JP2860908B2 - Crosslinked cellulose composite semipermeable membrane for water treatment and method for producing the same - Google Patents

Crosslinked cellulose composite semipermeable membrane for water treatment and method for producing the same

Info

Publication number
JP2860908B2
JP2860908B2 JP20384089A JP20384089A JP2860908B2 JP 2860908 B2 JP2860908 B2 JP 2860908B2 JP 20384089 A JP20384089 A JP 20384089A JP 20384089 A JP20384089 A JP 20384089A JP 2860908 B2 JP2860908 B2 JP 2860908B2
Authority
JP
Japan
Prior art keywords
membrane
composite semipermeable
semipermeable membrane
cellulose
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20384089A
Other languages
Japanese (ja)
Other versions
JPH0368431A (en
Inventor
昇 久保田
聡 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP20384089A priority Critical patent/JP2860908B2/en
Publication of JPH0368431A publication Critical patent/JPH0368431A/en
Application granted granted Critical
Publication of JP2860908B2 publication Critical patent/JP2860908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、中−低分子量有機物の分離に好適に用いら
れる、化学的、物理的に安定で低圧下でも高い透水性能
を有する有機物非吸着性のセルロース複合半透膜および
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to non-adsorbing organic substances which are suitably used for separation of medium- to low-molecular-weight organic substances and are chemically and physically stable and have high water permeability even under low pressure. The present invention relates to a porous cellulose composite semipermeable membrane and a method for producing the same.

(従来の技術) 複合半透膜の開発の歴史は長く、主に海水淡水化用の
逆浸透膜として、1970年頃より精力的に研究が行われて
いる。その成果の代表例として、特開昭49−133282、特
開昭55−147106、特表昭56−500062、特開昭61−42302
などを挙げることができる。これら複合半透膜の開発の
主流は、ポリアミド系複合半透膜である。これは、ポリ
アミド系膜が高い透水性能と高い溶質排除性能を持つた
めである。しかし、その反面で、ポリアミド系膜は耐塩
素性、耐pH性などの化学的耐久性に欠けるという欠点を
有している。
(Prior art) Composite semipermeable membranes have a long history of development, and have been energetically studied since around 1970, mainly as reverse osmosis membranes for seawater desalination. Representative examples of the results include JP-A-49-133282, JP-A-55-147106, JP-T-56-500062, and JP-A-61-42302.
And the like. The mainstream of development of these composite semipermeable membranes is a polyamide-based composite semipermeable membrane. This is because the polyamide-based membrane has high water permeability and high solute removal performance. However, on the other hand, polyamide-based films have a drawback that they lack chemical durability such as chlorine resistance and pH resistance.

また、複合膜ではないが、Loeb型の膜としてよく半透
膜に用いられる酢酸セルロース膜も、容易に加水分解で
きるエステル基を有するため、やはり化学的耐久性には
欠ける。
Although not a composite membrane, a cellulose acetate membrane often used as a semipermeable membrane as a Loeb-type membrane also has an ester group that can be easily hydrolyzed, and thus also lacks chemical durability.

これらのポリアミド系膜の欠点を補う複合膜として
は、化学的耐久性に優れた素材であるスルホン化ポリフ
ェニレンオキサイドなどのスルホン化ポリマーを支持膜
上にコーティングした複合膜がある(例えば、特開昭63
−229109)。
As a composite membrane that compensates for the drawbacks of these polyamide-based membranes, there is a composite membrane in which a sulfonated polymer such as a sulfonated polyphenylene oxide, which is a material having excellent chemical durability, is coated on a support membrane (see, for example, 63
-229109).

このようなスルホン化ポリマー複合膜は、従来のポリ
アミド系膜にはない高い耐塩素性や耐pH性などを有して
おり、耐久性には優れているが、 (a)マイナス荷電膜であるために、プラス荷電の有機
物が吸着しやすく、これが原因となってファウリング
(膜汚染)が起こりやすいこと、 (b)荷電膜であるために、Donnan排除(日本化学会
編、化学総説No.45 機能性有機薄膜、p11−19参照)が
働き、イオン性物質の排除能が高くなり、塩類を阻止し
て水を透過させる用途には好ましいが、近年、医薬、食
品分野などで要求されている、塩類(無機イオン)を透
過させ、中−低分子量有機物を阻止するという用途には
好ましくないこと、などの欠点もまた持ちあわせてい
る。
Such a sulfonated polymer composite membrane has high chlorine resistance and pH resistance that are not present in conventional polyamide-based membranes, and is excellent in durability. (A) It is a negatively charged membrane. Therefore, positively charged organic matter is easily adsorbed, which causes fouling (membrane contamination) easily. (B) Since it is a charged film, Donnan is excluded (Chemical Review No. 45 Functional organic thin film, see p11-19), which enhances the ability to remove ionic substances and is preferable for applications that block salts and allow water to permeate. However, it also has disadvantages such as being unsuitable for use in transmitting salts (inorganic ions) and blocking medium- to low-molecular-weight organic substances.

(発明が解決しようとする課題) 本発明は、中−低分子量有機物の分離に好適に用いら
れる、化学的、物理的に安定な、低圧下でも高い透水性
能を有する有機物非吸着性の新規な複合半透膜およびそ
の製造方法を提供することを課題とする。
(Problems to be Solved by the Invention) The present invention relates to a novel non-adsorbent organic material that is chemically and physically stable and has high water permeability even under low pressure, which is suitably used for separating medium to low molecular weight organic materials. It is an object to provide a composite semipermeable membrane and a method for producing the same.

(課題を解決するための手段) 本発明者らは、上記の課題を解決するため鋭意研究の
結果、本発明を完成するに至った。すなわち、本発明の
複合半透膜は、ポリエチレン、ポリプロピレン、ポリエ
ステル以外の合成高分子より成る微多孔性支持膜上に、
架橋セルロースより成る分離層が被覆されていることを
特徴とする水処理用架橋セルロース複合半透膜である。
(Means for Solving the Problems) As a result of earnest studies to solve the above problems, the present inventors have completed the present invention. That is, the composite semipermeable membrane of the present invention, polyethylene, polypropylene, on a microporous support membrane made of a synthetic polymer other than polyester,
A crosslinked cellulose composite semipermeable membrane for water treatment, which is coated with a separation layer made of crosslinked cellulose.

また、本発明の方法は、セルロースエステルを微多孔
性支持膜上に被覆した後、1分子中に2個以上のエポキ
シ環を有するポリエポキシドを含むアルカリ溶液で処理
することを特徴とする水処理用架橋セルロース複合半透
膜の製造方法である。
Further, the method of the present invention is characterized in that a cellulose ester is coated on a microporous support membrane and then treated with an alkali solution containing a polyepoxide having two or more epoxy rings in one molecule. This is a method for producing a crosslinked cellulose composite semipermeable membrane.

本発明の複合半透膜は、実質的に分離機能(溶質阻止
能)を有し、実質的に架橋セルロースより成る薄膜状の
分離層が、実質的には分離機能を有さないポリエチレ
ン、ポリプロピレン、ポリエステル以外の合成高分子よ
り成る微多孔性支持膜上に被覆されて成る膜である。
The composite semipermeable membrane of the present invention has a separation function (solute blocking ability) substantially, and a thin film-like separation layer substantially composed of cross-linked cellulose is a polyethylene or polypropylene having substantially no separation function. And a membrane coated on a microporous support membrane made of a synthetic polymer other than polyester.

セルロースは周知のように、下記構造式に示すとおり
の、グルコースがβ−1,4−グルコシド結合をした多糖
類である。
As is well known, cellulose is a polysaccharide in which glucose has a β-1,4-glucosidic bond as shown in the following structural formula.

セルロースは、このように多数の水酸基を持つ。これ
ら水酸基は反応性であり、カルボン酸やエポキシド、イ
ソシアネイトと反応して、エステル結合やエーテル結
合、ウレタン結合をそれぞれ生成する。したがって、1
分子中に2つ以上のカルボン酸基やエポキシ環、イソシ
アネイト基を有するポリカルボン酸やポリエポキシド、
ポリイソシアネイトを用いれば、それぞれエステル結合
やエーテル結合、ウレタン結合によって、セルロースを
架橋させることができる。しかしながら、耐加水分解性
などの化学的耐久性の面を考慮すれば、最も好ましいの
は、エーテル結合による架橋である。
Cellulose has such a large number of hydroxyl groups. These hydroxyl groups are reactive and react with carboxylic acids, epoxides, and isocyanates to form ester bonds, ether bonds, and urethane bonds, respectively. Therefore, 1
A polycarboxylic acid or polyepoxide having two or more carboxylic acid groups or epoxy rings or isocyanate groups in the molecule,
If polyisocyanate is used, cellulose can be cross-linked by an ester bond, an ether bond, and a urethane bond, respectively. However, in view of chemical durability such as hydrolysis resistance, the most preferable is crosslinking by an ether bond.

微多孔性支持膜は実質的には分離機能を有さず、実質
的に分離機能を有する薄膜状の分離層に強度を与えるた
め用いられるものである。分離層が被覆される支持膜表
面の孔は、あまり大きすぎると分離層に欠陥が生じやす
くなるため、100nm以下であることが好ましい。また、
合成高分子より成る支持膜が強度と耐久性の面で好まし
い。具体例を示すと、ポリスルホン、ポリエーテルスル
ホン、ポリエーテルイミド、ポリエーテルケトン、ポリ
エーテルエーテルケトン、ポリフェニレンオキサイド、
ポリアクリロニトリルなどより成る支持膜が好適に用い
られる。
The microporous support membrane has substantially no separation function, and is used to give strength to a thin film-like separation layer having a substantial separation function. If the pores on the surface of the support membrane to be covered with the separation layer are too large, defects are likely to occur in the separation layer. Therefore, the pores are preferably 100 nm or less. Also,
A support membrane made of a synthetic polymer is preferred in terms of strength and durability. Illustrative examples include polysulfone, polyethersulfone, polyetherimide, polyetherketone, polyetheretherketone, polyphenylene oxide,
A support film made of polyacrylonitrile or the like is preferably used.

膜の形態としては、平膜、中空糸状膜、管状膜などが
考えられるが、単位体積中に入れる膜面積を多くとれる
など、濾過効率の面で優れている中空糸状膜が最も好ま
しい。
As the form of the membrane, a flat membrane, a hollow fiber membrane, a tubular membrane, and the like can be considered, and a hollow fiber membrane excellent in filtration efficiency, such as a large membrane area per unit volume, is most preferable.

なお、分離層の存在する場所は、 (a)平膜の(イ)片面のみ、(ロ)両面、 (b)中空糸状膜、管状膜の(イ)内表面のみ、(ロ)
外表面のみ、(ハ)内外両表面 のいずれであってもよい。
The place where the separation layer exists is as follows: (a) (a) only one side of the flat membrane, (b) both sides, (b) only the inner surface of the hollow fiber membrane and the tubular membrane (a), (b)
It may be either the outer surface only or (c) both the inner and outer surfaces.

次に、本発明の複合半透膜の製造方法について説明す
る。
Next, a method for producing the composite semipermeable membrane of the present invention will be described.

(1)まず、セルロースエステルを支持膜上に被覆す
る。これは、以下の(A)−(C)の手順にて実施する
ことができる。(A)まず、セルロースエステルを溶剤
に溶かして溶液とする。セルロースエステルとしては、
酢酸セルロース、プロピオン酸セルロース、酪酸セルロ
ースなどのセルロースの脂肪酸エステルを用いることが
できる。溶剤としては、アセトン、ジメチルスルホキシ
ド、酢酸メチル、セルソルブ類、ニトロメタン+エタノ
ール、塩化メチレン+エタノール、塩化エチレン+エタ
ノール、アセトン+水、およびこれらの混合液などを用
いることができる。
(1) First, a cellulose ester is coated on a support film. This can be performed by the following procedures (A) to (C). (A) First, a cellulose ester is dissolved in a solvent to form a solution. As a cellulose ester,
Cellulose fatty acid esters such as cellulose acetate, cellulose propionate and cellulose butyrate can be used. As the solvent, acetone, dimethyl sulfoxide, methyl acetate, cellosolves, nitromethane + ethanol, methylene chloride + ethanol, ethylene chloride + ethanol, acetone + water, and a mixture thereof can be used.

いずれの溶剤を用いてもよいが、事前に、用いる支持
膜が溶剤に対して安定かどうかを調べておく必要があ
る。セルロースエステルの濃度は、あまり薄いと分離層
の欠陥につながりやすくなり、また、あまり濃いと分離
層が厚くなって透水性能の著しい定価につながりやすく
なるので、0.05−10重量%の範囲が好ましい。
Any solvent may be used, but it is necessary to check beforehand whether the supporting membrane to be used is stable to the solvent. If the concentration of the cellulose ester is too low, the separation layer is liable to cause defects, and if the concentration is too high, the separation layer tends to be thick, which tends to result in a remarkable price of water permeability. Therefore, the concentration of the cellulose ester is preferably 0.05 to 10% by weight.

(B)次に、セルロースエステル溶液を支持膜表面と接
触させ、支持膜表面にセルロースエステル溶液を付着さ
せる。接触方法は特に限定はされない。例えば、平膜で
あれば下記の方法が採用される。
(B) Next, the cellulose ester solution is brought into contact with the surface of the support film, and the cellulose ester solution is adhered to the surface of the support film. The contact method is not particularly limited. For example, in the case of a flat membrane, the following method is adopted.

(a)支持膜をセルロースエステル溶液上に浮かべる。(A) Floating the support membrane on the cellulose ester solution.

(b)支持膜上にセルロースエステル溶液を塗布する。(B) A cellulose ester solution is applied on the support film.

(c)支持膜をセルロースエステル溶液中に沈める。こ
れであれば両面を一度に溶液と接触させることができ
る。
(C) Submerging the support membrane in the cellulose ester solution. In this case, both surfaces can be brought into contact with the solution at once.

一方、中空糸膜であれば下記の方法が採用される。 On the other hand, if it is a hollow fiber membrane, the following method is adopted.

(a)中空糸の片端を注射器に接続し、他端よりセルロ
ースエステル溶液を吸い上げる。あるいは中空糸の片端
をセルロースエステル溶液の入った注射器に接続し、注
射器より中空糸内へ溶液を押し出す。これによれば内表
面が溶液と接触する。
(A) One end of the hollow fiber is connected to a syringe, and the cellulose ester solution is sucked up from the other end. Alternatively, one end of the hollow fiber is connected to a syringe containing a cellulose ester solution, and the solution is extruded from the syringe into the hollow fiber. According to this, the inner surface comes into contact with the solution.

(b)中空糸の外表面にセルロースエステル溶液を塗布
する。これによれば外表面が溶液と接触する。
(B) A cellulose ester solution is applied to the outer surface of the hollow fiber. According to this, the outer surface comes into contact with the solution.

(c)中空糸をセルロースエステル溶液に沈める。これ
によれば内外両表面が一度に溶液と接触する。
(C) Submerge the hollow fiber in the cellulose ester solution. According to this, both the inner and outer surfaces come into contact with the solution at once.

接触時間は特に限定されないが、10秒−10分が適当で
ある。接続後は、必要に応じて余剰のセルロースエステ
ル溶液を、たれ切り等の方法により取り除くことができ
る。
The contact time is not particularly limited, but 10 seconds to 10 minutes is appropriate. After the connection, the excess cellulose ester solution can be removed by a method such as sagging if necessary.

(C)次に、支持膜表面に付着したセルロースエステル
溶液より溶剤を除去する。除去するための方法として
は、(a)風乾、(b)加熱乾燥などがある。
(C) Next, the solvent is removed from the cellulose ester solution attached to the surface of the support film. As a method for removing, there are (a) air drying and (b) heating drying.

(2)次に、エステルの加水分解と水酸基同士の架橋を
同時に行わせる。これは、架橋剤と加水分解剤との混合
液をセルロースエステルに接触させることにより行うこ
とができる。
(2) Next, hydrolysis of the ester and crosslinking of the hydroxyl groups are performed simultaneously. This can be performed by bringing a mixed solution of a crosslinking agent and a hydrolyzing agent into contact with the cellulose ester.

架橋剤としては、1分子中に2個以上のエポキシ環を
有するポリエポキシドが用いられる。例としては、エチ
レングリコールジグリシジルエーテル、ジエチレングリ
コールジグリシジルエーテル、グリセリンポリグリシジ
ルエーテル、トリメチロールプロパンポリグリシジルエ
ーテルなどが挙げられる。
As the crosslinking agent, a polyepoxide having two or more epoxy rings in one molecule is used. Examples include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, glycerin polyglycidyl ether, trimethylolpropane polyglycidyl ether, and the like.

加水分解剤としては、0.01N−5Nのアルカリ水溶液が
用いられる。アルカリとしては、NaOHやKOHを用いるこ
とができる。
As the hydrolyzing agent, a 0.01N-5N alkaline aqueous solution is used. As the alkali, NaOH or KOH can be used.

架橋剤と加水分解剤との混合液とのセルロースエステ
ルとの接触は、0−80℃にて5分−1週間程度行う。接
触方法は、前述の(1)−(B)に記載した、セルロー
スエステル溶液を支持膜表面に接触させるのと同様の方
法で行うことができるが、セルロースエステルの被覆さ
れた支持膜を、架橋剤と加水分解剤との混合液中に浸漬
するのがもっとも簡単な方法である。接触終了後は、膜
を水洗する。加水分解が充分に進んでいるかどうかは、
膜(特に膜表面)の1R分析を行うことにより調べること
ができる(エステルに基づく吸収は1700−1800cm-1にあ
らわれる)。
The contact of the mixture of the crosslinking agent and the hydrolyzing agent with the cellulose ester is performed at 0 to 80 ° C. for about 5 minutes to 1 week. The contact method can be carried out in the same manner as in the above (1)-(B), in which the cellulose ester solution is brought into contact with the surface of the support film, but the support film coated with the cellulose ester is crosslinked. The simplest method is immersion in a mixture of the agent and the hydrolyzing agent. After the contact, the membrane is washed with water. Whether hydrolysis has progressed enough
It can be determined by performing a 1R analysis of the membrane (especially the membrane surface) (ester-based absorptions appear at 1700-1800 cm -1 ).

(実施例) 以下、実施例により、本発明をさらに詳細かつ具体的
に説明する。なお、この中で用いている“PEG6000"“PE
G4000"とは、それぞれ和光純薬(株)の一級試薬ポリエ
チレングリコール6000(平均分子量7500)およびポリエ
チレングリコール4000(平均分子量3000)のことを示
す。
(Examples) Hereinafter, the present invention will be described in more detail and specifically with reference to examples. The "PEG6000" and "PE"
"G4000" means polyethylene glycol 6000 (average molecular weight 7500) and polyethylene glycol 4000 (average molecular weight 3000), respectively, the primary reagents of Wako Pure Chemical Industries, Ltd.

支持膜製造例 ポリスルホン(UCC社製のUdel,P−3500)20重量部、
N,N−ジメチルアセトアミド71重量部、テトラエチレン
グリコール9重量部を用いて製膜用原液を作製し、特開
昭58−156018号の実施例1の方法に準じて、外径1.35m
m、内径0.72mmの中空繊維状限外濾過膜を作製した。
Support membrane production example 20 parts by weight of polysulfone (Udel, P-3500 manufactured by UCC)
A stock solution for film formation was prepared using 71 parts by weight of N, N-dimethylacetamide and 9 parts by weight of tetraethylene glycol, and according to the method of Example 1 of JP-A-58-156018, the outer diameter was 1.35 m.
m, a hollow fiber ultrafiltration membrane having an inner diameter of 0.72 mm was prepared.

次に、この限外濾過膜を含水状態のまま30重量%のグ
リセリン水溶液に60℃で5時間浸漬し、次いで、50℃の
乾燥機中で24時間乾燥させることにより、グリセリンが
内部に目詰めされた中空繊維状乾燥限外濾過膜を得た。
Next, this ultrafiltration membrane was immersed in a 30% by weight aqueous glycerin solution at 60 ° C. for 5 hours while remaining hydrated, and then dried in a dryer at 50 ° C. for 24 hours, whereby glycerin was plugged inside. A dried hollow fiber ultrafiltration membrane was obtained.

得られた中空糸膜は、500ppmのPEG6000水溶液を用い
て、内圧式、25℃、濾過圧1.5kg/cm2、線速1m/secにて
評価したところ、PEG6000阻止率0%、透水率3.1m3/m2
・dayであった。また、電子顕微鏡にて膜の内表面を観
察したところ、100nm以上の孔はみられなかった。
The obtained hollow fiber membrane was evaluated using a 500 ppm aqueous PEG6000 solution at an internal pressure of 25 ° C., a filtration pressure of 1.5 kg / cm 2 and a linear velocity of 1 m / sec. The PEG6000 rejection was 0% and the water permeability was 3.1. m 3 / m 2
・ It was day. When the inner surface of the film was observed with an electron microscope, no pores of 100 nm or more were found.

実施例 酢酸セルロース(和光純薬(株)Lot No.LAE0294)
0.4gをアセトン2gに溶かし、次いで、ジメチルスルホキ
シド18gを加えて酢酸セルロース溶液を調製した。
Example Cellulose acetate (Wako Pure Chemical Industries, Ltd., Lot No. LAE0294)
0.4 g was dissolved in 2 g of acetone, and then 18 g of dimethyl sulfoxide was added to prepare a cellulose acetate solution.

支持膜製造例で得た中空糸膜約30cmの片端を、上記酢
酸セルロース溶液の入った注射器に接続されている注射
針にさしこみ、注射器より上記溶液を押し出し、約30秒
間上記溶液と中空糸内表面とを接触させた。中空糸内部
の余剰の液を抜き出した後、約1日間風乾した。
One end of the hollow fiber membrane about 30 cm obtained in the supporting membrane production example is inserted into a syringe needle connected to a syringe containing the cellulose acetate solution, and the solution is pushed out from the syringe. The surface was brought into contact. After extracting the excess liquid inside the hollow fiber, it was air-dried for about one day.

このようにして得た、支持膜上に酢酸セルロースが被
覆された複合膜を、エチレングリコールジグリシジルエ
ーテル7.5重量%を含む1.2NのNaOH水溶液200ml中に室温
で約1日半浸漬した後、水洗した。
The composite membrane obtained by coating cellulose acetate on the support membrane thus obtained was immersed in 200 ml of a 1.2N aqueous NaOH solution containing 7.5% by weight of ethylene glycol diglycidyl ether at room temperature for about one and a half days, and then washed with water. did.

得られた膜の内表面のIR分析(ATR法)を行ったとこ
ろ、1760cm-1付近の酢酸セルロースのエステルに基づく
吸収は認められず、加水分解は充分に進行していたこと
が確認された。
The inner surface of the obtained film was subjected to IR analysis (ATR method). As a result, absorption based on cellulose acetate ester at around 1760 cm -1 was not observed, and it was confirmed that hydrolysis had sufficiently proceeded. .

得られた架橋セルロース複合膜は、500ppmのPEG4000
水溶液を用いて、内圧式、25℃、濾過圧1.5kg/cm2、線
速1m/secにて評価したところ、PEG4000阻止率65%、透
水率0.65m3/m2・dayであった。
The obtained crosslinked cellulose composite membrane has 500 ppm of PEG4000.
When the aqueous solution was evaluated at an internal pressure of 25 ° C., a filtration pressure of 1.5 kg / cm 2 and a linear velocity of 1 m / sec, the PEG4000 rejection was 65% and the water permeability was 0.65 m 3 / m 2 · day.

(発明の効果) 本発明の架橋セルロース複合半透膜は、化学的、物理
的に安定で、低圧下でも高い透水性能を有する有機物非
吸着性の半透性濾過膜として、中−低分子量有機物の分
離の用途において、従来の工業用膜には見られなかった
効果を発揮することが可能であり、その利益ははかりし
れない。
(Effect of the Invention) The crosslinked cellulose composite semipermeable membrane of the present invention is a chemically and physically stable, non-organic, non-adsorbing semipermeable filtration membrane having high water permeability even under low pressure, and is a medium-low molecular weight organic substance. It is possible to exert an effect which was not seen in the conventional industrial membrane in the use of the separation in the above, and the profit is not measured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のジエポキシドを用いた架橋反応を示す
模式図である。
FIG. 1 is a schematic diagram showing a crosslinking reaction using the diepoxide of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B01D 71/10 D01F 2/28 C08J 9/42 B01D 69/12──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) B01D 71/10 D01F 2/28 C08J 9/42 B01D 69/12

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリエチレン、ポリプロピレン、ポリエス
テル以外の合成高分子より成る微多孔性支持膜上に、架
橋セルロースより成る分離層が被覆されていることを特
徴とする水処理用架橋セルロース複合半透膜。
1. A crosslinked cellulose composite membrane for water treatment, wherein a separation layer made of crosslinked cellulose is coated on a microporous support membrane made of a synthetic polymer other than polyethylene, polypropylene and polyester. .
【請求項2】複合半透膜が中空糸状である請求項1記載
の複合半透膜。
2. The composite semipermeable membrane according to claim 1, wherein the composite semipermeable membrane has a hollow fiber shape.
【請求項3】セルロースエステルを微多孔性支持膜上に
被覆した後、1分子中に2個以上のエポキシ環を有する
ポリエポキシドを含むアルカリ溶液で処理することを特
徴とする水処理用架橋セルロース複合半透膜の製造方
法。
3. A crosslinked cellulose composite for water treatment, comprising coating a cellulose ester on a microporous support membrane and then treating with an alkali solution containing a polyepoxide having two or more epoxy rings in one molecule. Manufacturing method of semipermeable membrane.
【請求項4】支持膜がポリエチレン、ポリプロピレン、
ポリエステル以外の合成高分子より成る微多孔性膜であ
る請求項3記載の複合半透膜の製造方法。
4. The support membrane is made of polyethylene, polypropylene,
The method for producing a composite semipermeable membrane according to claim 3, which is a microporous membrane made of a synthetic polymer other than polyester.
【請求項5】微多孔性支持膜が中空糸状である請求項3
記載の複合半透膜の製造方法。
5. The microporous support membrane in the form of a hollow fiber.
A method for producing the composite semipermeable membrane according to the above.
JP20384089A 1989-08-08 1989-08-08 Crosslinked cellulose composite semipermeable membrane for water treatment and method for producing the same Expired - Fee Related JP2860908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20384089A JP2860908B2 (en) 1989-08-08 1989-08-08 Crosslinked cellulose composite semipermeable membrane for water treatment and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20384089A JP2860908B2 (en) 1989-08-08 1989-08-08 Crosslinked cellulose composite semipermeable membrane for water treatment and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0368431A JPH0368431A (en) 1991-03-25
JP2860908B2 true JP2860908B2 (en) 1999-02-24

Family

ID=16480572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20384089A Expired - Fee Related JP2860908B2 (en) 1989-08-08 1989-08-08 Crosslinked cellulose composite semipermeable membrane for water treatment and method for producing the same

Country Status (1)

Country Link
JP (1) JP2860908B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572435A4 (en) * 2017-01-23 2020-01-08 Panasonic Intellectual Property Management Co., Ltd. Polymer and method for producing polymer film

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164878A (en) * 1984-02-07 1985-08-27 Nec Corp Device for detecting character pitch
JPS60164879A (en) * 1984-02-07 1985-08-27 Nec Corp Character separating device
JP2937710B2 (en) * 1993-09-22 1999-08-23 日本電気株式会社 Print inspection device for inkjet printer
DE4418832C2 (en) * 1994-05-30 1998-01-29 Sartorius Gmbh Use of hydrophilic, porous membranes made of cross-linked cellulose hydrate for the filtration of biotechnologically produced liquid media and beverages
US20040206694A1 (en) * 2003-04-16 2004-10-21 John Charkoudian Epoxide-crosslinked, charged cellulosic membrane
GB0515577D0 (en) * 2005-07-29 2005-09-07 Amersham Biosciences Ab Process for cross-linking cellulose ester membranes
GB0702504D0 (en) * 2007-02-09 2007-03-21 Ge Healthcare Bio Sciences Ab Cross-linked cellulose membranes
DE102017000919A1 (en) * 2017-02-02 2018-08-02 Sartorius Stedim Biotech Gmbh Crosslinked unreinforced cellulose hydrate membrane, process for its preparation and its use
CN112657347B (en) * 2020-12-16 2022-11-29 杭州科百特科技有限公司 Regenerated cellulose ultrafiltration membrane and application and preparation method thereof
CN112657346B (en) * 2020-12-16 2023-06-30 杭州科百特科技有限公司 RC ultrafiltration membrane and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572435A4 (en) * 2017-01-23 2020-01-08 Panasonic Intellectual Property Management Co., Ltd. Polymer and method for producing polymer film
US10851181B2 (en) 2017-01-23 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Polymer and method for producing polymer membrane

Also Published As

Publication number Publication date
JPH0368431A (en) 1991-03-25

Similar Documents

Publication Publication Date Title
JP2860908B2 (en) Crosslinked cellulose composite semipermeable membrane for water treatment and method for producing the same
CN106215717B (en) A kind of preparation method of compound PVDF ultrafiltration membrane
US4983304A (en) Membrane for separation of water-alcohol mixed liquid and process for preparation thereof
JPH08323167A (en) Manufacturing method of chlorine resistant complex membrane having high organic compound removability and product by thesame
EP2659956A1 (en) Composite semipermeable membrane
JP4539341B2 (en) Composite reverse osmosis membrane and method for producing the same
JPS63248409A (en) Improved oxidation resistant film and its production
CN103894067A (en) Method of preparing composite membrane module
KR101240736B1 (en) Polymer compositions, water-treatment membranes and water-treatment modules comprising the same
US4415455A (en) Reverse osmosis membranes based on hydroxyalkyl methacrylate and methacrylic acid copolymers
CN1296124C (en) Method for preparing compound nanometer filtering membrane of chitosan sulfate-high molecule polymer
CN102512997B (en) Hydrophilic polyethersulfone with cardo alloy ultrafiltration membrane and preparation method thereof
US6214382B1 (en) Hydrophilic film and process for producing the same
US5525236A (en) Reverse osmosis purification of water
CN1872400A (en) Method for preparing Nano filtering composite membrane of hollow fiber
JP2000061277A (en) Production of cellulosic crosslinked membrane
JP2002224546A (en) Composite semipermeable membrane for sewage disposal and its manufacturing method
CN101502763A (en) Novel biological contamination-resistant ultrathin compound film and preparation method thereof
US5942120A (en) Composite microporous ultrafiltration membrane, method of making thereof, and separation methods
JPH0790154B2 (en) Method for producing aromatic polysulfone composite semipermeable membrane
JP2000350928A (en) Composite diaphragm, composite diaphragm module and its manufacture
CN113926319A (en) Composite membrane and preparation method and application thereof
KR102042299B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JP2572015B2 (en) Method for producing aromatic polysulfone composite semipermeable membrane
CN111760473A (en) Composite semipermeable membrane, preparation method and application

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees