JP2888621B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2888621B2
JP2888621B2 JP2280810A JP28081090A JP2888621B2 JP 2888621 B2 JP2888621 B2 JP 2888621B2 JP 2280810 A JP2280810 A JP 2280810A JP 28081090 A JP28081090 A JP 28081090A JP 2888621 B2 JP2888621 B2 JP 2888621B2
Authority
JP
Japan
Prior art keywords
exhaust gas
heat
fuel cell
exhaust
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2280810A
Other languages
Japanese (ja)
Other versions
JPH04155769A (en
Inventor
常雄 植草
一夫 大島
敏雄 松島
正喜 中尾
至誠 藁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2280810A priority Critical patent/JP2888621B2/en
Publication of JPH04155769A publication Critical patent/JPH04155769A/en
Application granted granted Critical
Publication of JP2888621B2 publication Critical patent/JP2888621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、発電反応に伴う熱を多く回収する燃料電池
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel cell that recovers a large amount of heat accompanying a power generation reaction.

[従来の技術] 燃料電池は、燃料極と空気極がリン酸等の電解質を挟
んで形成されるセルが積層されて成り、一般に燃料極に
は都市ガス等の改質で作成した水素を燃料として供給
し、空気極には身近な空気を酸素源として供給して、水
素と酸素を電解質を介して電気化学的に反応させ、燃料
の持つ化学エネルギーを電気エネルギーに変換し、発電
を行っている。
[Prior Art] A fuel cell is formed by stacking cells in which a fuel electrode and an air electrode are formed with an electrolyte such as phosphoric acid interposed therebetween. In general, the fuel electrode uses hydrogen produced by reforming city gas or the like as a fuel. Supplying air as an oxygen source to the air electrode, causing hydrogen and oxygen to react electrochemically through the electrolyte, converting the chemical energy of the fuel into electric energy, and generating electricity I have.

このような燃料電池からは、一般に2つの排ガスが排
出される。1つは、燃料電池本体の空気極から排出され
る排ガスで、空気極に供給された空気のうちの未反応分
と空気極で生成された水蒸気を含んでいる。もう1つ
は、改質器から排出される排ガスで、燃料電池本体の燃
料極で未反応の水素等を燃焼させた排ガスである。
Generally, two exhaust gases are discharged from such a fuel cell. One is an exhaust gas discharged from the air electrode of the fuel cell main body, which contains unreacted portion of the air supplied to the air electrode and water vapor generated at the air electrode. The other is exhaust gas discharged from the reformer, which is obtained by burning unreacted hydrogen and the like at the fuel electrode of the fuel cell body.

第3図に、これらの排ガスから排熱を回収する排ガス
系排熱回収システムの従来例を示す。図において、1は
燃料電池本体、2は都市ガスの改質器、3は改質器2の
排ガスおよび燃料電池本体1の空気極排ガスから排熱を
回収する排熱回収熱交換器、6は排熱回収交換器3を出
た排ガスの凝縮器である。従来までは、この図に示され
るように燃料電池本体1からの排ガスと改質器2からの
排ガスとを混合した後、排熱回収熱交換器3で熱回収し
ていた。
FIG. 3 shows a conventional example of an exhaust gas system exhaust heat recovery system for recovering exhaust heat from these exhaust gases. In the figure, 1 is a fuel cell main body, 2 is a reformer of city gas, 3 is an exhaust heat recovery heat exchanger for recovering exhaust heat from the exhaust gas of the reformer 2 and the air electrode exhaust gas of the fuel cell main body 1, and 6 is This is a condenser for the exhaust gas that has exited the exhaust heat recovery exchanger 3. Heretofore, as shown in this figure, after mixing the exhaust gas from the fuel cell main body 1 and the exhaust gas from the reformer 2, heat was recovered by the exhaust heat recovery heat exchanger 3.

[発明が解決しようとする課題] しかしながら、上記従来の技術における燃料電池の排
ガス系排熱回収システムでは、60〜80[℃]程度の吸収
式冷凍機の高温熱源として利用できる程度の温度で熱回
収しようとする場合、給湯熱源として利用する50[℃]
程度で熱回収する場合と比較して排熱回収量が4分の1
程度に減少してしまう問題点があった。
[Problems to be Solved by the Invention] However, the exhaust heat recovery system for an exhaust gas of a fuel cell according to the above-mentioned conventional technique has a heat at a temperature that can be used as a high-temperature heat source for an absorption refrigerator of about 60 to 80 ° C. 50 [℃] used as a hot water supply heat source when recovering
Waste heat recovery is one-fourth that of heat recovery
There was a problem that it was reduced to the extent.

以下に、この問題点を図を用いて説明する。第4図
は、第2図の従来例に示す燃料電池本体1からの排ガス
と改質器2からの排ガスを混同して熱回収する排ガス系
排熱回収システムにおける排熱回収量を、横軸に排ガス
の出口温度をとって示した特性図である。この図に示す
ように、排ガスの出口温度が約65[℃]以上の場合に
は、排ガス中の水分が凝縮しないので、排ガスの顕熱分
の熱回収しか行えないが、約65[℃]以下の場合には、
排ガス中の水分が凝縮するため、その時の凝縮潜熱分が
回収でき、回収熱量が激増することがわかる。
Hereinafter, this problem will be described with reference to the drawings. FIG. 4 shows the amount of exhaust heat recovery in an exhaust gas-based exhaust heat recovery system for mixing and recovering the exhaust gas from the fuel cell main body 1 and the exhaust gas from the reformer 2 shown in the conventional example of FIG. FIG. 3 is a characteristic diagram showing an exhaust gas outlet temperature. As shown in this figure, when the outlet temperature of the exhaust gas is about 65 ° C. or higher, only the sensible heat of the exhaust gas can be recovered because the moisture in the exhaust gas does not condense. In the following cases,
It can be seen that since the moisture in the exhaust gas is condensed, the condensed latent heat at that time can be recovered, and the amount of recovered heat sharply increases.

このため、50[℃]程度の給湯熱源として利用する場
合には、排ガス出口温度と取り出し温水温度が同じ温度
であると仮定すると、第4図に示すように、20,000[kc
al/h]以上の排熱回収(発電が40[kw]の場合)が行え
る。それに対して、排ガス系の排熱を60〜80[℃]程度
の吸収式冷凍機の高温熱源として利用できる程度の温度
で熱回収しようとした場合、水蒸気の凝縮潜熱の回収が
ほとんど期待できないため、排熱の回収量は、50[℃]
程度で熱回収しようとした場合に比較すると、4分の1
程度に減少してしまうことになる。
For this reason, when it is used as a hot water supply heat source of about 50 ° C., assuming that the exhaust gas outlet temperature and the taken-out hot water temperature are the same, as shown in FIG.
al / h] or more (when the power generation is 40 [kw]). On the other hand, if it is attempted to recover the exhaust heat of the exhaust gas system at a temperature that can be used as a high-temperature heat source for an absorption refrigerator of about 60 to 80 ° C, recovery of the latent heat of condensation of steam can hardly be expected The amount of waste heat recovered is 50 [℃]
About one-fourth compared to trying to recover heat in about
It will be reduced to the extent.

本発明は、上記問題点を解決するために提案するもの
で、燃料電池の排ガス系からの排熱を回収して60〜80
[°C]の吸収式冷凍機の高温熱源として利用するため
に、その排熱回収量を増加させる排熱回収システムを備
えた燃料電池を提供することを目的とする。
The present invention proposes to solve the above problems, and recovers exhaust heat from an exhaust gas system of a fuel cell to 60 to 80.
An object of the present invention is to provide a fuel cell provided with an exhaust heat recovery system for increasing the amount of exhaust heat recovery for use as a high-temperature heat source of an absorption refrigerator of [° C].

[課題を解決するための手段] 上記の目的を達成するための本発明の燃料電池の構成
は、排ガス系の排熱を吸収式冷凍機に利用する燃料電池
であって、 燃料電池本体からの排ガスを単独で導いて該排ガスか
ら排熱回収を行う第1の排熱回収熱交換器と、 燃料電池へ水素を供給する改質器の排ガスを単独で導
いて該排ガスから排熱回収を行う第2の排熱回収熱交換
器とを具備し、 前記第1と第2の排熱回収熱交換器は前記排ガスの出
口温度が60〜80[°C]で運転されるものであることを
特徴とする。
Means for Solving the Problems The configuration of the fuel cell of the present invention for achieving the above object is a fuel cell using exhaust heat of an exhaust gas system for an absorption refrigerator, A first exhaust heat recovery heat exchanger that conducts exhaust gas alone to recover exhaust heat from the exhaust gas, and an exhaust gas from a reformer that supplies hydrogen to the fuel cell alone and recovers exhaust heat from the exhaust gas A second exhaust heat recovery heat exchanger, wherein the first and second exhaust heat recovery heat exchangers are operated at an outlet temperature of the exhaust gas of 60 to 80 [° C]. Features.

[作用] 本発明は、排ガス中の水蒸気分圧が燃料電池本体から
の排ガスと改質器からの排ガスとでは異っていること、
および水蒸気分圧が高いほど高い温度レベルで水蒸気の
凝縮を行えることに着目し、燃料電池本体から排出され
る排ガスの熱回収と、改質器かた排出される排ガスの熱
回収とを分離して行い、改質器から排出される排ガス中
の水蒸気の凝縮を60〜80[°C]の温度レベルでも行え
るようにして、60〜80[°C]の吸収式冷凍機の高温熱
源として利用する場合において、全体としての回収熱量
を増加させる。
[Operation] The present invention is that the partial pressure of water vapor in the exhaust gas is different between the exhaust gas from the fuel cell body and the exhaust gas from the reformer,
Focusing on the fact that steam can be condensed at a higher temperature level as the steam partial pressure is higher, the heat recovery of the exhaust gas discharged from the fuel cell body and the heat recovery of the exhaust gas discharged from the reformer are separated. And condense water vapor in the exhaust gas discharged from the reformer even at a temperature level of 60 to 80 ° C, and use it as a high-temperature heat source for an absorption refrigerator at 60 to 80 ° C. In this case, the amount of recovered heat as a whole is increased.

[実施例] 以下、本発明の実施例を図面に基づいて詳細に説明す
る。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す排熱回収システムを
備えた燃料電池のシステム図である。本実施例の構成に
おいて、1は燃料極に水素を入力し空気極に酸素(空
気)を入力して発電を行うとともに熱を発する燃料電池
本体、2は燃料電池本体1に水素を供給するために都市
ガスを改質する改質器、4は燃料電池本体1の空気極よ
り排出される排ガスから排熱を回収するとともに水蒸気
を凝縮させる第1の排熱回収熱交換器、5は改質器2よ
り排出される排ガスから排熱を回収するとともに水蒸気
を凝縮させる第2の排熱回収熱交換器、6は前記の排熱
回収熱交換器4,5で凝縮しきれなかった水蒸気を凝縮さ
せる凝縮器である。
FIG. 1 is a system diagram of a fuel cell provided with an exhaust heat recovery system showing one embodiment of the present invention. In the configuration of the present embodiment, reference numeral 1 denotes a fuel cell body that inputs hydrogen to the fuel electrode and oxygen (air) to the air electrode to generate power and generate heat and 2 to supply hydrogen to the fuel cell body 1. A reformer for reforming city gas, a first heat recovery heat exchanger for recovering waste heat from exhaust gas discharged from an air electrode of the fuel cell body 1 and condensing steam, and a reformer for reforming 5. A second exhaust heat recovery heat exchanger 6 for recovering exhaust heat from the exhaust gas discharged from the heat exchanger 2 and condensing water vapor, and condensing water vapor that could not be condensed by the heat recovery heat exchangers 4 and 5 described above. It is a condenser to be made.

改質器2には原料として都市ガスに水蒸気が混入され
て供給され、改質されて生成される水素が燃料電池本体
1の燃料極へ入力される。改質器2の改質反応に必要な
熱は都市ガスの一部および燃料電池本体1の燃料極から
排出される未反応水素を燃焼して得る。このときの排ガ
スを独立に第2の排熱回収熱交換器5へ導く。また、燃
料電池本体1の空気極には空気が酸素源として入力され
る。その空気極からの排ガスを独立に第1の排熱回収熱
交換器4へ導く。この後、排熱回収熱交換器4を経た燃
料電池本体1からの排ガスおよび排熱回収熱交換器5を
経た改質器2からの排ガスは混合され、凝縮器6を経て
大気に放出される。各排熱回収熱交換器4,5および凝縮
器6で凝縮されて生じた水は図略の水処理装置,ポンプ
を経て燃料電池冷却水系へあるいは水蒸気として改質器
2へ供給される。
The reformer 2 is supplied with a mixture of city gas and water vapor as a raw material, and the reformed and generated hydrogen is input to the fuel electrode of the fuel cell body 1. Heat required for the reforming reaction of the reformer 2 is obtained by burning a part of the city gas and unreacted hydrogen discharged from the fuel electrode of the fuel cell body 1. The exhaust gas at this time is independently guided to the second exhaust heat recovery heat exchanger 5. Air is input to the air electrode of the fuel cell body 1 as an oxygen source. The exhaust gas from the air electrode is independently guided to the first exhaust heat recovery heat exchanger 4. Thereafter, the exhaust gas from the fuel cell body 1 passing through the exhaust heat recovery heat exchanger 4 and the exhaust gas from the reformer 2 passing through the exhaust heat recovery heat exchanger 5 are mixed and released to the atmosphere via the condenser 6. . The water condensed in each of the waste heat recovery heat exchangers 4 and 5 and the condenser 6 is supplied to the fuel cell cooling water system via a water treatment device and a pump (not shown) or to the reformer 2 as steam.

以上のように構成した実施例の動作および作用を述べ
る。
The operation and operation of the embodiment configured as described above will be described.

燃料電池本体1で排出される排ガス中には、主に、窒
素、酸素、水蒸気等が含まれており、その含有量はモル
数で比較すると、例えば、5.25、0.7、1.40[kmol/h]
程度となる。また、改質器2から排出される排ガス中に
は、主に、窒素、酸素、二酸化炭素、水蒸気が含まれて
おり、その含有量はモル数で比較すると、例えば、1.3
2、0.17、0.44、1.23[kmol/h]程度となる。このよう
に、水蒸気分圧は、燃料電池本体1から排出される排ガ
スと改質器2から排出される排ガスとを比較すると、改
質器2から排出される排ガスの方が高い。
The exhaust gas discharged from the fuel cell main body 1 mainly contains nitrogen, oxygen, water vapor, and the like. The content of the exhaust gas is, for example, 5.25, 0.7, 1.40 [kmol / h] in terms of moles.
About. In addition, the exhaust gas discharged from the reformer 2 mainly contains nitrogen, oxygen, carbon dioxide, and water vapor.
2, 0.17, 0.44, 1.23 [kmol / h]. As described above, when the exhaust gas discharged from the fuel cell main body 1 and the exhaust gas discharged from the reformer 2 are compared with each other, the exhaust gas discharged from the reformer 2 has a higher partial pressure of steam.

一方、水蒸気を含んだ排ガス中から熱回収する場合、
水蒸気の凝縮にともなう凝縮潜熱を回収できれば熱回収
量を多くすることができる。水蒸気の凝縮温度は、圧力
が1気圧の場合には100[℃]であるが、その圧力が低
くなれば凝縮温度も低くなる。通常、排ガスはほぼ1気
圧なので、排ガス中の水蒸気を凝縮させる場合、水蒸気
分圧が高いほど100[℃]に近い温度で凝縮させること
ができる。
On the other hand, when recovering heat from exhaust gas containing steam,
If the latent heat of condensation accompanying the condensation of steam can be recovered, the amount of heat recovery can be increased. The condensation temperature of water vapor is 100 [° C.] when the pressure is 1 atm, but the lower the pressure, the lower the condensation temperature. Normally, the exhaust gas is approximately 1 atm. When condensing the water vapor in the exhaust gas, the higher the partial pressure of the water vapor, the more the water vapor can be condensed at a temperature close to 100 [° C.].

そこで、本実施例では、両者の排ガスを混合せず独立
に熱回収することにより、改質器2側で水蒸気分圧が高
い分だけより高い温度で凝縮潜熱分の熱回収ができるよ
うにし、それだけ多くの熱を回収できるようにすること
で、全体として回収熱量を増加させる。
Therefore, in the present embodiment, by recovering heat independently without mixing both exhaust gases, it is possible to recover the heat of the condensation latent heat at a higher temperature by the higher steam partial pressure on the reformer 2 side, By allowing more heat to be recovered, the amount of recovered heat is increased as a whole.

第2図に、燃料電池本体1の排ガスと改質器2の排ガ
スを混合せずに独立して熱回収した上記の実施例の回収
熱量と排ガス出口温度との関係を示す。この図は、従来
例の第4図に対応するものであり、これらの両図を比較
すると、排ガス出口温度が60〜70[℃]間で両者の排ガ
スを単独に熱回収した本実施例の方が回収熱量が多くな
ることがわかる。
FIG. 2 shows the relationship between the recovered heat and the exhaust gas outlet temperature in the above embodiment in which the exhaust gas of the fuel cell main body 1 and the exhaust gas of the reformer 2 were independently recovered without mixing. This figure corresponds to FIG. 4 of the conventional example. Comparing these figures, it can be seen that the exhaust gas at the exhaust gas outlet temperature is in the range of 60 to 70 [° C.] and the exhaust gas of both examples is heat-recovered independently. It can be seen that the amount of recovered heat increases.

なお、本発明は、リン酸型以外の種々の型式の燃料電
池に適用できるなど、本発明の主旨に沿って種々に応用
され、種々の実施態様を取り得ることは当然である。
It is to be noted that the present invention can be applied to various types of fuel cells other than the phosphoric acid type in various ways in accordance with the gist of the present invention, and can take various embodiments.

[発明の効果] 以上の説明から明らかなように、本発明の燃料電池に
よれば、60〜80[°C]の吸収式冷凍機の高温熱源とし
て利用する場合において、60〜80[°C]という温度レ
ベルで排ガス中の水蒸気の凝縮潜熱の回収が行えるよう
になり、全体としての熱回収量を増加できる利点があ
る。
[Effects of the Invention] As is apparent from the above description, according to the fuel cell of the present invention, when the fuel cell is used as a high-temperature heat source of an absorption refrigerator of 60 to 80 [° C], the fuel cell has a temperature of 60 to 80 [° C ], The latent heat of condensation of water vapor in the exhaust gas can be recovered at the temperature level of, and there is an advantage that the amount of heat recovery as a whole can be increased.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す排熱回収システムを備
えた燃料電池のシステム図、第2図は上記実施例の回収
熱量と排ガス出口温度の関係を示す特性図、第3図は燃
料電池の排熱回収システムの従来例を示すシステム図、
第4図は上記従来例の回収熱量と排ガス出口温度の関係
を示す特性図である。 1……燃料電池本体、2……改質器、4……第1の排熱
回収熱交換器、5……第2の排熱回収熱交換器、6……
凝縮器。
FIG. 1 is a system diagram of a fuel cell provided with an exhaust heat recovery system showing one embodiment of the present invention, FIG. 2 is a characteristic diagram showing a relationship between a recovered heat amount and an exhaust gas outlet temperature of the above embodiment, and FIG. System diagram showing a conventional example of a fuel cell exhaust heat recovery system,
FIG. 4 is a characteristic diagram showing the relationship between the recovered heat amount and the exhaust gas outlet temperature in the above conventional example. DESCRIPTION OF SYMBOLS 1 ... Fuel cell main body, 2 ... Reformer, 4 ... 1st waste heat recovery heat exchanger, 5 ... 2nd waste heat recovery heat exchanger, 6 ...
Condenser.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中尾 正喜 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (72)発明者 藁谷 至誠 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 昭59−149673(JP,A) 特開 昭57−82973(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24 F25B 27/02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayoshi Nakao 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Shigenori Waratani 1-16-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Japan (56) References JP-A-59-149673 (JP, A) JP-A-57-82973 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 8 / 00-8/24 F25B 27/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排ガス系の排熱を吸収式冷凍機に利用する
燃料電池であって、 燃料電池本体からの排ガスを単独で導いて該排ガスから
排熱回収を行う第1の排熱回収熱交換器と、 燃料電池へ水素を供給する改質器の排ガスを単独で導い
て該排ガスから排熱回収を行う第2の排熱回収熱交換器
とを具備し、 前記第1および第2の熱交換器は前記の排ガスの出口温
度が60〜80[°C]で運転されるものである ことを特徴とする燃料電池。
1. A fuel cell utilizing exhaust heat of an exhaust gas system for an absorption refrigerator, wherein a first exhaust heat recovery heat for conducting exhaust gas from a fuel cell body alone and recovering the exhaust heat from the exhaust gas. An exchanger, and a second exhaust heat recovery heat exchanger that independently guides the exhaust gas of the reformer that supplies hydrogen to the fuel cell and recovers exhaust heat from the exhaust gas, wherein the first and second heat exchangers are provided. The heat exchanger is operated at an outlet temperature of the exhaust gas of 60 to 80 [° C].
JP2280810A 1990-10-19 1990-10-19 Fuel cell Expired - Fee Related JP2888621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280810A JP2888621B2 (en) 1990-10-19 1990-10-19 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280810A JP2888621B2 (en) 1990-10-19 1990-10-19 Fuel cell

Publications (2)

Publication Number Publication Date
JPH04155769A JPH04155769A (en) 1992-05-28
JP2888621B2 true JP2888621B2 (en) 1999-05-10

Family

ID=17630296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280810A Expired - Fee Related JP2888621B2 (en) 1990-10-19 1990-10-19 Fuel cell

Country Status (1)

Country Link
JP (1) JP2888621B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50001614D1 (en) 1999-01-28 2003-05-08 Siemens Ag DEVICE AND METHOD FOR CONTROLLING THE PERFORMANCE OF A FUEL CELL STACK

Also Published As

Publication number Publication date
JPH04155769A (en) 1992-05-28

Similar Documents

Publication Publication Date Title
US3615850A (en) System and process employing a reformable fuel to generate electrical energy
US4902586A (en) Once through molten carbonate fuel cell system
JP3092670B2 (en) Method of generating electricity in fuel cell and fuel cell
US4917971A (en) Internal reforming fuel cell system requiring no recirculated cooling and providing a high fuel process gas utilization
JPS63128565A (en) High pressure phosphate fuel battery stack assembly
JPH02183967A (en) Power generating system for fused carbonate type fuel cell
JP6061913B2 (en) Multistage fuel cell system
JP2000156236A (en) Solid polymer type fuel cell system
US20080113228A1 (en) Method and apparatus for improving water balance in fuel cell power unit
US6787255B2 (en) Fuel cell power generating system and operation method
JP2888621B2 (en) Fuel cell
JP6629167B2 (en) Recirculating fuel cell system
JP3079317B2 (en) Molten carbonate fuel cell power generator
JP6096751B2 (en) Circulating fuel cell system
WO2000039875A1 (en) A hydrocarbon fueled power plant employing a proton exchange membrane (pem) fuel cell
JP6573863B2 (en) Multistage fuel cell system
JPH1012258A (en) Internal reforming type solid electrolyte fuel cell module
JP4101051B2 (en) Fuel cell system
JP3557104B2 (en) Phosphoric acid fuel cell power plant
JPS6280970A (en) Power generating method of fuel cell
JP4176130B2 (en) Fuel cell power generation system
JP3211505B2 (en) Method for controlling anode inlet temperature of molten carbonate fuel cell power generator
JPH05275101A (en) Solid polyelectrolytic type fuel cell system
JP6847900B2 (en) Carbon dioxide capture fuel cell power generation system
JPH03216964A (en) Power generating method for molten carbonate fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees