like, and S2 is a damage detecting unit for peeling or missing the body.

【0017】上述のような構成の本発明の動作を、図
6,図7を併用して次に説明する。X成分側の制御処理
器4の指令に基づいてレーザダイオードのような光源4
1から出た測定用の光Lは、光アンプ42で増幅されて
分岐器43でm個に分岐される。m個に分割された光L
は偏波無依存型の光カプラ44を通過してから、それぞ
れマトリックスM内のX成分X1 ,X2 …Xm の各光フ
ァイバケーブル3の内部に投射される。同様にして、Y
成分側の制御処理器5により光源51から出射された測
定光Lも、光アンプ52と分岐器53で増幅後n個に分
岐されて光カプラ54から各成分Y1 ,Y2 …Yn の内
部を透過する。
The operation of the present invention having the above configuration will be described below with reference to FIGS. A light source 4 such as a laser diode based on a command from a control processor 4 on the X component side.
The measurement light L output from 1 is amplified by the optical amplifier 42 and split into m pieces by the splitter 43. Light L divided into m pieces
Are transmitted through the polarization-independent optical coupler 44 and then projected into the respective optical fiber cables 3 of the X components X1, X2,. Similarly, Y
The measurement light L emitted from the light source 51 by the control processor 5 on the component side is also amplified by an optical amplifier 52 and a branching device 53 and then branched into n pieces, and transmitted from an optical coupler 54 through the components Y1, Y2,. I do.

【0018】ここで、図8の(a) に示すようなマトリッ
クスMの一部において、外力が加わり点線に囲まれた領
域aに凹みの損傷を受けた場合を説明する。外力により
点線に囲まれた領域aに凹みの損傷を受けると、領域内
に配置されたX成分とY成分の光ファイバケーブル3に
曲げ応力σが生じる。このため、前述のように両成分X
2 ,X3 ,X4 とY3 ,Y4 ,Y5 の光ファイバケーブ
ル3の応力感応部34を透過する測定光Lの透過光量v
は、曲り角度に応じて減衰することになる。
Here, a case where an external force is applied to a part of the matrix M as shown in FIG. 8A and a region a surrounded by a dotted line is damaged by dents will be described. When the region a surrounded by the dotted line is damaged by an external force, a bending stress σ is generated in the X- and Y-component optical fiber cables 3 arranged in the region. Therefore, as described above, both components X
2, X3, X4 and Y3, Y4, Y5, the transmitted light amount v of the measuring light L transmitted through the stress sensitive portion 34 of the optical fiber cable 3.
Will be attenuated according to the bending angle.

【0019】X成分側ではX1 とX5 は共に正常で、X
2 とX3 およびX4 がそれぞれ減衰する。また、Y成分
では、Y1 とY2 とY6 およびY7 が正常で、Y3 とY
4 およびY5 が減衰する。そして、減衰したX2 〜4 と
Y3 〜5 の透過光量vが、変形検出部S1 の対応する各
受光素子46と56で受光される。したがって、X2〜4
とY3 〜5 に囲まれた領域aを含む感応したマトリッ
クス内が、凹み損傷を受けたものと判定される。この場
合、領域aの中心部の凹みが最深のような場合は、成分
X3 とY4 の減衰量が最大になる。そして、成分X3 と
Y4 に接続された受光素子46と56の他の4個の受光
素子46と56との相対的な受光量の大小から、領域a
内における損傷の程度と損傷状況も推定される。
On the X component side, X1 and X5 are both normal and X
2 and X3 and X4 respectively attenuate. In the Y component, Y1, Y2, Y6 and Y7 are normal and Y3 and Y7 are normal.
4 and Y5 decay. Then, the attenuated transmitted light amount v of X2-4 and Y3-5 is received by the corresponding light receiving elements 46 and 56 of the deformation detecting section S1. Therefore, X2-4
And the sensitive matrix including the area a surrounded by Y3 to Y5 is determined to have received dent damage. In this case, when the depression at the center of the region a is the deepest, the attenuation of the components X3 and Y4 becomes maximum. Then, based on the relative light receiving amounts of the other four light receiving elements 46 and 56 connected to the components X3 and Y4, the area a
The extent and status of damage within the building is also estimated.

