JP2858488B2 - Light source - Google Patents

Light source

Info

Publication number
JP2858488B2
JP2858488B2 JP3141946A JP14194691A JP2858488B2 JP 2858488 B2 JP2858488 B2 JP 2858488B2 JP 3141946 A JP3141946 A JP 3141946A JP 14194691 A JP14194691 A JP 14194691A JP 2858488 B2 JP2858488 B2 JP 2858488B2
Authority
JP
Japan
Prior art keywords
light
point
substantially parallel
emission
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3141946A
Other languages
Japanese (ja)
Other versions
JPH04366805A (en
Inventor
嘉仁 平野
賢二 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3141946A priority Critical patent/JP2858488B2/en
Publication of JPH04366805A publication Critical patent/JPH04366805A/en
Application granted granted Critical
Publication of JP2858488B2 publication Critical patent/JP2858488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Radio Relay Systems (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は光源に関し、衛星間、
とくに数万km程度はなれた静止衛星間で光通信を行う
場合必要となる捕捉・追尾用のビ−コン光源に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source,
Particularly, the present invention relates to a beacon light source for capturing and tracking, which is required when optical communication is performed between geostationary satellites separated by about several tens of kilometers.

【0002】[0002]

【従来の技術】図7は光通信理論研究会編『光通信理論
とその応用』(森北出版)p341〜p347あるいは
文献 信学技報SAT87−3あるいは文献 SPIE
vol.810、pp215−222、pp239−
244などに示された従来の衛星間光通信に用いる送受
信光学系の概略構成図である。図8は従来の衛星間捕捉
動作を示す概略構成図、図9は従来の捕捉・追尾用光源
の構成図である。図において1は通信用光源、2は見込
み角補正光学系、3は精指向光学系、4は光アンテナ、
5は捕捉・追尾用光源、6は受信機、7は捕捉・追尾用
受信機、8は光学系軸調整装置、9は追尾制御回路、1
0は走査パタ−ン発生回路、11は第1の衛星、12は
第2の衛星、13は半導体レ−ザダイオ−ド、14はコ
リメ−トレンズ、15はアナモルフィック光学系であ
る。
2. Description of the Related Art FIG. 7 is an optical communication theory workshop, edited by Optical Communication Theory and Its Applications, Morikita Publishing, p341-p347 or literature. IEICE Technical Report SAT87-3 or literature SPIE.
vol. 810, pp215-222, pp239-
FIG. 244 is a schematic configuration diagram of a transmission / reception optical system used for conventional inter-satellite optical communication shown in 244 or the like. FIG. 8 is a schematic configuration diagram showing a conventional inter-satellite acquisition operation, and FIG. 9 is a configuration diagram of a conventional acquisition / tracking light source. In the figure, 1 is a communication light source, 2 is a prospective angle correction optical system, 3 is a fine directional optical system, 4 is an optical antenna,
5 is a light source for capturing / tracking, 6 is a receiver, 7 is a receiver for capturing / tracking, 8 is an optical axis adjusting device, 9 is a tracking control circuit, 1
Reference numeral 0 denotes a scanning pattern generation circuit, 11 denotes a first satellite, 12 denotes a second satellite, 13 denotes a semiconductor laser diode, 14 denotes a collimating lens, and 15 denotes an anamorphic optical system.

【0003】次に動作について説明する。通信用光源1
は通常50〜100mW程度の出力を有するGaAs半
導体レ−ザダイオ−ドが用いられ、注入電流の変調によ
り出射光を変調し通信信号を送出する。この通信用光源
1からの出射光はレンズにより平行光線に変換された
後、見込み角補正光学系2により光の往復時間内での対
向する衛星の移動量分の角度変位を与えられ、さらに精
指向光学系3により対向する衛星からの受信ビ−ムの方
向分の角度変位を与えられて、光アンテナ4に入力され
る。光アンテナ4は小型軽量にできる反射型望遠鏡が一
般的である。波長0.8μmの場合20cm口径の光ア
ンテナ4より出射される通信用ビ−ム幅は4μrad
(40000kmの対向衛星のおいて16m)程度とな
る。
Next, the operation will be described. Communication light source 1
In general, a GaAs semiconductor laser diode having an output of about 50 to 100 mW is used, and modulates outgoing light by modulating an injection current to transmit a communication signal. The light emitted from the communication light source 1 is converted into a parallel light beam by a lens, and is then given an angular displacement by the expected angle correction optical system 2 by the moving amount of the opposing satellite within the round trip time of the light. An angular displacement corresponding to the direction of the received beam from the opposing satellite is given by the directional optical system 3 and input to the optical antenna 4. The optical antenna 4 is generally a reflection type telescope which can be reduced in size and weight. When the wavelength is 0.8 μm, the communication beam width emitted from the optical antenna 4 having a diameter of 20 cm is 4 μrad.
(16 m for a 40000 km oncoming satellite).

【0004】これに対し捕捉・追尾用ビ−ムは対向衛星
に捕捉・追尾を行わせるため、広いビ−ム幅が必要であ
る。特に初期捕捉では相手衛星の位置、自衛星の姿勢、
通信装置の衛星本体への取り付け精度、姿勢決定精度な
どから決まり不確定視野角は、±0.2度程度(7mr
ad)であり(40000kmで280km)、捕捉・
追尾用ビ−ム幅はこの程度が要求される。しかしビ−ム
幅を広くとると対向衛星に受信される電力が減少するた
め、捕捉・追尾回線を成立させるためには出力の大きい
捕捉・追尾用光源5が必要とされる(1〜10W)。
On the other hand, a beam for acquisition and tracking requires a wide beam width in order to cause an oncoming satellite to perform acquisition and tracking. Especially in the initial acquisition, the position of the partner satellite, the attitude of the own satellite,
The uncertain viewing angle is determined by the accuracy of mounting the communication device to the satellite body, the accuracy of attitude determination, etc., and the uncertain viewing angle is about ± 0.2 degrees (7 mr
ad) (280 km at 40000 km)
This width is required for the tracking beam width. However, if the beam width is widened, the power received by the oncoming satellite decreases, so that a capturing / tracking light source 5 having a large output is required to establish a capturing / tracking line (1 to 10 W). .

