JP2861665B2 - Maintenance and inspection method and capacity recovery method for nickel-cadmium batteries - Google Patents

Maintenance and inspection method and capacity recovery method for nickel-cadmium batteries

Info

Publication number
JP2861665B2
JP2861665B2 JP4236499A JP23649992A JP2861665B2 JP 2861665 B2 JP2861665 B2 JP 2861665B2 JP 4236499 A JP4236499 A JP 4236499A JP 23649992 A JP23649992 A JP 23649992A JP 2861665 B2 JP2861665 B2 JP 2861665B2
Authority
JP
Japan
Prior art keywords
voltage
battery
float
nickel
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4236499A
Other languages
Japanese (ja)
Other versions
JPH0660908A (en
Inventor
昌昭 北山
孝志 鈴木
好郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENCHI KK
Original Assignee
NIPPON DENCHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENCHI KK filed Critical NIPPON DENCHI KK
Priority to JP4236499A priority Critical patent/JP2861665B2/en
Publication of JPH0660908A publication Critical patent/JPH0660908A/en
Application granted granted Critical
Publication of JP2861665B2 publication Critical patent/JP2861665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はニッケル・カドミウム電
池の組電池における、保守点検方法及び電池の容量回復
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a maintenance and inspection method and a method for restoring the capacity of a battery of a nickel-cadmium battery.

【0002】[0002]

【従来の技術】蓄電池は非常用電源として幅広い分野に
使用されている。その充電方法として整流器、蓄電池及
び負荷を並列に接続し、その電圧を浮動充電電圧と呼ば
れる一定値に保つようにして使用される。浮動充電方式
では、常時は蓄電池は待機状態にあるが、自己放電を補
い完全充電状態に保つような充電制御等をおこなってい
る。
2. Description of the Related Art Storage batteries are used in a wide variety of fields as emergency power supplies. As a charging method, a rectifier, a storage battery, and a load are connected in parallel, and the voltage is used to maintain a constant value called a floating charging voltage. In the floating charging method, the storage battery is always in a standby state, but charge control or the like is performed to compensate for self-discharge and maintain the battery in a fully charged state.

【0003】しかしながら長期間使用中には電池電圧等
のばらつきが生じるために、均等充電等の保守管理が必
要とされている。その点検方法としては各セルの充電電
圧を測定し、その範囲を経験的に、例えばその上限の基
準は最多値の+0.02V、その下限の基準は最多値の
−0.05Vと規定することが常であった。さらに使用
中に電圧ばらつきが生じた場合には、その電圧ばらつき
を修正する方法として、過放電する方法や過充電する方
法が経験的に行われていた。とくに最近では密閉型電池
の非常用電源への適用が多くなり、従来の保守方法で
は、充分に対応ができないようになっている。
However, during long-term use, variations in battery voltage and the like occur, so that maintenance management such as uniform charging is required. As a check method, measure the charging voltage of each cell and empirically define the range. For example, the upper limit is specified as + 0.02V of the maximum value, and the lower limit is specified as -0.05V of the maximum value. Was always there. Furthermore, when a voltage variation occurs during use, as a method of correcting the voltage variation, an overdischarge method or an overcharge method has been empirically performed. In particular, recently, the application of sealed batteries to an emergency power supply has increased, and conventional maintenance methods cannot sufficiently cope with them.

【0004】[0004]

【発明が解決しようとする課題】従来の保守点検方法に
よると、電圧ばらつきが生じた場合には、そのセルをは
ずしてから過放電したり、過充電する方法、あるいは組
電池全体を過充電して、電圧ばらつきを解消させる方法
が適用されているが、その条件によって、その効果の持
続性も一定でなく、しかも必要以上の過充電をする場合
があり、電池の寿命性能に悪影響を与えていた。さらに
重要な点は、このような保守点検方法が経験的におこな
われており、その理由根拠が明確でなく、その最適化が
求められている。
According to the conventional maintenance and inspection method, when a voltage variation occurs, the cell is removed and then overdischarged or overcharged, or the entire assembled battery is overcharged. Therefore, the method of eliminating voltage variations is applied, but depending on the conditions, the durability of the effect is not constant, and overcharging may be performed more than necessary, which adversely affects the life performance of the battery. Was. More importantly, such maintenance and inspection methods have been empirically performed, and the reasons therefor are not clear, and optimization thereof is required.

【0005】[0005]

【課題を解決するための手段】本発明は密閉形電池の組
電池の電圧変化と容量変化について、系統的に実験と考
察をおこない、その保守の最適化をはかったものであ
る。すなわちフロート電圧が1.23〜1.48Vの範
囲外の値を示す電池を異常と認識し、保守点検する方
法、また電圧が1.40V以上の範囲の電池について
は、その電池を1.48〜1.70Vの定電圧充電する
ことによって電圧ばらつきを小さくし、電池容量を回復
する方法にあり、とくに弁をはずして充電すればさらに
その効果が生ずる。
SUMMARY OF THE INVENTION The present invention is to optimize the maintenance by systematically conducting experiments and considerations on voltage change and capacity change of a battery pack of a sealed battery. That is, a method of recognizing a battery having a float voltage outside the range of 1.23 to 1.48 V as abnormal and performing maintenance and inspection, and for a battery having a voltage of 1.40 V or higher, changing the battery to 1.48 V There is a method of reducing the voltage variation by charging at a constant voltage of up to 1.70 V and restoring the battery capacity. In particular, the effect is further obtained by removing the valve and charging.

【0006】[0006]

【作用】フロ−ト中における群電池の単位セル電圧V1
は次式で表せる V1 =E01 + +η+ −(E01 - −η- ) (1) E01 + :正極の平衡電位,E01 - :負極の平衡電位, η+ :正極の過電圧(a1 + +b1 + LogI), η- :負極の過電圧(a1 - +b1 - LogI) a1 + ,b1 + :タ−フェルの係数 A1 =a1 + +a1 - ,B1 =b1 + +b1 - ,E01
01 + −E01 - ,群電池の総数をn個,設定電圧を
s ,単位電池の内部抵抗をrとすると、次式が成立す
る。
The unit cell voltage V 1 of the group battery during the float operation
V 1 = E 01 + + η + that expressed by the following formula - (E 01 - -η -) (1) E 01 +: equilibrium potential of the positive electrode, E 01 -: equilibrium potential of the negative electrode, eta +: positive electrode overvoltage ( a 1 + + b 1 + LogI ), η -: negative overvoltage (a 1 - + b 1 - LogI) a 1 +, b 1 +: data - coefficient Fell a 1 = a 1 + + a 1 -, B 1 = b 1 + + b 1 -, E 01 =
Assuming that E 01 + −E 01 , the total number of group batteries is n, the set voltage is V s , and the internal resistance of the unit battery is r, the following equation is established.

【0007】 VS =I(r1 +r2 +…rn )+(E01+E02+…E0n) +(A1 +A2 +…An )+(B1 +B2 +…Bn )Log I (2) 電流値以外は定数であるので、電池反応すなわち正・負
極の反応の種類が決定されると、個々の単位電池の電圧
が決まることになる。したがって、フロ−ト中における
電池電圧のばらつきは、正・負極の反応の種類が異なる
ことに起因するものと考えられる。フロ−ト中の電池で
起こる主な電極反応は、つぎのように考えられる。
[0007] V S = I (r 1 + r 2 + ... r n) + (E 01 + E 02 + ... E 0n) + (A 1 + A 2 + ... A n) + (B 1 + B 2 + ... B n) Log I (2) Since values other than the current value are constants, when the type of battery reaction, that is, the type of positive / negative electrode reaction is determined, the voltage of each unit battery is determined. Therefore, it is considered that the variation of the battery voltage during the float is caused by the difference between the positive and negative reactions. The main electrode reactions that occur in a floating battery are considered as follows.

【0008】 正極の反応 負極の反応 1)Ni(OH)2 →NiOOH + H+ + e- (3) Cd(OH)2 +2e- →Cd+ 2OH- (5) 2) 4OH- → O2 +2H2 O +4e- (4) Cd(OH)2 +2e- →Cd+ 2OH- 3) 4OH- → O2 +2H2 O +4e- 2H2 O +2e- → H2 + 2OH- (6) 4) 4OH- → O2 +2H2 O +4e- O2 +2H2 O +4e- → 4OH- (7) 5)Ni(OH)2 →NiOOH + H+ + e- 2H2 O +2e- → H2 + 2OH- 6)Ni(OH)2 →NiOOH + H+ + e- O2 +2H2 O +4e- → 4OH- 電池のばらつきの原因は、このような種々の電極反応が
存在することによって生ずることになる。なお、電池の
内部抵抗の差によっても電池電圧のばらつきが生じる。
とくに、密閉形電池の場合は電解液の量によってガス吸
収反応性能が影響を受けるので、長期使用中に電極反応
の種類が変化することになるものと考えられる。液量が
多く、ガス吸収反応が制限される電池のフロ−ト中の電
池電圧は、つぎのような機構にしたがって変化するもの
と結論づけられる。 第1 段階 使用開始後、数年は正極で酸素発生・負極で酸素の吸収
がおこる4)の反応と副反応として負極でCd(OH)2 の還元
がおこる2)の反応がおこるので、電池電圧のばらつきは
ほとんどない。 第2 段階 フロート電流は小さいので負極のガス吸収性能が充分で
ない電池においては、使用開始後数年以上になると、残
存リザーブCd(OH)2 は、ほぼ完全にCdに還元されるよう
になる。したがってリザ−ブCd(OH)2 がほとんどなくな
り、2)の負極の反応の分極が大きくなり、徐々に電池電
圧が高くなる。その電圧上昇値は他の電池電圧に均等に
按分される。したがってフロ−ト電圧は一定であるが、
フロ−ト電流は小さくなる。この残存リザ−ブCd(OH)2
が少なくなるために分極が大きくなる過程では、電池電
圧は上昇していくが、その分極がおこるとともに、正極
電位も徐々に卑になる。正極電位が卑になる過程は、正
極で、(3) 式の充電反応あるいは(4) 式の酸素発生反応
が進行するよりも充電生成物のNiOOH が(8) 式によって
水を分解して酸素ガスを発生するか、あるいはシャトル
メカニズムによる自己放電でNi(OH)2 が生成する反応が
進行する速度が大きい過程である。
[0008] The reaction of the reaction the negative electrode of the positive electrode 1) Ni (OH) 2 → NiOOH + H + + e - (3) Cd (OH) 2 + 2e - → Cd + 2OH - (5) 2) 4OH - → O 2 + 2H 2 O + 4e - (4) Cd (OH) 2 + 2e - → Cd + 2OH - 3) 4OH - → O 2 + 2H 2 O + 4e - 2H 2 O + 2e - → H 2 + 2OH - (6) 4) 4OH - → O 2 + 2H 2 O + 4e - O 2 + 2H 2 O + 4e - → 4OH - (7) 5) Ni (OH) 2 → NiOOH + H + + e - 2H 2 O + 2e - → H 2 + 2OH - 6) Ni (OH) 2 → NiOOH + H + + e - O 2 + 2H 2 O + 4e - → 4OH - causes variation of the battery will be caused by the presence of these various electrode reactions. Note that the battery voltage also varies due to the difference in battery internal resistance.
In particular, in the case of a sealed battery, since the gas absorption reaction performance is affected by the amount of the electrolytic solution, it is considered that the type of electrode reaction changes during long-term use. It is concluded that the battery voltage during the float of a battery with a large liquid volume and limited gas absorption reaction varies according to the following mechanism. First stage After the start of use, for several years, the reaction of 4), in which oxygen is generated at the positive electrode and oxygen is absorbed at the negative electrode, and the reduction of Cd (OH) 2 occurs at the negative electrode as a side reaction, 2) There is almost no voltage variation. Second stage In a battery in which the gas absorption performance of the negative electrode is not sufficient because the float current is small, the remaining reserve Cd (OH) 2 is almost completely reduced to Cd several years after the start of use. Therefore, the reserve Cd (OH) 2 is almost eliminated, the polarization of the reaction of the negative electrode in 2) increases, and the battery voltage gradually increases. The voltage rise value is equally distributed to other battery voltages. Therefore, although the float voltage is constant,
The float current is reduced. This remaining reserve Cd (OH) 2
In the process of increasing the polarization due to the decrease in the voltage, the battery voltage increases, but the polarization occurs and the positive electrode potential gradually becomes lower. The process in which the potential of the positive electrode becomes lower is that the NiOOH of the charge product decomposes water by the formula (8) and degrades the oxygen by the formula (8), compared with the progress of the charge reaction of the formula (3) or the oxygen generation reaction of the formula (4). This is a process in which the reaction that generates gas or generates Ni (OH) 2 by self-discharge by the shuttle mechanism progresses at a high rate.

【0009】 4NiOOH+2H2 O →4 Ni(OH)2 + O2 (8) 第3 段階 第2 段階の状態が継続されるときには、負極から水素ガ
ス、正極から酸素ガスが系外に逸散するので、電解液の
減少がおこる。電解液の減少がおこって、ガス吸収性能
がよくなると、負極では(7) 式のガス吸収反応がおこる
ため電池電圧は低下する。なお正極の電位は、第2 段階
で卑になっているので、電池電圧は第1段階のときより
も低い状態となる。 第4 段階 第3 段階が維持されると、フロ−ト電流は第2 段階より
も大きくなり、第1 段階の状態に近づくようになる。し
たがって、第1 段階から第4 段階にいたるまでにおいて
フロート中の充電電圧が大きく変動するが単電池自体の
容量には、ほとんど影響がない。このことを確認するた
めに組電池で電圧変動が生じた電池の容量試験をおこな
った結果、電池電圧が1.23〜1.48Vの範囲で
は、わずかに容量低下がみとめられるものの、その容量
のばらつきはほとんどなく良好な状態であることを確認
した。そして、電池電圧のばらつきが生じた電池で、電
池電圧の高いものを1.48〜1.70Vの定電圧充電
を行ったところ、電圧は低下して、群電池全体の充電電
圧のばらつきは解消するとともに、放電容量も初期の状
態に回復した。したがって、このような手段は、電圧ば
らつきの解消と容量の回復に有効であるといえる。
4NiOOH + 2H 2 O → 4Ni (OH) 2 + O 2 (8) Third Stage When the state of the second stage is continued, hydrogen gas from the negative electrode and oxygen gas from the positive electrode escape outside the system. In addition, the electrolyte decreases. When the electrolyte solution decreases and the gas absorption performance improves, the battery voltage decreases because the gas absorption reaction of the formula (7) occurs at the negative electrode. Note that, since the potential of the positive electrode is low in the second stage, the battery voltage is lower than in the first stage. Fourth stage When the third stage is maintained, the float current becomes larger than that of the second stage and approaches the state of the first stage. Therefore, the charging voltage during the float varies greatly from the first stage to the fourth stage, but has little effect on the capacity of the unit cell itself. In order to confirm this, a capacity test was performed on the battery in which the voltage fluctuation occurred in the assembled battery. As a result, when the battery voltage was in the range of 1.23 to 1.48 V, the capacity was slightly reduced. It was confirmed that there was almost no variation and the condition was good. Then, when a battery having a high battery voltage was charged at a constant voltage of 1.48 to 1.70 V, the voltage dropped, and the voltage of the entire battery group was reduced. At the same time, the discharge capacity was restored to the initial state. Therefore, it can be said that such a means is effective in eliminating voltage variations and recovering capacitance.

【0010】[0010]

【実施例】以下、本発明の好適な実施例を用いて説明す
る。 (実施例1)正極板は、焼結式水酸化ニッケル極板で大
きさ70W ×165L ×0.90T mmのもの12枚、
負極板は焼結式カドミウム極板で70W ×165L ×
0.82T mm のもの13枚、セパレータは厚さ0.
2mmのポリアミド製不織布2枚、電解液は比重1.2
5(20℃)KOH水溶液を用い、液量が105mlお
よび140mlの密閉型35Ahのものをそれぞれ72
セルおよび8セル製作した。なお、液量が105mlの
もの5セルには故意にセパレータと正極板との間に正極
板のかけらを混入させたものを使用した。電解液量の調
整は、電池を0.1Cで16時間充電して充電状態にし
てから過剰の液を排出することによっておこなった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described. (Example 1) Twelve positive electrode plates having a size of 70 W x 165 L x 0.90 T mm which were sintered nickel hydroxide electrode plates,
The negative electrode plate is a sintered cadmium electrode plate of 70 W x 165 L x
13 sheets of 0.82 T mm, and the separator has a thickness of 0.1 mm.
Two 2 mm polyamide non-woven fabrics, electrolyte having specific gravity of 1.2
5 (20 ° C.) aqueous KOH solution was used, and a sealed 35 Ah solution having a
Cells and 8 cells were fabricated. The five cells having a liquid volume of 105 ml were prepared by intentionally mixing fragments of the positive electrode plate between the separator and the positive electrode plate. The adjustment of the amount of the electrolyte was performed by charging the battery at 0.1 C for 16 hours to make the battery charged, and then discharging the excess solution.

【0011】これらの電池を1Cで放電したときの容量
は公称容量比で107%±2%と、ばらつきは少なかっ
た。これらの電池80セルを直列にして、0.1Cで1
5時間充電したのち容量を確認したところ、公称容量比
107%であった。つぎに加速試験をおこなうために、
45℃において直列に接続した単位電池当たりの平均
定電圧1.36Vでフロート充電を1.5年間おこなっ
た。初期においては、電池電圧のばらつきの範囲は1.
35〜1.37Vとほとんどなかったが、1.5年経過
すると1.15〜1.42Vとなった。
The capacity when these batteries were discharged at 1 C was 107% ± 2% of the nominal capacity ratio, with little variation. 80 cells of these batteries are connected in series,
After charging for 5 hours, the capacity was confirmed to be 107% of the nominal capacity. Next, in order to perform an accelerated test,
Float charging was performed for 1.5 years at an average set voltage of 1.36 V per unit battery connected in series at 45 ° C. Initially, the range of battery voltage variation is 1.
Although it was almost 35 to 1.37 V, it became 1.15 to 1.42 V after 1.5 years.

【0012】この電池を単位電池ごとに放電容量を調べ
た。代表的なフロート電圧の値と放電容量の公称容量比
との関係を図1に示す。なお電池電圧が1.40V以上
示したものは、液量が140mlと多く、ガス吸収が制
限されるものが大部分であった。図1より、このような
電圧変動が生じても、1.23〜1.48Vの範囲が良
好であり、ほとんど容量のばらつきのないことがわか
る。
The discharge capacity of this battery was examined for each unit battery. FIG. 1 shows a relationship between a typical float voltage value and a nominal capacity ratio of a discharge capacity. It should be noted that those having a battery voltage of 1.40 V or more had a large liquid volume of 140 ml, and most of them had limited gas absorption. From FIG. 1, it can be seen that even if such a voltage fluctuation occurs, the range of 1.23 to 1.48 V is good, and there is almost no variation in capacitance.

【0013】一方、1.15Vと低い電圧を示した電池
は正極板の微細なかけらを混入させたものの1セルであ
った。容量は公称容量の60%しかなく、電池を解体し
て極板の状態をしらべたところ、正極板の微細なかけら
の混入部分に微小短絡が発生していた。したがって1.
15Vと低い電圧を示した電池の容量が少なかったの
は、この微小短絡の発生によってエネルギーが消費され
たものである。
On the other hand, the battery showing a low voltage of 1.15 V was one cell in which fine fragments of the positive electrode plate were mixed. The capacity was only 60% of the nominal capacity. When the battery was disassembled and the state of the electrode plate was examined, a minute short-circuit occurred in a portion of the positive electrode plate where fine fragments were mixed. Therefore, 1.
The reason why the capacity of the battery showing a low voltage of 15 V was small was that energy was consumed by the occurrence of this minute short circuit.

【0014】つぎにフロート電圧のばらつきを解消させ
る手段として、フロート電圧が1.40Vを越えた電池
を、種々の設定電圧を変えて定電圧充電を3時間おこな
ったのち、つづけてフロート充電をおこなったところ、
設定電圧の値によって、電圧が変動して上昇する時期が
異なっていた。その設定電圧と電圧の変動がおこる時期
を表1に示す。すなわち、1.48V以上の定電圧をし
たものは、3年で1.36Vであったのに対して、設定
電圧が1.45Vのものは電圧が1.41Vであった。
さらに5年後には、弁をあけて1.48Vの定電圧をお
こなったものは1.36Vであった。
Next, as a means for eliminating the variation of the float voltage, a battery having a float voltage exceeding 1.40 V is charged at a constant voltage for 3 hours while changing various set voltages, and then the float charge is performed. Where
The timing at which the voltage fluctuates and rises differs depending on the value of the set voltage. Table 1 shows the set voltage and the time when the voltage fluctuates. That is, the voltage at a constant voltage of 1.48 V or higher was 1.36 V in three years, whereas the voltage at a set voltage of 1.45 V was 1.41 V.
Five years later, the constant voltage of 1.48 V with the valve opened was 1.36 V.

【0015】このことより、回復充電は1.48V以上
必要であり、とくに弁をあけて実施したものは電圧が安
定していた。その理由は設定電圧が1.48V以上にな
ると、正極が自己放電によって容量が減少した電気量に
相当する電位低下を回復させるに必要な電位に到達する
からである。また、弁をあけると空気中の酸素が吸引さ
れて負極の金属カドミウムと電解液の水とが反応してCd
(OH)2 が生成し、結果的にリザ−ブCd(OH)2 の量が増加
したものと考えられる。
From this, the recovery charge required 1.48 V or more, and the voltage was stable especially when the valve was opened. The reason is that when the set voltage becomes 1.48 V or more, the positive electrode reaches a potential required to recover a potential decrease corresponding to the amount of electricity whose capacity has been reduced by self-discharge. When the valve is opened, oxygen in the air is sucked in, and the metal cadmium on the negative electrode reacts with the water in the electrolytic solution to form Cd.
It is probable that (OH) 2 was formed, resulting in an increase in the amount of the reserve Cd (OH) 2 .

【0016】つぎに、実施例1と同様な電池を設定電圧
1.36V、45℃でフロート充電を1.5年間おこな
った。充電電圧は初期にはそのばらつきはほとんどなか
つたが、1.5年後の電圧のばらつきの範囲は1.26
〜1.47Vであった。
Next, the same battery as in Example 1 was float-charged at a set voltage of 1.36 V and 45 ° C. for 1.5 years. The charging voltage had little variation at the beginning, but the range of the voltage variation after 1.5 years was 1.26.
471.47V.

【0017】これらの電池を1Cで放電したときの公称
容量比と代表的なフロート電圧の値との関係を図2
(C)に示す。これらの組電池を組電池のままで、0.
2Cで1.48V/セルまで充電してから、1.48V
/セルで3時間定電圧充電したのち、1Cで放電したと
ころ、放電容量は公称容量比106〜107%(図2−
D)と初期の値に回復していた。
FIG. 2 shows the relationship between the nominal capacity ratio when these batteries are discharged at 1 C and typical float voltage values.
It is shown in (C). These battery packs are used as battery packs,
Charge to 1.48V / cell at 2C, then 1.48V
/ Cell for 3 hours at a constant voltage and then discharged at 1C, the discharge capacity was 106-107% of the nominal capacity ratio (FIG. 2).
D) and had recovered to the initial value.

【0018】さらに引き続いて、3年間のフロート充電
をおこなったところ、電圧のばらつきの範囲は1.35
〜1.37Vと小さかった。このように、組電池のまま
で、容量回復と電圧変動の解消ができる。
Subsequently, when float charging was performed for three years, the range of voltage variation was 1.35.
It was as small as 1.37V. In this way, capacity recovery and elimination of voltage fluctuations can be achieved without changing the assembled battery.

【0019】なお、設定電圧を高くすると同様な効果が
生じたが、1.7Vとくに1.8V/セルを超えるとガ
ッシングがおこり、弁からの液もれが発生する不具合が
生ずるので、好ましい設定電圧は1.48〜1.70V
であった。
It should be noted that when the set voltage is increased, the same effect is obtained. However, when the voltage exceeds 1.7 V, particularly 1.8 V / cell, gassing occurs and a problem occurs that liquid leaks from the valve. Voltage is 1.48-1.70V
Met.

【0020】[0020]

【表1】 [Table 1]

【0021】注)*印の試験は3時間の定電圧充電時に
弁を開けて実施した。
Note) The test marked * was performed with the valve opened during constant voltage charging for 3 hours.

【0022】つぎに充電電圧の変動原因およびその変動
値の大きさと電池容量との関係をあきらかにするために
電池の充電時の正極・負極の素反応から考察を試みた。
まず、電池には種々反応の組み合わせがあるが、電位的
に差が生じるのは、負極の酸素ガス吸収反応と水素発生
反応の違いによるものと考えてよい。酸素発生反応の電
極電位は(1) 式で表せる。
Next, in order to clarify the cause of the fluctuation of the charging voltage and the relationship between the magnitude of the fluctuation value and the battery capacity, consideration was made from the elementary reaction between the positive electrode and the negative electrode during charging of the battery.
First, although there are various combinations of reactions in batteries, the difference in potential may be attributed to the difference between the oxygen gas absorption reaction and the hydrogen generation reaction of the negative electrode. The electrode potential of the oxygen evolution reaction can be expressed by equation (1).

【0023】 E= E02−bO2logI0 ,O2 + bO2logI (1) EO2:酸素の平衡電位,bO2:酸素発生のターフェル係
数 I0 ,O2 :酸素発生の交換電流密度 水素発生反応の電極電位は(2) 式で表せる。
[0023] E = E 02 -b O2 logI 0 , O2 + b O2 logI (1) E O2: equilibrium potential of oxygen, b O2: Tafel coefficient of oxygen generating I 0, O2: exchange of oxygen evolution current density hydrogen generation The electrode potential for the reaction can be expressed by equation (2).

【0024】 E= EH2+ bH2logI0 ,H2 - bH2logI (2) EH2:水素の平衡電位,bH2:水素発生のターフェル係
数 I0 ,H2 :水素発生の交換電流密度 酸素ガス吸収反応の電極電位は、負極のカドミウム電極
の充電電位に支配されるとすると、負極の充電電極電位
は(3) 式で表せる、その電位でガス吸収反応がおこるこ
とになる。
E = E H2 + b H2 log I 0, H 2 −b H2 log I (2) E H2 : Equilibrium potential of hydrogen, b H2 : Tafel coefficient of hydrogen generation I 0, H2 : Exchange current density of hydrogen generation Oxygen gas Assuming that the electrode potential of the absorption reaction is governed by the charging potential of the cadmium electrode of the negative electrode, the charging electrode potential of the negative electrode can be expressed by equation (3), and the gas absorption reaction occurs at that potential.

【0025】 E= ECd+ bCdlogI0 ,Cd - bCdlogI (3) ECd:カドミウムの平衡電位,bCd:カドミウム極のタ
ーフェル係数 I0 ,Cd :カドミウム極の交換電流密度 初期の場合、負極にはリザ−ブCd(OH)2 があるので電池
電圧Vsは(1) 式-(3)式となる。
E = E Cd + b Cd logI 0, Cd −b Cd logI (3) E Cd : Equilibrium potential of cadmium, b Cd : Tafel coefficient of cadmium pole I 0, Cd : Exchange current density of cadmium pole In this case, since the negative electrode has a reserve Cd (OH) 2 , the battery voltage Vs is given by the following equation (1)-(3).

【0026】Vs= EO2- ECd-(bO2logI0 ,O2 - b
CdlogI0 ,Cd )+(bO2+ bCd) logI 使用中に、リザ−ブCd(OH)2 がなくなり、水素ガスの発
生する電池が生じた場合の電池電圧Vvは(1) 式-(2)式
となる。
[0026] Vs = E O2 - E Cd - (b O2 logI 0, O2 - b
Cd logI 0, Cd ) + (b O2 + b Cd ) During use, reserve Cd (OH) 2 disappears, and when a battery generating hydrogen gas is generated, the battery voltage Vv is expressed by the following equation (1). Equation (2) is obtained.

【0027】Vv= EO2- EH2-(bO2logI0,02+ bH2
logI0,H2)+(bO2+ bH2) logI このような電池が総個数nのうちn1 個生じた場合を考
える。設定電圧をVset 、初期に流れる電流をI1 、n
1 個の電池が生じたときの電流をI2 とすると、Vset
は(4) 式及び(5) 式で表せる。ここで電池の内部抵抗r
は一定とする。 Vset=I1 ・ n・ r+ n・{EO2- ECd-(bO2logI0,02- bCdlogI0,Cd) +( bO2+ bCd) logI1 } (4) Vset=I2 ・ n・ r+(n- n1 )・{ EO2- ECd-(bO2logI0,02 - bCdlogI0,Cd)+( bO2+ bCd) logI2 }+n1 { EO2- EH2 -(bO2logI0,02+ bH2logI0,H2)+( bO2+ bH2) logI2 } (5) (4) 式,(5) 式より(6) 式が成立する。 ∴logI2 =K/{(bO2+ bCd)+n1 / n( bH2- bCd)} (6) K=r・(I1 - I2 )+n1 / n( EH2- ECd- bCdlogI0,Cd + bH2logI0,H2) +(bO2+ bCd) logI1 ここで、電池の内部抵抗に関する項、r・(I1 - I2 )
はほとんど無視できるので0とし、正極、負極のI−V
特性から求めたつぎの値を代入すると、 bO2=0.051, bH2=0.055, bCd=0, I0,H2=5* 10-5 logI2 =(-0.242 ・ n1 / n+0.051logI1 ) /(0.055・ n1 / n+0.051) (7) (7) 式を(1) 式に代入すると E= EO2- bO2logI0,02 + bO2(-0.242 ・ n1 / n+0.051logI1 ) /(0.055・ n1 / n+0.051)(8) ここで、EO2=0.302V,I0,02=2* 10-5 ,の数値を代入
し、Eとn1 / nとの関係を求めて図3に示す。ここで
重要な知見が得られる。すなわち、この電極電位は正極
における酸素の発生電位であり、正極はこの電位と等し
い電位に相当する充電レベルになるものと考えられる。
アルカリ電池の正極である水酸化ニッケル電極の電位は
放電深度によって異なるので、この電極電位から放電深
度が決定できることになる。しかしながら、長期フロー
ト使用後の正極の開路電位と放電深度との関係を調査し
た結果はない。
[0027] Vv = E O2 - E H2 - (b O2 logI 0,02 + b H2
logI 0, H2) + (b O2 + b H2) logI such batteries Consider the case arising one n of the total number n. The current through the set voltage Vset, initially I 1, n
When the current when one battery has occurred and I 2, Vset
Can be expressed by equations (4) and (5). Where the internal resistance r of the battery
Is constant. Vset = I 1 · n · r + n · {E O2 - E Cd - (b O2 logI 0,02 - b Cd logI 0, Cd) + (b O2 + b Cd) logI 1} (4) Vset = I 2 · n · r + (n- n 1) · {E O2 - E Cd - (b O2 logI 0,02 - b Cd logI 0, Cd) + (b O2 + b Cd) logI 2} + n 1 { E O2 - E H2 - (b O2 logI 0,02 + b H2 logI 0, H2) + (b O2 + b H2) logI 2} (5) (4) equation, the equation (5) from equation (6) To establish. {LogI 2 = K / {(b O2 + b Cd ) + n 1 / n (b H2 −b Cd )} (6) K = r · (I 1 −I 2 ) + n 1 / n (E H2 − E Cd −b Cd logI 0, Cd + b H2 logI 0, H2 ) + (b O2 + b Cd ) logI 1 Here, the term relating to the internal resistance of the battery, r · (I 1 −I 2 )
Is almost negligible and is set to 0, and the positive and negative electrode IV
Substituting these values obtained from the characteristics, b O2 = 0.051, b H2 = 0.055, b Cd = 0, I 0, H2 = 5 * 10 -5 logI 2 = (- 0.242 · n 1 / n + 0.051logI 1 ) / (0.055 · n 1 /n+0.051) (7) When the equation (7) is substituted into the equation (1), E = E O2 −b O2 logI 0,02 + b O2 (−0.242 · n 1 / n + 0.051logI 1 ) / (0.055 · n 1 /n+0.051) (8) Here, the numerical values of E O2 = 0.302V, I 0,02 = 2 * 10 -5 are substituted, and E and n 1 / FIG. 3 shows the relationship with n. Here is an important finding. That is, this electrode potential is the potential for generating oxygen at the positive electrode, and the positive electrode is considered to have a charge level corresponding to a potential equal to this potential.
Since the potential of the nickel hydroxide electrode, which is the positive electrode of the alkaline battery, differs depending on the depth of discharge, the depth of discharge can be determined from this electrode potential. However, there is no result of investigating the relationship between the open circuit potential of the positive electrode after use of the long-term float and the depth of discharge.

【0028】そこで45℃、1.5年間1.36Vでフ
ロート充電した電池について調べた結果を図4(F)に
示す、図4にはフロート使用直後の場合(G)について
も示す。図からフロート使用すると正極の開路電位は著
しく卑になっていることがわかる。このような電位が移
行する過程の詳細は定かでないが、充電生成物であるオ
キシ水酸化ニッケルがエージングをうけて、その結晶化
度が高くなることによるものと考えられる。
FIG. 4 (F) shows the result of an examination of a battery float-charged at 1.36 V at 45 ° C. for 1.5 years. FIG. 4 also shows the result immediately after the use of the float (G). From the figure, it can be seen that the open circuit potential of the positive electrode is extremely low when the float is used. Although the details of the process of shifting the potential are not clear, it is considered that nickel oxyhydroxide, which is a charge product, undergoes aging and its crystallinity increases.

【0029】前述したようにフロート電圧が1.23〜
1.48Vの範囲の電圧を示した電池の容量が、フロー
ト使用中に良好であった。フロート電圧が1.23Vと
低い場合でも容量が充分にある理由は、フロート中に正
極電位が卑に移行するために基ずくものである。
As described above, the float voltage is 1.23 to
The capacity of the battery showing a voltage in the range of 1.48V was good during float use. The reason why the capacity is sufficient even when the float voltage is as low as 1.23 V is based on the fact that the positive electrode potential shifts to a low value during the float.

【0030】図4で容量が80%を示す電位(放電深度
が20%に相当する)初期では0.370Vすなわち端
子電圧では1.291V(0.370V+負極電位0.
921V)必要であるが、フロート中では0.340V
すなわち端子電圧では(0.340V+0.921V)
1.261Vであることがわかる。この正極電位は、活
物質に添加する水酸化コバルトの含有率によってことな
り、その含有率が1mol 増加すると2mV低下する。
また、温度が上昇すると電位は低下するので、実用的に
は正極電位を0.31V程度を考慮すればよいので電圧
としては1.231V(0.31V+0.921V)を
下限とすればよい。
In FIG. 4, at the initial stage of the potential at which the capacity indicates 80% (corresponding to the discharge depth of 20%), the initial voltage is 0.370 V, that is, the terminal voltage is 1.291 V (0.370 V + negative electrode potential 0.
921 V) required, but 0.340 V in float
That is, the terminal voltage is (0.340V + 0.921V)
It turns out that it is 1.261V. This positive electrode potential varies depending on the content of cobalt hydroxide added to the active material, and decreases by 2 mV when the content increases by 1 mol.
Since the potential decreases as the temperature rises, the potential of the positive electrode may be practically considered to be about 0.31 V. Therefore, the lower limit of the voltage may be 1.231 V (0.31 V + 0.921 V).

【0031】フロート電圧が1.48Vの場合には正極
は充分に貴になっているため容量低下はない。しかしな
がら、1.48V以上になると水素発生と酸素発生によ
って電池の発熱があるとともに液が減少することになる
ので、電池の内部抵抗の増大やカドミウムのデンドライ
トの成長による短絡現象の発生の危険性が増大する。そ
のために点検が必要となる。すなわち1.48V以上を
示す電池は、液が減少してガス吸収性能が向上すること
によってフロート電圧が低下する過程に移行すれば正常
であるが、さらに電池電圧が上昇を続いたり電圧が1.
23Vに低下して微少短絡に移行すれば異常と認識でき
る。
When the float voltage is 1.48V, the capacity is not reduced because the positive electrode is sufficiently noble. However, when the voltage becomes 1.48 V or more, the battery generates heat due to the generation of hydrogen and oxygen, and the liquid decreases. Therefore, there is a danger of an increase in the internal resistance of the battery and the occurrence of a short circuit phenomenon due to the growth of cadmium dendrite. Increase. An inspection is required for that. That is, a battery showing 1.48 V or more is normal if it shifts to a process in which the float voltage decreases due to the decrease in the liquid and the improvement in gas absorption performance, but the battery voltage continues to increase or the voltage becomes 1.
If the voltage drops to 23 V and shifts to a minute short circuit, it can be recognized as an abnormality.

【0032】この1.23Vの値はフリーエネルギーか
ら計算した水の理論分解電圧に相当し、1.48Vの値
はエンタルピー変化から計算した理論分解電圧に一致し
ている。
The value of 1.23 V corresponds to the theoretical decomposition voltage of water calculated from free energy, and the value of 1.48 V matches the theoretical decomposition voltage calculated from enthalpy change.

【0033】以上のべたように従来では異常と認識され
ていた低い電圧でも、良好であることがわかり、群電池
の点検方法としては、ニッケル・カドミウム電池の組電
池において、フロート電圧が1.23〜1.48Vの範
囲外の値を示す電池を異常と認識する保守点検方法とす
るのが適当であることがわかった。
As described above, it has been found that even a low voltage, which has been conventionally recognized as abnormal, is good, and the inspection method of the group battery is as follows. It has been found that it is appropriate to use a maintenance and inspection method for recognizing a battery having a value outside the range of -1.48 V as abnormal.

【0034】ここで、さらに重要な結論が導かれる。一
般に、アルカリ蓄電池は、鉛電池と同様に、数ヶ月に一
回程度の回復充電が実施されている。今回の実験および
詳細な考察から、フロート電圧が変動してもその値が
1.23〜1.48Vの範囲であれば、著しい容量低下
は生じないことがわかつた。一方、鉛電池の場合はフロ
ート電圧のばらつきが生じてその起電力である2.03
V以下になると自己放電によつて容量が著しく低下する
だけでなく、使用中には電解液の成層化による容量のば
らつきも生ずるために回復充電は必須となる。したがっ
て、密閉形のアルカリ電池は、鉛電池の場合のように頻
繁な均等充電は必要がないといえる。
Here, a further important conclusion is drawn. Generally, like a lead battery, an alkaline storage battery is subjected to recovery charging about once every several months. From this experiment and detailed considerations, it was found that even if the float voltage fluctuated, if the value was in the range of 1.23 to 1.48 V, no significant capacity reduction occurred. On the other hand, in the case of a lead battery, the float voltage fluctuates and its electromotive force is 2.03.
When the voltage falls below V, not only does the capacity significantly decrease due to self-discharge, but also during use, the capacity varies due to the stratification of the electrolytic solution, so that recovery charging is essential. Therefore, it can be said that a sealed alkaline battery does not require frequent equal charging as in the case of a lead battery.

【0035】[0035]

【発明の効果】以上述べたように、本発明の効果は密閉
形電池の組電池において、その一部に液量やセパレータ
の厚さ等によつてガス吸収性能が困難な電池が混在した
場合にフロート電圧の変動値によって異常のない電池を
異常と認識したり、必要以上の過充電、過放電を行い寿
命性能に悪影響を与えていた従来の保守点検方法及び容
量回復方法を最適化することによって、保守点検の効率
化をはかるものである。
As described above, the effect of the present invention is obtained when a sealed battery assembly is used, in which some of the batteries whose gas absorption performance is difficult due to the amount of liquid and the thickness of the separator are mixed. Optimizing conventional maintenance and inspection methods and capacity recovery methods that have recognized abnormal batteries as abnormal due to fluctuations in float voltage and that overcharged or overdischarged more than necessary and had a negative impact on service life This improves the efficiency of maintenance and inspection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フロート電圧の値と容量との関係を示した図FIG. 1 is a diagram showing a relationship between a value of a float voltage and a capacitance;

【図2】本発明による回復充電をおこなった場合および
おこなう前の放電容量とフロート電圧の値との関係を示
した図
FIG. 2 is a diagram showing the relationship between the discharge capacity and the value of the float voltage before and after the recovery charge according to the present invention is performed.

【図3】Eとn1 / nとの関係を示した図FIG. 3 is a diagram showing a relationship between E and n 1 / n.

【図4】フロート使用された正極板の開路電位と放電深
度との関係を示した図
FIG. 4 is a diagram showing a relationship between an open circuit potential of a positive electrode plate used in a float and a depth of discharge.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−109273(JP,A) 実開 昭58−134778(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01M 10/42 - 10/48 H02J 7/00──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-109273 (JP, A) JP-A-58-134778 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 10/42-10/48 H02J 7/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数のニッケル・カドミウム単位電池を
直列に接続したニッケル・カドミウム組電池に、一定値
の浮動充電電圧を印加した状態で測定する各単位電池の
フロート電圧が、1.23〜1.48Vの範囲外の値を
示す単位電池を異常と認識することを特徴とする浮動充
電用ニッケル・カドミウム組電池の保守点検方法。
Claims 1. A plurality of nickel-cadmium unit batteries
Constant value for nickel-cadmium batteries connected in series
Of each unit cell measured with the floating charge voltage of
Float voltage, float charging, characterized in that recognizes an abnormal unit cells indicating a value outside the range of 1.23~1.48V
Maintenance and inspection method for nickel-cadmium battery packs.
【請求項2】 請求項1の保守点検方法によって、フロ
ート電圧が1.23〜1.48Vの範囲外の値を示す
位電池を異常と認識して交換した後,平均設定電圧が
1.48〜1.70Vの定電圧充電を行うことを特徴と
する浮動充電用ニッケル・カドミウム組電池の容量回復
方法。
By 2. A maintenance method according to claim 1, single float voltage has a value outside the range of 1.23~1.48V
A method for recovering the capacity of a nickel-cadmium battery pack for floating charging, comprising performing constant-voltage charging at an average set voltage of 1.48 to 1.70 V after recognizing and replacing an abnormal battery .
JP4236499A 1992-08-11 1992-08-11 Maintenance and inspection method and capacity recovery method for nickel-cadmium batteries Expired - Lifetime JP2861665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4236499A JP2861665B2 (en) 1992-08-11 1992-08-11 Maintenance and inspection method and capacity recovery method for nickel-cadmium batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4236499A JP2861665B2 (en) 1992-08-11 1992-08-11 Maintenance and inspection method and capacity recovery method for nickel-cadmium batteries

Publications (2)

Publication Number Publication Date
JPH0660908A JPH0660908A (en) 1994-03-04
JP2861665B2 true JP2861665B2 (en) 1999-02-24

Family

ID=17001640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4236499A Expired - Lifetime JP2861665B2 (en) 1992-08-11 1992-08-11 Maintenance and inspection method and capacity recovery method for nickel-cadmium batteries

Country Status (1)

Country Link
JP (1) JP2861665B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134778U (en) * 1982-03-05 1983-09-10 日産自動車株式会社 Defective battery indicator
FR2636479B1 (en) * 1988-09-09 1992-04-24 Accumulateurs Fixes ULTRA-FAST CHARGING PROCESS FOR WATERPROOF CADMIUM-NICKEL ACCUMULATOR

Also Published As

Publication number Publication date
JPH0660908A (en) 1994-03-04

Similar Documents

Publication Publication Date Title
Riezenman The search for better batteries
US6097176A (en) Method for managing back-up power source
Pavlov et al. Nickel-zinc batteries with long cycle life
JP2861665B2 (en) Maintenance and inspection method and capacity recovery method for nickel-cadmium batteries
Broussely et al. Lithium ion: the next generation of long life batteries characteristics, life predictions, and integration into telecommunication systems
JP3079303B2 (en) Activation method of alkaline secondary battery
Brost Performance of valve-regulated lead acid batteries in EV1 extended series strings
Peters Review of factors that affect the deep cycling performance of valve-regulated lead/acid batteries
EP0926758B1 (en) Nickel-metal hydride storage battery for back-up power source
JP3428895B2 (en) Charging method of alkaline aqueous secondary battery for backup
JP2000150000A (en) Backup power supply control method
JP2004039434A (en) Charge control method of lead-acid battery
JP3649655B2 (en) Charging method for multiple parallel alkaline aqueous solution secondary batteries for backup
Barsukov Battery selection, safety, and monitoring in mobile applications
JP3349215B2 (en) Maintenance method for stationary nickel-hydrogen storage batteries
Spiers Battery issues
JP3216180B2 (en) Method for recovering capacity of nickel-cadmium battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP3594879B2 (en) Charging method of alkaline aqueous secondary battery for backup
Muneret Practical influence of float and charge voltage adjustment on the service life of AGM VRLA batteries depending on the conditions of use
JP2021099902A (en) Device for maintaining state-of-charge for fuel cell
JPH0676856A (en) Nickel-cadmium combined battery
Yonezu et al. Sealed lead-acid battery
JP2000268852A (en) Active method for sealed nickel-hydrogen secondary battery
CN1828328A (en) Nickel-hydrogen batteries charge monitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040511

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040928