【0020】次に図8(b) において、実線の閉曲線内
(領域b)が剥離または欠落で破損すると、X1 ,X6
では正常に光Lが応力感応部34を透過し、成分X2 ,
X3 ,X4 ,X5 では破損した光ファイバーケーブル3
の切断面で散乱や反射する。切断面の散乱光や反射光は
光カプラ44のハーフミラー等を通して逆方向に進行し
て、破損検出部S2 の4個の受光器45で受光される。
同じように、成分Y3 〜6 に対応する同数の受光器55
に散乱光と反射光が入射される。したがって、成分X2
〜5 とY3 〜6 に囲まれた領域bが破壊して脱落したも
のと判断される。
Next, in FIG. 8 (b), if the inside of the solid closed curve (region b) is broken due to peeling or missing, X1, X6
In this case, the light L normally passes through the stress sensitive part 34, and the components X2,
X3, X4, X5 damaged optical fiber cable 3
Scattered and reflected on the cut surface. The scattered light and the reflected light of the cut surface travel in the reverse direction through the half mirror of the optical coupler 44 and the like, and are received by the four light receivers 45 of the damage detection unit S2.
Similarly, the same number of receivers 55 corresponding to the components Y3 to Y6 are used.
The scattered light and the reflected light are incident on the. Therefore, the component X2
It is determined that the area b surrounded by .about.5 and Y3 .about.6 has been destroyed and dropped.

【0021】このように異状状態の透過光量vを検出し
た各受光器45,55と受光素子46,56は、それぞ
れの検出信号を制御処理器4と5に出力する。制御処理
器4と5で処理したX軸とY軸のデータは、更に統合処
理器6を経てフライトコントローラ等7に伝送される。
The light receivers 45 and 55 and the light receiving elements 46 and 56 which have detected the abnormally transmitted light amount v output respective detection signals to the control processors 4 and 5. The X-axis and Y-axis data processed by the control processors 4 and 5 are further transmitted to a flight controller 7 via an integrated processor 6.

【0022】なお、上述の実施形態1では凹曲面状の細
径部よりなる応力感応部を例示して説明したが、一定幅
の均一な細径部の両側に漸縮状と漸拡状のテーパで挟ま
れた応力感応部等を構成してもよい。また、光ファイバ
センサのマトリックスを翼の上面に設けた場合を図示し
て説明したが、翼の下面や胴体等の全機体の表層面また
は表層中に配置すれば一層効果的な検出装置を構成する
ことができる。
In the above-described first embodiment, the stress sensitive portion made of a concavely curved small diameter portion has been described as an example. However, a tapered shape and a gradually expanded shape are formed on both sides of a uniform small diameter portion having a constant width. You may comprise the stress response part etc. which were pinched by the taper. Although the case where the matrix of the optical fiber sensor is provided on the upper surface of the wing is illustrated and described, a more effective detection device can be configured by arranging the matrix on the surface of the entire body such as the lower surface of the wing or the fuselage. can do.

【0023】[0023]

【発明の効果】この発明は、機体の表層面または表層中
に光ファイバケーブルを設け、この光ファイバケーブル
をマトリックス状に配置した航空機における損傷・破損
位置検出装置において、光ファイバケーブルに凹曲面状
の細径部で形成されてモード変換機能を備えた応力感応
部を設けた航空機における損傷・破損位置検出装置を構
成した。また、上記構成において、応力感応部をマトリ
ックス状に配置した光ファイバケーブルの交点付近に配
置した航空機における損傷・破損位置検出装置を構成し
た。
According to the present invention, there is provided a device for detecting a damaged / damaged position in an aircraft in which an optical fiber cable is provided on a surface layer or in a surface layer of an airframe, and the optical fiber cable is arranged in a matrix. A damaged / damaged position detecting device for an aircraft provided with a stress-sensitive portion formed of a small-diameter portion having a mode conversion function. Further, in the above configuration, a damage / breakage position detecting device for an aircraft is arranged near the intersection of the optical fiber cables in which the stress sensing portions are arranged in a matrix.

【0024】この結果、マトリックスを構成したX軸と
Y軸の光ファイバセンサの透過光の散乱や反射等に伴う
透過光量の変化を測定して、次に示すような航空機の故
障が判断される。 (1)機体が陥没損傷を受けたときは、損傷した位置と
損傷の範囲および凹み深さ等の損傷状況が明らかにな
る。 (2)機体の一部が剥離や脱落等の原因で破壊したとき
は、機体の破損の位置や範囲等の破壊状態が明らかにな
る。
As a result, a change in the amount of transmitted light due to scattering or reflection of the transmitted light of the X-axis and Y-axis optical fiber sensors forming the matrix is measured, and the following aircraft failure is determined. . (1) When the airframe is damaged by depression, the damage position, the range of the damage, the depth of the dent, and the like are clarified. (2) When a part of the fuselage is broken due to peeling, falling off, or the like, a broken state such as a position or a range of damage of the fuselage becomes clear.

【0025】したがって、格納庫内等の地上における金
属の疲労度や損傷等の検査が正確になって事故を未然に
防止でき、検査に要する時間も著しく短縮されて航空機
の運用効率を向上させることができる。また、飛行中に
おいても機体の故障状況が明確に把握されて、統合処理
器の出力信号が航空機の全体の制御を司るフライト・コ
ントローラ等に伝達される。このため、損傷を受けない
正常な主翼等のフラップ,スポイラ,補助翼或いは胴体
後部の方向舵や昇降舵等の補正や左右エンジンの出力調
整等の緊急的な制御を行い、たとえ主翼に損傷や破損を
受けた場合でも正常に近い安全な飛行を続行することが
可能になる。
Therefore, it is possible to accurately inspect metal fatigue and damage on the ground in the hangar or the like, thereby preventing an accident from occurring, and significantly reducing the time required for the inspection, thereby improving the operational efficiency of the aircraft. it can. Further, even during the flight, the failure state of the aircraft is clearly grasped, and the output signal of the integrated processor is transmitted to a flight controller or the like that controls the entire aircraft. For this reason, emergency control such as correction of rudder and elevator of the normal wings and other flaps, spoilers, auxiliary wings or the fuselage rear that is not damaged, and adjustment of the output of the right and left engines are performed. It is possible to continue a safe flight close to normal even if it is received.

【0026】よって、この発明によれば、地上における
整備中は勿論のこと、飛行中においても機体の損傷箇所
を即時に検出できる航空機における損傷・破損位置検出
装置を提供することができる。
Thus, according to the present invention, it is possible to provide a damaged / damaged position detecting device for an aircraft which can immediately detect a damaged portion of the airframe during flight as well as during maintenance on the ground.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施形態1を適用した航空機の構成
説明図である。
FIG. 1 is an explanatory diagram of a configuration of an aircraft to which Embodiment 1 of the present invention is applied.

【図2】図1の一部の拡大説明図である。FIG. 2 is an enlarged explanatory view of a part of FIG.

【図3】この発明の実施形態1の光ファイバケーブルの
構成説明図である。
FIG. 3 is an explanatory diagram of a configuration of an optical fiber cable according to the first embodiment of the present invention.

【図4】図3の円部の拡大斜視図である。FIG. 4 is an enlarged perspective view of a circle of FIG. 3;

【図5】応力と透過光量の特性図である。FIG. 5 is a characteristic diagram of stress and transmitted light amount.

【図6】この発明の実施形態1の構成を示すブロック図
である。
FIG. 6 is a block diagram showing a configuration of Embodiment 1 of the present invention.

【図7】Y成分の構成を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration of a Y component.

【図8】この発明の実施形態1の動作説明図である。FIG. 8 is an operation explanatory diagram of the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 航空機 2 損傷・破損位置検出装置 3 光ファイバケーブル 4,5 制御処理器 6 統合処理器 7 フライトコントローラ等 10 胴体 11 主翼 31 コア 32 クラッド 33 境界層 34 応力感応部(応力センサ) 41,51 光源 42,52 光アンプ 43,53 分岐器 44,54 光カプラ 45,55 受光器 46,56 受光素子 C マトリックスの交点 L 光 M マトリックス S1 変形検出部 S2 破損検出部 V 透過光量 X1 ,X2 …Xm X成分 Y1 ,Y2 …Yn Y成分 σ 応力 DESCRIPTION OF SYMBOLS 1 Aircraft 2 Damage / breakage position detecting device 3 Optical fiber cable 4,5 Control processor 6 Integrated processor 7 Flight controller etc. 10 Fuselage 11 Main wing 31 Core 32 Cladding 33 Boundary layer 34 Stress sensing part (Stress sensor) 41,51 Light source 42,52 Optical amplifier 43,53 Branching device 44,54 Optical coupler 45,55 Light receiving device 46,56 Intersection of light receiving element C matrix L Light M matrix S1 Deformation detecting unit S2 Damage detecting unit V Transmitted light amount X1, X2 ... Xm X Component Y1, Y2 ... Yn Y component σ stress

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲真▼野 邦彦 東京都港区虎ノ門1丁目7番12号 沖電 気工業株式会社内 (72)発明者 中村 文夫 東京都港区虎ノ門1丁目7番12号 沖電 気工業株式会社内 (72)発明者 久野 哲郎 名古屋市港区大江町10番地 三菱重工業 株式会社 名古屋航空宇宙システム製作 所内 (72)発明者 安井 久子 名古屋市港区大江町10番地 三菱重工業 株式会社 名古屋航空宇宙システム製作 所内 (56)参考文献 特開 昭63−208748(JP,A) 特開 昭62−231142(JP,A) 特開 昭63−285448(JP,A) 特開 平7−174527(JP,A) 特開 平8−54343(JP,A) 特開 昭60−165504(JP,A) 特開 昭60−174960(JP,A) 特開 昭63−109306(JP,A) 特開 昭63−210604(JP,A) 特表 昭58−500421(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 102 G01M 13/00 - 13/04 G01M 19/00 - 19/02 G01N 21/84 - 21/91 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor ▲ Kunihiko Nono 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. (72) Fumio Nakamura 1-7-7 Toranomon, Minato-ku, Tokyo No. 12 Oki Electric Industry Co., Ltd. Nagoya Aerospace Systems Works, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-63-208748 (JP, A) JP-A-62-231142 (JP, A) JP-A-63-285448 (JP, A) JP-A-7-174527 (JP, A) JP-A-8-54343 (JP, A) JP-A-60-165504 (JP, A) JP-A-60-174960 (JP, A) JP-A-63-109306 (J , A) JP Akira 63-210604 (JP, A) PCT National Akira 58-500421 (JP, A) (58 ) investigated the field (Int.Cl. 6, DB name) G01B 11/00 - 11/30 102 G01M 13/00-13/04 G01M 19/00-19/02 G01N 21/84-21/91

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 機体の表層面または、表層中に光ファイ
バケーブルを設け、該光ファイバケーブルをマトリック
ス状に配置した航空機における損傷・破損位置検出装置
において、 前記光ファイバケーブルに凹曲面状の細径部で形成され
てモード変換機能を備えた応力感応部を設けたことを特
徴とする航空機における損傷・破損位置検出装置。
1. A damage / breakage position detecting apparatus for an aircraft, wherein an optical fiber cable is provided on a surface layer of an airframe or in a surface layer thereof, and the optical fiber cable is arranged in a matrix. A damaged / damaged position detecting device for an aircraft, comprising a stress sensitive part formed of a diameter part and having a mode conversion function.
【請求項2】 前記応力感応部をマトリックス状に配置
した光ファイバケーブルの交点付近に配置したことを特
徴とする請求項1記載の航空機における損傷・破損位置
検出装置。
2. The damage / breakage detecting device for an aircraft according to claim 1, wherein said stress sensitive portions are arranged near intersections of optical fiber cables arranged in a matrix.
JP8347496A 1996-04-05 1996-04-05 Damage / breakage position detection device Expired - Lifetime JP2889952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8347496A JP2889952B2 (en) 1996-04-05 1996-04-05 Damage / breakage position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8347496A JP2889952B2 (en) 1996-04-05 1996-04-05 Damage / breakage position detection device

Publications (2)

Publication Number Publication Date
JPH09273906A JPH09273906A (en) 1997-10-21
JP2889952B2 true JP2889952B2 (en) 1999-05-10

Family

ID=13803473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8347496A Expired - Lifetime JP2889952B2 (en) 1996-04-05 1996-04-05 Damage / breakage position detection device

Country Status (1)

Country Link
JP (1) JP2889952B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370964B1 (en) * 1998-11-23 2002-04-16 The Board Of Trustees Of The Leland Stanford Junior University Diagnostic layer and methods for detecting structural integrity of composite and metallic materials
DE10004384C2 (en) * 2000-02-02 2003-04-03 Daimler Chrysler Ag Arrangement and method for detecting strains and temperatures and their changes on a carrier, in particular one consisting of metal, plastic or ceramic carrier, applied topcoat
GB2405934A (en) * 2003-09-09 2005-03-16 Qinetiq Ltd Resistance strain/moisture gauge
JP2007024527A (en) * 2005-07-12 2007-02-01 Fiberlabs Inc Optical fiber sensor and sensor system
GB0722319D0 (en) * 2007-11-14 2007-12-27 Rolls Royce Plc Component monitoring arrangement
US8286497B2 (en) 2009-06-25 2012-10-16 Tsi Technologies Llc Strain sensor
JP5294325B2 (en) * 2009-09-08 2013-09-18 川崎重工業株式会社 Laminated structure, crack detection method thereof, and crack detection structure
US10151667B2 (en) * 2013-03-21 2018-12-11 Osmos Sa Method for monitoring deformation of a rotating element via a monitoring device employing optical fibre, and wind turbine equipped with such a device
WO2018047405A1 (en) * 2016-09-07 2018-03-15 株式会社Subaru Damage detection system and damage detection method
JP2018136324A (en) * 2018-03-22 2018-08-30 オスモ エスアーOsmos Sa Method for monitoring deformation of rotary element via monitoring device using optical fiber and wind force turbine having the same

Also Published As

Publication number Publication date
JPH09273906A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
Hofer Fibre optic damage detection in composite structures
JP2889952B2 (en) Damage / breakage position detection device
US4936649A (en) Damage evaluation system and method using optical fibers
EP0066923A2 (en) Aircraft structural integrity assessment system
Takeda et al. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing
JPH07174527A (en) Method and device for measuring structural damage of structure body
JP4489866B2 (en) Monitoring system
US4636638A (en) Remote optical crack sensing system including fiberoptics
IL92637A (en) Fiber optic buffer inspection device
JPS5830899A (en) Valueing system for safety of aircraft structure
KR20130075065A (en) Structural health monitoring method for aircraft
US5638165A (en) Crack detection system
JP2981562B1 (en) Damage / breakage detection device
US5072110A (en) Fiber optic strain and impact sensor system for composite materials
Rutherford et al. Novel NDE fiber optic corrosion sensor
EP3480551B1 (en) Damage detection system and damage detection method
Soejima et al. Demonstration of detectability of SHM system with FBG/PZT hybrid system in composite wing box structure
Ogisu et al. Damage growth detection of composite laminate using embedded FBG sensor/PZT actuator hybrid system
Akiyoshi et al. Development of integrated damage detection system for international America's Cup class yacht structures using a fiber optic distributed sensor
CN1932567A (en) Optical fiber grating door opening and closing state sensor probe
Talat Smart skins and fiber optic sensors: applications and issues
Murthy et al. Review on Strain Monitoring of Aircraft: Using Optical Fibre Sensor
Takeda et al. Further Development of Structural Health Monitoring of Smart Composite Systems in Japan
Sendeckyj et al. Some smart structures concepts
JP2022014102A (en) Defect inspection system, method for inspecting defect, and aircraft

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981222

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term