【0005】現在単一活性層を有し、単一横モ−ドで発
振する半導体レ−ザダイオ−ド(LD)の出力は信頼性
を考えると高々100mW程度である。また位相同期L
Dアレ−を用いれば数W程度の出力が得られるが、LD
出力変動などにより、出射方向やパタ−ンが変化すると
いう問題点がある。Nd:YAGレ−ザや、CO2 レ−
ザなどを捕捉・追尾用光源5として用いることも考えら
れるが小型化・信頼性・消費電力・価格などを考慮すれ
ば半導体レ−ザダイオ−ドを用いるのが最も良い。
At present, the output of a semiconductor laser diode (LD) having a single active layer and oscillating in a single lateral mode is at most about 100 mW in consideration of reliability. Also, the phase synchronization L
If a D array is used, an output of about several W can be obtained.
There is a problem that the output direction and the pattern change due to output fluctuation and the like. Nd: YAG laser, CO 2 laser
Although it is conceivable to use a laser or the like as the light source 5 for capturing and tracking, it is best to use a semiconductor laser diode in consideration of miniaturization, reliability, power consumption, price, and the like.

【0006】そこで捕捉・追尾用光源5としては、図9
に示すように通信用光源1と同様に100〜200mW
出力の半導体レ−ザダイオ−ド13を用い、コリメ−ト
レンズ14を多少ディフォ−カスして半導体レ−ザダイ
オ−ド13出射光を回折限界よりすこし広がりを持たせ
てコリメ−トする。半導体レ−ザダイオ−ド13の出射
光の広がり角は活性層の形状を反映して活性層垂直方向
で広く、活性層水平方向で狭いのでコリメ−ト光の強度
分布は楕円形状となる。これをプリズムペアなどを用い
たアナモルフィック光学系15により円形形状に変換す
る。これにより広がり角も活性層垂直方向、活性層水平
方向で等しくなる。この後、見込み角補正光学系2、精
指向光学系3を通過させ、光アンテナ4から出射する。
Therefore, as a light source 5 for capturing and tracking, FIG.
As shown in FIG.
Using the output semiconductor laser diode 13, the collimating lens 14 is slightly defocused to collimate the light emitted from the semiconductor laser diode 13 slightly more than the diffraction limit. The spread angle of the light emitted from the semiconductor laser diode 13 is wide in the vertical direction of the active layer and narrow in the horizontal direction of the active layer, reflecting the shape of the active layer, so that the intensity distribution of the collimated light has an elliptical shape. This is converted into a circular shape by an anamorphic optical system 15 using a prism pair or the like. As a result, the spread angle becomes equal in the vertical direction of the active layer and in the horizontal direction of the active layer. Thereafter, the light passes through the prospective angle correction optical system 2 and the fine directing optical system 3 and exits from the optical antenna 4.

【0007】図8に示したように例えば衛星1から出射
された捕捉・追尾用ビ−ムは走査パタ−ン発生回路10
で制御された光学系軸調整装置8により衛星間の不確定
視野角内を走査される。走査時間は対向衛星の捕捉に要
する時間等から決定され通常1分程度である。対向衛星
から出射された捕捉・追尾ビ−ムは光アンテナ4に入射
し捕捉・追尾用受信機7で受信される。捕捉・追尾用受
信機7は不確定視野角をもつ2次元CCDアレ−と、C
CDアレ−の分解能程度の視野角をもつ4象元検知器が
用いられ、ここで発生した誤差信号をもとに追尾制御回
路9により光学系軸調整装置8および精指向光学系3に
負帰還がかけられ追尾が行われる。一般にCCDアレ−
による捕捉が行われた時点で捕捉・追尾ビ−ムの走査を
おえて、捕捉・追尾を行うことで衛星間の指向誤差角は
通信用ビ−ム幅以内に入る。通信用ビ−ムは光アンテナ
4から入射し受信機6で受信される。受信機6はSi−
APDなどが用いられる。
As shown in FIG. 8, for example, a beam for capturing and tracking emitted from the satellite 1 is a scanning pattern generating circuit 10.
Is scanned within the uncertain viewing angle between the satellites by the optical axis adjusting device 8 controlled by. The scanning time is determined from the time required for capturing the oncoming satellite and the like, and is usually about 1 minute. The capture / tracking beam emitted from the oncoming satellite enters the optical antenna 4 and is received by the capture / tracking receiver 7. The acquisition / tracking receiver 7 includes a two-dimensional CCD array having an uncertain viewing angle,
A four-element detector having a viewing angle of about the resolution of a CD array is used, and a tracking control circuit 9 provides a negative feedback to the optical system axis adjusting device 8 and the fine directing optical system 3 based on the error signal generated here. And tracking is performed. Generally CCD array
When the capturing / tracking beam is scanned at the time when the capturing is performed, the pointing error angle between the satellites falls within the communication beam width by performing the capturing / tracking. The communication beam enters from the optical antenna 4 and is received by the receiver 6. The receiver 6 is Si-
APD or the like is used.

【0008】[0008]

【発明が解決しようとする課題】従来の捕捉・追尾用光
源は以上のように構成されており、出力が限られていた
ので、捕捉・追尾回線を成立させるためには、幅の狭い
ビ−コンビ−ムを広い不確定視野全域にわたり走査する
必要があった。このため捕捉には走査パタ−ンの発生回
路、捕捉用の信号処理回路のシ−ケンスが複雑になると
いう問題点があった。さらに捕捉時間が長くかかってし
まうため、通信回線がはずれた場合に、再び通信回線を
成立させるまでに時間がかかり、安定した衛星間通信を
行えなくなるという問題点があった。
The conventional light source for capturing / tracking is configured as described above, and the output is limited. Therefore, in order to establish a capturing / tracking line, a narrow beam is required. The combi had to be scanned over a wide uncertain field of view. For this reason, there is a problem that the sequence of the scanning pattern generating circuit and the signal processing circuit for capturing becomes complicated in capturing. Further, it takes a long time to acquire, so that when the communication line is disconnected, it takes time to establish the communication line again, and there is a problem that stable inter-satellite communication cannot be performed.

【0009】この発明は上記のような問題点を解消する
ためになされたもので、現状の出力の半導体レ−ザダイ
オ−ドを光源として用いて、衛星間の不確定視野内全域
に渡る広いビ−ム幅を有する捕捉・追尾用の光源を得る
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and uses a semiconductor laser diode of the present output as a light source to provide a wide screen over the entire uncertain field of view between satellites. The aim is to obtain a light source for capturing and tracking with a wide width.

【0010】[0010]

【課題を解決するための手段】この発明に係る照射用ビ
ームを出射する光源は、以下の要素を有することを特徴
とする。 (a)1又は2次元に配列された出射点から光を出射す
る出射点配列部、 (b)上記出射点から出射された出射光をそれぞれ略平
行光のビームに変換するビーム変換手段、 (c)上記ビーム変換手段により変換された上記略平行
光のビームを同一の集光点に集光させ、上記略平行光の
ビームのそれぞれが上記集光により上記集光点に対して
成す角が、上記略平行光のビームの隣り合う2本の光軸
上記集光により上記集光点に対して成す角以上となる
とともに、上記照射用ビームのビーム幅全体での光強度
ばらつきが5.6dB以内になるように集光する方向決
定手段。
According to the present invention, there is provided an irradiation device according to the present invention.
The light source for emitting the beam has the following features. (A) an emission point array that emits light from emission points arranged one- or two-dimensionally; (b) beam conversion means for converting the emission light emitted from the emission points into beams of substantially parallel light, respectively. c) by condensing the beam of the beam transformation the substantially parallel light converted by means in the same focal point, each beam of the substantially parallel light is an angle made with respect to the focusing point by the condenser The angle between two adjacent optical axes of the substantially parallel light beam is equal to or greater than the angle formed by the light condensing with respect to the light converging point.
And the light intensity over the entire beam width of the irradiation beam
Direction determining means for condensing light so that the variation is within 5.6 dB .

【0011】この発明に係る光源は、1次元に配列され
た出射点から光を出射する出射点配列部と、 上記出射点
から出射される出射光をそれぞれ略平行光のビームに変
換するビーム変換手段と、 上記ビーム変換手段により変
換された略平行光のビームを2次元方向に出射する方向
決定手段とを有し、照射用ビームを出射する光源であっ
て、 上記方向決定手段は、上記略平行光のビームの光軸
を含む面にある同一の集光点に上記略平行光のビームを
集光するとともに、上記略平行光のビームの光軸を含む
面に垂直な方向に対し略平行光のビームを出射し、上記
略平行光のビームのそれぞれが上記集光により上記集光
点に対して成す角が、上記略平行光のビームの隣り合う
2本の光軸が上記集光により上記集光点に対して成す角
以上となるとともに、上記照射用ビームのビーム幅全体
での光強度ばらつきが5.6dB以内になるように集光
することを特徴とする。
The light source according to the present invention is one-dimensionally arranged.
Emission point array portion for emitting light from the emission point, and the emission point
Outgoing light emitted from the
Beam converting means, and the beam converting means.
Direction for emitting the converted substantially parallel light beam in a two-dimensional direction
A light source that emits a beam for irradiation.
Te, said direction determining means, the optical axis of the beam of the substantially parallel light
At the same focal point on the surface containing
Condenses and includes the optical axis of the substantially parallel light beam
Emits a beam of light approximately parallel to the direction perpendicular to the plane,
Each of the substantially parallel light beams is condensed by the condensing.
The angle formed with respect to the point is adjacent to the above-mentioned substantially parallel light beam
Angle formed between the two optical axes with respect to the converging point by the converging
And the entire beam width of the irradiation beam
Focus so that the light intensity variation at
It is characterized by doing.

【0012】[0012]

【0013】[0013]

【作用】この発明における光源においては、出射点配列
部は複数個(N個)の出射点を有しており、このよう
に、N個の半導体レ−ザダイオ−ドを用いることで捕捉
・追尾用の光源の出力はN倍となり、回線を成立できる
最大ビ−ム幅は個別半導体レ−ザダイオ−ドを用いた場
合に比べ√N倍にできる。しかしN個の発光点の出力を
そのまま送信した場合、対向衛星ではN個の発光点から
の出力がすべて受信されるため、捕捉・追尾受信機では
N個の点が結像し捕捉・追尾は困難となる。この発明に
係る捕捉・追尾用の光源からの出射光は出射点配列部と
ビーム変換手段と方向決定手段により、個々の出射光が
遠方においてそれぞれ個別の領域を照射し、出射光全体
としては対向する衛星の捕捉に必要とされる不確定視野
内全域を照射するようにしたものである。対向衛星で1
個の発光点からの出力のみが受信されるため、捕捉・追
尾受信機では1個の点のみが結像し捕捉・追尾は容易に
行える。
In the light source according to the present invention, the emission point array section has a plurality of (N) emission points. Thus, the capture and tracking is performed by using the N semiconductor laser diodes. The output of the light source is N times larger, and the maximum beam width that can establish a line can be increased by .DELTA.N times as compared with the case where an individual semiconductor laser diode is used. However, if the outputs of the N light emitting points are transmitted as they are, the oncoming satellite receives all the outputs from the N light emitting points, so the capturing and tracking receiver forms an image of the N points and the capturing and tracking is not performed. It will be difficult. The outgoing light from the light source for capturing and tracking according to the present invention irradiates individual regions in the distance by the outgoing point array section, the beam converting means, and the direction determining means. It illuminates the entire area within the uncertain field of view required for capturing a satellite. 1 on opposite satellite
Since only the outputs from the three light emitting points are received, only one point is imaged by the capture / tracking receiver, and capture / tracking can be easily performed.

【0014】[0014]

【実施例】実施例1. 以下、この発明の一実施例を図について説明する。図1
はこの発明の一実施例の構成図である。図において、1
6−1〜16−N2 は半導体レ−ザダイオ−ド、17−
1〜17−N2 は集光レンズ、18−1〜18−N2
単一モ−ド光ファイバ、19はマイクロエンズアレ−、
20はテレセントリックレンズであるまた、Pは集光
点、31は光軸、32は光軸31を中心として形成され
た光線の境界線である。また、51は出射点配列部、5
はビーム変換手段、5は方向決定手段である。な
お、図中、破線は光線の流れを示す。
[Embodiment 1] An embodiment of the present invention will be described below with reference to the drawings. FIG.
FIG. 1 is a configuration diagram of an embodiment of the present invention. In the figure, 1
6-1~16-N 2 is semiconductor laser - Zadaio - de, 17-
1 to 17-N 2 is a condenser lens, is 18-1 to 18-N 2 singlemode - mode optical fiber, 19 micro Enz array -,
Reference numeral 20 denotes a telecentric lens . In addition, P is a light condensing point, 31 is an optical axis, and 32 is a boundary line of light rays formed around the optical axis 31. Reference numeral 51 denotes an emission point array, 5
2 the beam converting means 3 is the direction determining means. In the drawing, broken lines indicate the flow of light rays.

【0015】次に動作について説明する。N2 個の単一
横モ−ド発振を行う半導体レ−ザダイオ−ド16−1〜
16−N2 の出射光はそれぞれ集光レンズ17−1〜1
7−N2 により単一モ−ド光ファイバ18−1〜18−
2 に入射される。単一モ−ド光ファイバ18−1〜1
8−N2 の出射端は図2に示すようにファイバコア間隔
DでN×Nに整列しモ−ルドされており、また段差のな
いように研磨されている(出射点配列部51)。ファイ
バは外形は精度良くできているのでN×Nのファイバア
レ−は精度良く作製でき、モ−ルドは簡単に行える。フ
ァイバ端からの出射光はファイバ内でのモ−ドフィ−ル
ド径により決まる広がり角θ0 (e-2全幅)を有する。
これらの出射光は、やはり間隔Dで整列し、各ファイバ
出射位置に対応した位置におかれた焦点距離f1のN 2
個のレンズからなるマイクロレンズアレ−19により平
行化する(ビーム変換手段52)。マイクロレンズアレ
−19としては焦点距離0.5mm〜3mm、D=0.
2mm〜1mm程度のものがコ−ニング社などから市販
されている。各々の平行光はN個の平行光の重心位置を
光軸としておかれた焦点距離f2のテレセントリックレ
ンズ20により焦点位置に集光され再び広がっていき、
光アンテナ4から出射され(方向決定手段53)、捕捉
・追尾光として用いられる。
Next, the operation will be described. N 2 pieces of single YOKOMO - semiconductor perform de oscillation Re - Zadaio - de 16-1~
16-N, respectively condenser lens outgoing light of 2 17-1~1
Mode optical fiber 18-1~18- - singlemode by 7-N 2
It is incident on N 2 . Single mode optical fiber 18-1 to 1
8-N 2 exit end is aligned mode to N × N in the fiber core distance D as shown in FIG. 2 - are field, also are polished so no step (emitting point array section 51). Since the outer shape of the fiber is made with high accuracy, an N × N fiber array can be manufactured with high accuracy and the molding can be easily performed. The light emitted from the fiber end has a divergence angle θ 0 (e- 2 full width) determined by the mode field diameter in the fiber.
These emitted lights are also aligned at the interval D, and the N 2 of the focal length f1 located at the position corresponding to each fiber emission position.
The light is collimated by the microlens array 19 composed of a plurality of lenses (beam conversion means 52). The microlens array 19 has a focal length of 0.5 mm to 3 mm and D = 0.
Those having a size of about 2 mm to 1 mm are commercially available from Corning Corporation. Each of the parallel lights is condensed at the focal position by the telecentric lens 20 having a focal length f2 set with the center of gravity of the N parallel lights as the optical axis, and spread again.
The light emitted from the optical antenna 4 (direction determining means 53) is used as trapping / tracking light.

【0016】この時、捕捉・追尾光ビ−ム幅をθT (e
-2全幅)とし光アンテナ4の倍率をMとして、焦点距離
f1、f2が以下の式(1)、式(2)の関係があれ
ば、光アンテナ4出射光のファ−フィ−ルドパタ−ンは
図3のようになり、各々のLD出射光が捕捉・追尾ビ−
ム幅の一部を構成し、捕捉・追尾ビ−ム幅全体での光強
度ばらつきが5.6dB以内になる。
At this time, the capture / tracking light beam width is set to θ T (e
If the focal lengths f1 and f2 satisfy the following formulas (1) and (2), the field pattern of the light emitted from the optical antenna 4 is M: Is as shown in FIG. 3, and each LD emitted light is captured and tracked.
A part of the beam width, and the light intensity variation over the entire capture / tracking beam width is within 5.6 dB.

【0017】 f1=D/(2・tan(θ0 /2)) (1) f2=N・D/(2・tan(θT ・M/2)) (2)[0017] f1 = D / (2 · tan (θ 0/2)) (1) f2 = N · D / (2 · tan (θ T · M / 2)) (2)

【0018】この関係を図1に基づいて説明すると、集
光点Pに対して、境界線3がなす角Aと隣り合う2本
の光軸31がなす角Bを等しくする(A=B)ようにし
たものである。このようにA=Bにすることにより、図
3に示すように、光強度のばらつきが5.6dB以内に
保つことができるようになる。
[0018] be described with reference to the relationship in Figure 1, with respect to the focal point P, the boundary line 3 2 the optical axis 31 of two adjacent to the angle A is equal to angle B (A = B ). By setting A = B in this way, as shown in FIG. 3, it is possible to keep the variation in light intensity within 5.6 dB.

【0019】この時衛星の視野内に入る個々の半導体レ
−ザダイオ−ド16から出射される捕捉・追尾ビ−ムは
1個であるので、追尾時に必要となる誤差信号は1個と
なり、良好な追尾が可能となる。
At this time, since only one capture / tracking beam is emitted from each semiconductor laser diode 16 within the field of view of the satellite, only one error signal is required at the time of tracking. Tracking becomes possible.

【0020】今、一例として、θT を衛星間の不確定視
野角±0.2度(7mrad)、θ0 を10度、Dを2
50μm、Mを10倍、Nを5個、とするとf1=1.
4mm、f2=17.8mm程度となる。個々の半導体
レ−ザダイオ−ド16の出力光パワ−を100mWとす
れば、レ−ザ光の単一モ−ド光ファイバ17への結合効
率−3dB、その他の損失−1dBとしても捕捉・追尾
光出力として約1Wが得られる。さらに出力を大きくす
る場合はNを大きくすれば良い。
As an example, θ T is an uncertain viewing angle between satellites ± 0.2 degrees (7 mrad), θ 0 is 10 degrees, and D is 2
Assuming that 50 μm, M is 10 times, and N is 5, f1 = 1.
4 mm, f2 = 17.8 mm. Assuming that the output light power of each semiconductor laser diode 16 is 100 mW, the coupling efficiency of the laser light to the single mode optical fiber 17 is -3 dB, and the other loss is 1 dB. About 1 W is obtained as an optical output. In order to further increase the output, N may be increased.

【0021】以上のように、この実施例では、横単一モ
−ドで発振する半導体レ−ザダイオ−ドの出射光を所定
のビ−ム幅に変換して送信する捕捉・追尾用光源におい
て、N個の半導体レ−ザダイオ−ドを2次元に配列し
て、上記N個の半導体レ−ザダイオ−ド出射光のそれぞ
れを、均等な間隔をもって2次元的に整列させたN個の
出射光軸をそろえた出射点からの出射光に変換する出射
点配列部と、上記整列させたN個の出射点からの出射光
のそれぞれを、たがいの光軸を平行に保って、2次元的
に整列されたN個の略平行光に変換するビーム変換手段
と、上記N本の略平行光を同一の集光点に集光する方向
決定手段を有し、上記N本の略平行光の各々が上記集光
により上記集光点に対して成す角Aと、上記N本の平行
光の隣り合う2本の光軸が上記集光により上記集光点に
対して成す角Bを等しくなるようにしたことを特長とす
る捕捉・追尾用光源を説明した。
As described above, in this embodiment, a light source for capturing / tracking which converts the light emitted from a semiconductor laser diode oscillating in a horizontal single mode into a predetermined beam width and transmits the converted light is described. , N semiconductor laser diodes are two-dimensionally arranged, and the N semiconductor laser diode emitted lights are two-dimensionally aligned at equal intervals. An emission point array for converting the emission lights from the emission points having the aligned axes, and the emission lights from the aligned N emission points are two-dimensionally maintained while keeping their optical axes parallel. Beam converting means for converting the aligned N substantially parallel lights into light, and direction determining means for condensing the N substantially parallel lights at the same converging point; Is the angle A formed by the light collection with respect to the light collection point, and the two adjacent light beams of the N parallel lights Axis has been described acquisition and tracking light source that features that it has to be equal to angle B which forms with respect to the focusing point by the condenser.

【0022】また、上記N個の半導体レ−ザダイオ−ド
出射光のそれぞれを、均等な間隔をもって2次元的に整
列させたN個の出射光軸をそろえた出射点からの出射光
に変換する出射点配列部として、N本の単一モ−ド光フ
ァイバ18と、上記N個の半導体レ−ザダイオ−ド16
の出射光のそれぞれを上記N本の単一モ−ド光ファイバ
の端面の一方から入力する手段17と、上記N本の光フ
ァイバの端面の他方を均等な間隔をもって2次元的に整
列固定する手段を備え、上記固定手段を施され一体化し
た上記N本の光ファイバの端面の他方を同時に研磨した
ことを特徴とする場合を説明した。
Each of the N semiconductor laser diode emitted lights is converted into an emitted light from an emission point having two emission optical axes aligned two-dimensionally at equal intervals. As the emission point array portion, N single-mode optical fibers 18 and the N semiconductor laser diodes 16 are used.
Means 17 for inputting each of the outgoing light beams from one of the end faces of the N single-mode optical fibers and the other of the end faces of the N optical fibers are two-dimensionally aligned and fixed at equal intervals. A case has been described in which the other end faces of the integrated N optical fibers provided with the fixing means are polished simultaneously.

【0023】実施例2. 図4はこの発明の他の実施例を示す構成図である。図に
おいて21は活性層導波路数がN、それぞれの間隔が
D、それぞれの出射光の活性層垂直方向の広がり角θ0V
(e-2全幅)、活性層水平方向の広がり角θ0H (e-2
全幅)で、各活性層導波路に位相同期がかかっていない
半導体レ−ザアレ−、22は半導体レ−ザアレ−21の
活性層水平方向のみに焦点距離f2の屈折力を有するア
ナモルフィックテレセントリックレンズ、23は半導体
レ−ザアレ−21の活性層垂直方向のみに焦点距離f3
の屈折力を有する円柱レンズである。
Embodiment 2 FIG. FIG. 4 is a block diagram showing another embodiment of the present invention. In the figure, reference numeral 21 denotes the number of active layer waveguides N, each interval is D, and the spread angle θ 0V of each emitted light in the vertical direction of the active layer.
(E- 2 full width), spread angle θ 0H in the horizontal direction of the active layer (e- 2
A semiconductor laser array 22 in which each active layer waveguide is not phase-locked; and 22 is an anamorphic telecentric lens having a refractive power of a focal length f2 only in the horizontal direction of the active layer of the semiconductor laser array 21. , 23 have a focal length f3 only in the direction perpendicular to the active layer of the semiconductor laser array 21.
A cylindrical lens that have a refractive power.

【0024】半導体レ−ザダイオ−ドアレ−21出射光
は、出射面から焦点距離f1だけはなして、各々の活性
層導波路位置に対応して間隔Dで設置されたマイクロレ
ンズアレ−19により、略平行化される(ビーム変換手
段52)。この後、活性層平行方向はアナモルフィック
テレセントリックレンズ22により、活性層垂直方向に
ついては円柱レンズによりそれぞれ集光され、その後光
アンテナ4から出射される(方向法定手段53)。焦点
距離f1、f2、f3が式(3)、式(4)、式(5)
の関係があれば、光アンテナ4出射光のファ−フィ−ル
ドパタ−ンは図5のようになり、各々のLD出射光が捕
捉・追尾ビ−ム幅の一部を構成し、捕捉・追尾ビ−ム幅
全体での光強度ばらつきが5.6dB以内になる。
The light emitted from the semiconductor laser diode array 21 is separated from the light exit surface by a focal distance f1 by a microlens array 19 provided at an interval D corresponding to each active layer waveguide position. It is collimated (beam conversion means 52). Thereafter, the light is condensed by the anamorphic telecentric lens 22 in the direction parallel to the active layer, and by the cylindrical lens in the direction perpendicular to the active layer, and thereafter emitted from the optical antenna 4 (direction determining means 53). The focal lengths f1, f2, and f3 are calculated by the equations (3), (4), and (5).
In this case, the field pattern of the light emitted from the optical antenna 4 is as shown in FIG. 5, and each LD emitted light forms a part of the capture / tracking beam width, and the capture / tracking is performed. The light intensity variation over the entire beam width is within 5.6 dB.

【0025】 f1=D/(2・tan(θ0H/2)) (3) f2=N・D/(2・tan(θT ・M/2)) (4) f3=f1・tan(θ0V/2)/tan(θT ・M/2) (5)F1 = D / (2 · tan (θ 0H / 2)) (3) f2 = ND · (2 · tan (θ T · M / 2)) (4) f3 = f1 · tan (θ 0V / 2) / tan (θ T · M / 2) (5)

【0026】なお、上記実施例ではN個の各活性層導波
路を有する半導体レ−ザアレ−21を出射光源として示
したが、これはN個の半導体レ−ザ16出射光を集光レ
ンズ17を用いて出射端をアレ−状にモ−ルドしたN本
の単一モ−ド光ファイバ18に入射して、このファイバ
アレ−を上記実施例の光源として用いても同様の効果が
得られる。この場合、各々の光ファイバ出射光の広がり
角をθ0 として式(3)、式(5)のθ0H、θ0Vをθ0
とすれば式(3)、式(4)、式(5)からf1、f
2、f3が得られる
In the above embodiment, the semiconductor laser array 21 having N active layer waveguides has been described as an emission light source. The same effect can be obtained by using the fiber array as the light source of the above embodiment by injecting the light into the N single-mode optical fibers 18 whose emission ends are arrayed. . In this case, θ 0H and θ 0V in Equations (3) and (5) are defined as θ 0 , where the divergence angle of each optical fiber output light is θ 0.
From Equations (3), (4), and (5), f1, f
2, f3 is obtained

【0027】以上のように、実施例2においては、半導
体レ−ザダイオ−ドの出射光を所定のビ−ム幅に変換し
て送信する捕捉・追尾用光源において、N個の半導体レ
−ザダイオ−ド出射光のそれぞれを、均等な間隔をもっ
て1次元的に整列させたN個の出射光軸をそろえた出射
光に変換する出射点配列部と、上記整列させたN個の出
射点からの出射光のそれぞれを、たがいの光軸を平行に
保って、1次元的に整列した略平行光に変換するビーム
変換手段手段と、上記N本の1次元的に整列した略平行
光を整列方向に対し同一の集光点に集光する整列方向集
光手段(方向決定手段の一部)と、上記N本の1次元的
に整列した略平行光を整列方向と光軸を含む面に垂直な
方向に対し集光する垂直方向集光手段(方向決定手段の
一部)とを有し、上記N本の1次元的に整列した略平行
光の各々が上記整列方向集光手段により上記集光点に対
して成す角と、上記N本の1次元的に整列した略平行光
の隣り合う2本の光軸が上記整列方向集光手段により上
記集光点に対して成す角を等しくなるようにしたことを
特徴とする捕捉・追尾用光源を説明した。
As described above, according to the second embodiment, in the capturing / tracking light source for converting the light emitted from the semiconductor laser diode into a predetermined beam width and transmitting the converted beam, N semiconductor laser diodes are used. An emission point array for converting each of the outgoing light beams into N outgoing light axes aligned one-dimensionally at equal intervals, and outgoing light beams from the N outgoing light points arranged in a line. Beam converting means for converting each of the outgoing lights into one-dimensionally aligned substantially parallel lights while keeping their optical axes parallel, and the N directionally aligned one-dimensionally aligned substantially parallel lights in an alignment direction And an alignment direction condensing means (part of the direction determining means) for converging light to the same condensing point, and the N one-dimensionally aligned substantially parallel lights perpendicular to a plane including the arrangement direction and the optical axis. Vertical light collecting means (part of the direction determining means) for collecting light in various directions, An angle between each of the N one-dimensionally aligned substantially parallel lights with respect to the converging point by the alignment direction condensing means is adjacent to the N one-dimensionally aligned substantially parallel lights. The light source for capturing / tracking has been described, wherein the angles formed by the two optical axes with respect to the converging point by the converging direction converging means are equal.

【0028】また、上記N個の半導体レ−ザダイオ−ド
出射光のそれぞれを、均等な間隔をもって1次元的に整
列させたN個の出射光軸をそろえた出射光に変換する出
射点配列部として、均等な間隔をもって活性層導波路が
作製されている半導体レ−ザアレ−を用いることを特徴
とする捕捉・追尾用光源を説明した。
An emission point array for converting each of the N semiconductor laser diode emission lights into N emission light axes aligned one-dimensionally at uniform intervals and having aligned emission optical axes. As described above, a light source for trapping and tracking, which uses a semiconductor laser array in which active layer waveguides are formed at equal intervals, has been described.

【0029】さらに、上記N個の半導体レ−ザダイオ−
ド出射光のそれぞれを、均等な間隔をもって1次元的に
整列させたN個の出射光軸をそろえた出射光に変換する
出射点配列部として、N本の単一モ−ド光ファイバと、
上記N個の半導体レ−ザダイオ−ド出射光のそれぞれを
上記N本の単一モ−ド光ファイバの端面の一方から入力
する手段と、上記N本の光ファイバの端面の他方を均等
な間隔をもって1次元的に整列固定する手段と、上記固
定手段を施され一体化した上記N本の光ファイバの端面
の他方を同時に研磨したことを特徴とする捕捉・追尾用
光源を説明した。
Further, the N semiconductor laser diodes
N single-mode optical fibers as an output point array unit that converts each of the output light beams into N output light beams aligned one-dimensionally at equal intervals and having aligned output optical axes;
Means for inputting each of the N semiconductor laser diode output lights from one of the end faces of the N single-mode optical fibers; A light source for capturing and tracking, characterized in that the means for one-dimensionally aligning and fixing the light source and the other of the end faces of the N optical fibers provided with the fixing means and polished at the same time, are simultaneously polished.

【0030】実施例3.図6において、24−1〜24
−Nは、単一モ−ド光ファイバ18−1〜18−Nの出
射端に対し一定間隔で焦点距離f1のレンズを設置して
構成されたファイバコリメ−タであり、GRINレンズ
等の小型レンズを光ファイバに接着などして作製される
(ビーム変換手段52)。半導体レ−ザダイオ−ド16
−1〜16−N出射光は、集光レンズ17−1〜17−
Nにより単一モ−ド光ファイバに入射する。ファイバコ
リメ−タ24−1〜24−Nは集光点Pに対し各ファイ
バコリメ−タ出射光の光軸が同一平面内で集光点Pを通
過するようにおかれ、半径Rの同心円状に、角度MθT
/N間隔で設置される(出射点配列部51)。コリメ−
タレンズ24出射光は、各ファイバコリメ−タ出射光の
光軸が成す面内に垂直な方向のみf3の焦点距離を有す
る円柱レンズ23により集光された後、光アンテナ4か
ら出射される(方向決定手段53)。焦点距離f1、f
3に式(6)、式(7)の関係があれば、光アンテナ4
出射光のファ−フィ−ルドパタ−ンは図5と同様にな
り、各々のLD出射光が捕捉・追尾ビ−ム幅の一部を構
成し、捕捉・追尾ビ−ム幅全体での光強度ばらつきが
5.6dB以内になる。
Embodiment 3 FIG. In FIG.
Numeral -N is a fiber collimator constructed by installing lenses having a focal length f1 at regular intervals with respect to the emission ends of the single-mode optical fibers 18-1 to 18-N, such as a GRIN lens or the like. It is manufactured by bonding a lens to an optical fiber or the like (beam conversion means 52). Semiconductor laser diode 16
-1 to 16-N are emitted from the condenser lenses 17-1 to 17-.
N impinges on a single mode optical fiber. The fiber collimators 24-1 to 24-N are arranged so that the optical axes of the light emitted from the respective fiber collimators pass through the converging point P in the same plane with respect to the converging point P, and have a concentric circular shape with a radius R. And the angle Mθ T
/ N intervals (emission point array unit 51). Collimation
The light exiting from the lens 24 is condensed by the cylindrical lens 23 having a focal length of f3 only in a direction perpendicular to the plane defined by the optical axes of the light emitted from the respective fiber collimators, and then emitted from the optical antenna 4 (direction). Determination means 53). Focal length f1, f
3 has the relationship of Expressions (6) and (7), the optical antenna 4
The field pattern of the emitted light is the same as in FIG. 5, and each LD emitted light forms a part of the width of the capture / tracking beam, and the light intensity over the entire width of the capture / tracking beam. The variation is within 5.6 dB.

【0031】 f1=2・N・λ/(θT ・M・tan(θ0 /2)) (6) f3=f1・tan(θ0 /2)/tan(θT ・M/2) (7)[0031] f1 = 2 · N · λ / (θ T · M · tan (θ 0/2)) (6) f3 = f1 · tan (θ 0/2) / tan (θ T · M / 2) ( 7)

【0032】以上、この実施例では、半導体レ−ザダイ
オ−ドの出射光を所定のビ−ム幅に変換して送信する捕
捉・追尾用光源において、N個の半導体レ−ザダイオ−
ドの出射光のそれぞれを、出射光軸が空間上の任意の一
点を通過し、この任意の一点との距離が一定となるN個
の出射点からの出射光とし、かつ隣り合う出射光軸の角
度が任意の角度で一定である出射光に変換する出射点配
列部と、上記N個の出射点からの出射光を、光軸を保っ
て任意の広がり角に変換する方向決定手段を有し、上記
隣り合う出射光軸が成す任意の角度と、上記任意の広が
り角を等しくなるようにしたことを特徴とした捕捉・追
尾用光源を説明した。
As described above, in this embodiment, in the light source for trapping / tracking which converts the light emitted from the semiconductor laser diode into a predetermined beam width and transmits it, N semiconductor laser diodes are used.
Outgoing light from the N outgoing points where the outgoing optical axis passes through an arbitrary point in space and the distance to this arbitrary point is constant, and the adjacent outgoing optical axes And a direction determining means for converting the light emitted from the N emission points into an arbitrary spread angle while maintaining the optical axis. The light source for capturing and tracking has been described in which an arbitrary angle formed by the adjacent emission optical axes is made equal to the arbitrary spread angle.

【0033】[0033]

【発明の効果】この発明に係る光源によれば、出射点が
配列された多数の光源の出力を合成し、ビ−コンビ−ム
の捕捉に必要とされる不確定視野内全域を照射できるの
で、ビ−コンビ−ムの走査を必要とせず、捕捉の複雑な
シ−ケンスが必要ない。また通信中も常に捕捉を行って
いることができるので、通信回線がはずれることもなく
安定した衛星間通信を行える。
According to the light source according to the present invention, the outputs of a large number of light sources in which the emission points are arranged can be combined to illuminate the entire area within the uncertain field of view required for capturing the beacon beam. It does not require scanning of the beacon beam and does not require a complex sequence of captures. In addition, since communication can be constantly performed during communication, stable inter-satellite communication can be performed without disconnecting the communication line.

【0034】[0034]

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例による捕捉・追尾光源
の構成図。
FIG. 1 is a configuration diagram of a capturing / tracking light source according to a first embodiment of the present invention.

【図2】モ−ルドされた単一モ−ド光ファイバ出射端の
構成図。
FIG. 2 is a configuration diagram of a molded single-mode optical fiber emitting end;

【図3】第1の実施例による捕捉・追尾光のファ−フィ
−ルドパタ−ン図。
FIG. 3 is a field pattern diagram of trapped / tracked light according to the first embodiment.

【図4】この発明の第2の実施例による捕捉・追尾光源
の構成図。
FIG. 4 is a configuration diagram of a capturing / tracking light source according to a second embodiment of the present invention.

【図5】第2の実施例による捕捉・追尾光のファ−フィ
−ルドパタ−ン図。
FIG. 5 is a field pattern diagram of captured / tracked light according to a second embodiment.

【図6】この発明の第2の実施例による捕捉・追尾光源
の構成図。
FIG. 6 is a configuration diagram of a capturing / tracking light source according to a second embodiment of the present invention.

【図7】衛星間光通信に用いる送受光学系の概略構成
図。
FIG. 7 is a schematic configuration diagram of a transmission / reception optical system used for inter-satellite optical communication.

【図8】従来の衛星間捕捉動作を示す概略構成図。FIG. 8 is a schematic configuration diagram showing a conventional inter-satellite acquisition operation.

【図9】従来の捕捉・追尾光源の構成図。FIG. 9 is a configuration diagram of a conventional capturing / tracking light source.

【符号の説明】[Explanation of symbols]

1 通信用光源 2 見込み角補正光学系 3 精指向光学系 4 光アンテナ 5 捕捉・追尾光源 6 受信機 7 捕捉・追尾用受信機 8 光学系軸長生装置 9 追尾制御装置 10 走査パタ−ン発生回路 11 第1の衛星 12 第2の衛星 13 半導体レ−ザダイオ−ド 14 コリメ−トレンズ 15 アナモルフィック光学系 16 半導体レ−ザダイオ−ド 17 集光レンズ 18 単一モ−ド光ファイバ 19 マイクロレンズアレ− 20 テレセントリックレンズ 21 半導体レ−ザアレ− 22 アナモルフィックテレセントリックレンズ 23 円柱レンズ DESCRIPTION OF SYMBOLS 1 Communication light source 2 Prospect angle correction optical system 3 Fine directional optical system 4 Optical antenna 5 Acquisition and tracking light source 6 Receiver 7 Acquisition and tracking receiver 8 Optical system axial length generator 9 Tracking control device 10 Scanning pattern generation circuit Reference Signs List 11 first satellite 12 second satellite 13 semiconductor laser diode 14 collimating lens 15 anamorphic optical system 16 semiconductor laser diode 17 condensing lens 18 single mode optical fiber 19 micro lens array -20 Telecentric lens 21 Semiconductor laser array 22 Anamorphic telecentric lens 23 Cylindrical lens

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04B 10/00 H04B 7/15 Z 10/22 (58)調査した分野(Int.Cl.6,DB名) G02B 27/10 H04B 10/00──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 identification code FI H04B 10/00 H04B 7/15 Z 10/22 (58) Field surveyed (Int.Cl. 6 , DB name) G02B 27/10 H04B 10/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 以下の要素を有し、照射用ビームを出射
する光源 (a)1又は2次元に配列された出射点から光を出射す
る出射点配列部、 (b)上記出射点から出射された出射光をそれぞれ略平
行光のビームに変換するビーム変換手段、 (c)上記ビーム変換手段により変換された上記略平行
光のビームを同一の集光点に集光させ、上記略平行光の
ビームのそれぞれが上記集光により上記集光点に対して
成す角が、上記略平行光のビームの隣り合う2本の光軸
上記集光により上記集光点に対して成す角以上となる
とともに、上記照射用ビームのビーム幅全体での光強度
ばらつきが5.6dB以内になるように集光する方向決
定手段。
1. It has the following elements and emits an irradiation beam.
Light source (a) 1 or exit point sequence unit for emitting light from the emission point arranged in a two-dimensional, (b) beam converting means for converting emitted from the emitting point were the outgoing light beam of each substantially collimated light , (c) is focused the beam of the beam transformation the substantially parallel light converted by means in the same focal point, each beam of the substantially parallel light makes with the focusing point by the condenser The angle is greater than or equal to the angle formed by the converging between two adjacent optical axes of the substantially parallel light beam with respect to the converging point.
And the light intensity over the entire beam width of the irradiation beam
Direction determining means for condensing light so that the variation is within 5.6 dB .
【請求項2】 1次元に配列された出射点から光を出射
する出射点配列部と、 上記出射点から出射される出射光をそれぞれ略平行光の
ビームに変換するビーム変換手段と、 上記ビーム変換手段により変換された略平行光のビーム
を2次元方向に出射する方向決定手段とを有し、照射用
ビームを出射する光源であって、 上記方向決定手段は、上記略平行光のビームの光軸を含
む面にある同一の集光点に上記略平行光のビームを集光
するとともに、上記略平行光のビームの光軸を含む面に
垂直な方向に対し略平行光のビームを出射し、上記略平
行光のビームのそれぞれが上記集光により上記集光点に
対して成す角が、上記略平行光のビームの隣り合う2本
の光軸が上記集光により上記集光点に対して成す角以上
となるとともに、上記照射用ビームのビーム幅全体での
光強度ばらつきが5.6dB以内になるように集光する
ことを特徴とする光源。
2. Light is emitted from emission points arranged one-dimensionally.
Emission point array part, and the emission light emitted from the emission point is substantially parallel light.
Beam converting means for converting into a beam, and a beam of substantially parallel light converted by the beam converting means
Direction determining means for emitting light in a two-dimensional direction;
A light source for emitting a beam, wherein the direction determining means includes an optical axis of the substantially parallel light beam;
Focus the above parallel light beam on the same focal point on the other side
Along with the surface containing the optical axis of the above-mentioned substantially parallel light beam.
A beam of substantially parallel light is emitted in the direction perpendicular to
Each of the beams of row light is focused on the focus point by the focus
The angle between two adjacent beams of nearly parallel light
Is greater than the angle that the optical axis of
And the irradiation beam over the entire beam width.
Focus light so that light intensity variation is within 5.6 dB
A light source characterized in that:
JP3141946A 1991-06-13 1991-06-13 Light source Expired - Fee Related JP2858488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141946A JP2858488B2 (en) 1991-06-13 1991-06-13 Light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141946A JP2858488B2 (en) 1991-06-13 1991-06-13 Light source

Publications (2)

Publication Number Publication Date
JPH04366805A JPH04366805A (en) 1992-12-18
JP2858488B2 true JP2858488B2 (en) 1999-02-17

Family

ID=15303818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141946A Expired - Fee Related JP2858488B2 (en) 1991-06-13 1991-06-13 Light source

Country Status (1)

Country Link
JP (1) JP2858488B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488619A (en) * 1994-10-06 1996-01-30 Trw Inc. Ultracompact Q-switched microlasers and related method
JP4590610B2 (en) * 2004-06-10 2010-12-01 独立行政法人情報通信研究機構 Multi-beam laser communication device
JP2012160588A (en) * 2011-02-01 2012-08-23 Nichia Chem Ind Ltd Optical multiplexing device
CN103399407B (en) * 2013-08-13 2015-04-22 哈尔滨工业大学 Method for shaping round beam into spot beam and annular beam

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265012A (en) * 1985-09-18 1987-03-24 Toshiba Corp Light emitting element
JPS6265013A (en) * 1985-09-18 1987-03-24 Toshiba Corp Light emitting element
JPH02268034A (en) * 1989-04-10 1990-11-01 Mitsubishi Electric Corp System for detecting optical beam tracking error signal

Also Published As

Publication number Publication date
JPH04366805A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
US7483602B2 (en) Planar array optical switch and method
US6301037B1 (en) Laser transmitting system for use in optical space communication systems
RU2212763C2 (en) Open optical communication system
JP4616119B2 (en) Multi-beam generator, multi-beam light source and spatial light transmission device using the same
JP2000019362A (en) Optical coupling device for array type semiconductor laser and solid-state laser device using this array type semiconductor laser
US11916598B2 (en) Parallel optical communication channels using microLEDs
KR20090095660A (en) Beam Combiner and Collimator
JP2004503175A (en) Free space optical signal system
JP2858488B2 (en) Light source
US6396981B1 (en) Optical device module
JP2004128045A (en) Fiber laser device
US5078499A (en) Optical interconnection arrangement
JP2002131587A (en) Laser diode module
JP7092950B2 (en) Injection of radiant beam into optical fiber
EP1199822A2 (en) Telescope for a free-space wireless optical communication system
JP2000147311A (en) Positioning method in optical waveguide coupling device and optical waveguide coupling device realized by the method
JP2006023626A (en) Collimation adjusting mechanism, and optical antenna system and collimation adjusting method using same
US11515941B2 (en) Free space optical communication terminal with dispersive optical component
JPH08146250A (en) Condenser lens and its production
RU2264691C2 (en) Open optical communication system
Li et al. Design and prototype of auto-track long-range free-space optical communication
Czichy et al. Diffractive optics for advanced free space laser communication terminals
CN117631155A (en) All-solid-state horizontal beam steering device based on blazed grating
JPH04116507A (en) Array laser module
JPH04100012A (en) Optical module

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees