JP2850344B2 - Mold manufacturing method - Google Patents

Mold manufacturing method

Info

Publication number
JP2850344B2
JP2850344B2 JP1024918A JP2491889A JP2850344B2 JP 2850344 B2 JP2850344 B2 JP 2850344B2 JP 1024918 A JP1024918 A JP 1024918A JP 2491889 A JP2491889 A JP 2491889A JP 2850344 B2 JP2850344 B2 JP 2850344B2
Authority
JP
Japan
Prior art keywords
expansion
data
mold
tool
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1024918A
Other languages
Japanese (ja)
Other versions
JPH02205975A (en
Inventor
哲造 倉賀野
章 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1024918A priority Critical patent/JP2850344B2/en
Publication of JPH02205975A publication Critical patent/JPH02205975A/en
Application granted granted Critical
Publication of JP2850344B2 publication Critical patent/JP2850344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Numerical Control (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコンピュータ援用の型設計、製造方法に関す
る。
The present invention relates to a computer-aided mold design and manufacturing method.

〔発明の概要〕[Summary of the Invention]

コンピュータ援用により設計した型の形状モデルの3
次元データに対し、3軸独立の伸縮率補正を施すことに
より、型成形に伴って生じる成形品の方向性のある寸法
誤差を修正し得る高精度の型を得るようにした製造方法
である。
3 of the shape model of the mold designed by computer
This is a manufacturing method in which a high-precision mold capable of correcting a directional dimensional error of a molded product caused by molding by performing three-axis independent expansion / contraction correction on dimensional data is obtained.

〔従来の技術〕[Conventional technology]

計算機で3次元データを扱って自由曲面を持った形状
モデルを設計し、製品又は金型をNC工作機械等で自動加
工するためのNCプログラム(工具径路データ)を形状モ
デルから生成するCAD/CAMシステムが実用化されてい
る。
CAD / CAM that uses a computer to design a shape model with a free-form surface using three-dimensional data, and generates an NC program (tool path data) from the shape model to automatically process products or dies with NC machine tools. The system has been put to practical use.

設計した形状モデルに基いてプラスチックモールド金
型又は合金モールド金型をNC加工する場合、モールド素
材及び金型の加熱、冷却による伸縮を考慮する必要があ
る。このためCAD/CAMシステムには、設計した形状モデ
ルの3次元データに対し所定の伸縮率を掛けてモールド
品の寸法誤差を補償する機能が設けられている。
When NC processing is performed on a plastic mold or an alloy mold based on a designed shape model, it is necessary to consider expansion and contraction of the mold material and the mold due to heating and cooling. For this reason, the CAD / CAM system is provided with a function of multiplying three-dimensional data of a designed shape model by a predetermined expansion / contraction ratio to compensate for a dimensional error of a molded product.

モールド素材又は金型の熱による伸縮で生じるモール
ド品の寸法誤差は、一般にはx、y、zの3軸方向に同
じ伸縮率で生じる。従って従来のCAD/CAMシステムで
は、設計した形状モデルに対し、3軸について一律の補
正を行っていた。
The dimensional error of a molded product caused by the expansion and contraction of a mold material or a mold due to heat generally occurs at the same expansion and contraction rate in the three axes of x, y and z. Therefore, in the conventional CAD / CAM system, uniform correction is performed on the designed shape model in three axes.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが伸縮率が3軸の各方向で相違する場合があ
る。例えば第10図のようなz軸方向に偏平でしかも肉厚
が均一でない成形品10をエンジニアリングプラスチック
等でモールド成形する場合、肉厚が薄い部分10aは型内
で先に硬化し、肉厚が厚い部分10bは成形品10が型から
排出された後に徐々に硬化する。このためこのような形
状の成形品10は、冷却に伴う収縮により、主としてz軸
方向に寸法誤差が生じ易い。
However, the expansion and contraction ratio may be different in each of the three axes. For example, when a molded product 10 that is flat in the z-axis direction and is not uniform in thickness as shown in FIG. 10 is molded with engineering plastic or the like, the thin portion 10a is first hardened in the mold, and the thickness is reduced. The thick portion 10b gradually hardens after the molded article 10 is discharged from the mold. For this reason, the molded article 10 having such a shape is likely to have a dimensional error mainly in the z-axis direction due to shrinkage due to cooling.

別の問題として、第11図のように凸型11を用いて凹部
12を放電加工により成形する場合、掘下げ方向をz軸と
すると、加工時に放電ギャップを与えるために凸型11を
x−y方向に0.2mm程の微小振幅で振動させている。従
って出来上がった凹型12の寸法はx−y方向にのみ0.2m
mずつ拡大している。
As another problem, as shown in FIG.
In the case where the mold 12 is formed by electric discharge machining, assuming that the zigzag direction is the digging direction, the convex mold 11 is vibrated in the xy direction with a small amplitude of about 0.2 mm in order to provide a discharge gap during machining. Therefore, the dimension of the finished concave mold 12 is 0.2 m only in the xy directions.
It is expanding by m.

このため点線12aのような正しい寸法の凹型12を加工
するには、点線11aのように凸型11のx−y寸法を予め
0.2mmずつ小さく作っておく必要がある。従ってこの場
合にも設計した凸型11の形状モデルに対し、3軸のうち
のz軸を除いた方向についてのみ、寸法補正しなければ
ならない。
For this reason, in order to process the concave mold 12 having the correct dimensions as indicated by the dotted line 12a, the xy dimensions of the convex mold 11 must be set in advance as indicated by the dotted line 11a.
It needs to be made small by 0.2mm. Therefore, in this case as well, it is necessary to correct the dimension only in the direction excluding the z-axis among the three axes with respect to the designed model of the convex 11.

本発明は上述の問題にかんがみ、各軸独立にモデル形
状の微修正ができるようにすることを目的とする。
The present invention has been made in view of the above-described problem, and has as its object to enable fine correction of a model shape independently for each axis.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の型製造方法は、パラメトリック曲面より成る
多数のパッチS(u、v)の接続で与えられた自由曲面
に対し、直交3軸の伸縮率α、β、γを夫々設定するス
テップと、個々のパッチの各制御点Pijの3軸データの
夫々に対し、1+α、1+β、1+γの補正を施すステ
ップとを具備し、型成形に伴って生じる成形品の方向性
のある寸法誤差について、これを修正した3次元モデル
を得て、この3次元モデルに基いて成形型の数値制御加
工データを生成することを特徴とする。
The mold manufacturing method according to the present invention includes the steps of: setting a three-axis orthogonal expansion / contraction ratio α, β, γ for a free-form surface given by connecting a number of patches S (u, v) formed of parametric surfaces, Performing a correction of 1 + α, 1 + β, and 1 + γ on each of the three-axis data of each control point P ij of each patch, with respect to a directional dimensional error of a molded product caused by the molding. A modified three-dimensional model is obtained, and numerically controlled machining data of a molding die is generated based on the three-dimensional model.

また本発明の別の特徴は、上記自由曲面を切削目標と
する工具の刃先から工具中心までオフセットさせたオフ
セット面F上の3軸データに対し、1+α、1+β、1
+γの補正を施すステップを具備し、型成形に伴って生
じる成形品の方向性のある寸法誤差について、これを修
正した成形型の数値制御加工データを上記オフセット面
上に生成することを特徴とする。
Another feature of the present invention is that the three-dimensional data on the offset plane F offset from the cutting edge of the tool whose cutting target is the free-form surface to the center of the tool is 1 + α, 1 + β,
+ Gamma correction, and generating, on the offset plane, numerically controlled machining data of a molding die in which a directional dimensional error of a molded product caused by molding is corrected. I do.

〔作用〕[Action]

3軸方向に独立に指定した比率で伸縮した型を製造す
ることにより、熱収縮等で生じる成形品の寸法誤差に方
向性があっても、確実な誤差修正ができ、高精度の成形
品が得られる。
By manufacturing a mold that expands and contracts at a specified ratio independently in three axial directions, even if there is directionality in the dimensional error of the molded product due to heat shrinkage, etc., it is possible to correct the error reliably, and a highly accurate molded product can be produced. can get.

〔実施例〕〔Example〕

第2図に実施例のCAD/CAMシステムの全体構成を示
す。第2図において自由曲面生成部1は、CADに相当す
る部分で、目的物の3次元自由曲面を表現する幾何モデ
ルの形状データをオペレータの入力操作に基いて生成
し、ファイルに蓄積する。目的物は機械加工物品又はモ
ールド金型等である。
FIG. 2 shows the overall configuration of the CAD / CAM system of the embodiment. In FIG. 2, a free-form surface generating unit 1 generates shape data of a geometric model representing a three-dimensional free-form surface of an object based on an input operation of an operator in a portion corresponding to CAD, and accumulates the data in a file. The target object is a machined article or a mold.

作成された形状データは、自由曲面切削用工具径路生
成部2において加工データ、即ち切削工具の移動径路を
決定するNCプログラムに変換される。加工データはフロ
ッピーディスクに落とされ、NCミーリングマシン3(NC
フライス盤又はマシニングセンタ)にフロッピーディス
クを装着することにより、自動加工が行われる。
The created shape data is converted into machining data, that is, an NC program for determining a moving path of the cutting tool in the free-form surface cutting tool path generating unit 2. The machining data is dropped on a floppy disk and the NC milling machine 3 (NC
Automatic processing is performed by mounting a floppy disk on a milling machine or a machining center.

自由曲面生成部1及び自由曲面切削用工具径路生成部
2の実体はコンピュータであり、ユーザインターフェイ
スのために、キーボードやディジタイザ等の入力装置4
及びCRT等のディスプレイ装置5が付属している。
The free-form surface generating unit 1 and the free-form surface cutting tool path generating unit 2 are computers, and an input device 4 such as a keyboard or a digitizer for a user interface.
And a display device 5 such as a CRT.

第1図の要部立体図により本発明の手法の原理を示
し、第3図に設計した形状モデルに対する伸縮率の補正
手順を示す。
The principle of the method of the present invention is shown in the three-dimensional view of the main part in FIG. 1, and the procedure for correcting the expansion / contraction ratio for the designed shape model is shown in FIG.

まずステップS1で曲面の1つを選択する。成形品10の
曲面はこの例では第4図に示すような4辺形面素(パッ
チ)の集合体であるベジエ曲面で設計されている。各パ
ッチは、 で表されるパラメータu、v(0〜1)を用いた双3次
パラメトリック曲面であり、16個の制御点ベクトルPij
(i、j=0〜3)の値で定義される。
First, one of the curved surfaces is selected in step S1. In this example, the curved surface of the molded article 10 is designed as a Bezier curved surface which is an aggregate of quadrilateral surface elements (patches) as shown in FIG. Each patch is Is a bicubic parametric surface using parameters u, v (0 to 1) represented by the following equation, and 16 control point vectors P ij
(I, j = 0 to 3).

次にステップS2で伸縮方向x、y、zを選択し、更に
ステップS3で伸縮率α、β、γを入力する。第1図の例
では、伸縮方向はx、y、zの3軸方向で、伸縮率はz
軸値γが例えば0.015のように大で、他のz軸、y軸の
値α、βは夫々0.007、0.008のように比較的小さい値で
ある。なお伸縮方向の選択支として“全方向”を設けて
もよい。
Next, the expansion / contraction directions x, y, and z are selected in step S2, and the expansion / contraction rates α, β, and γ are input in step S3. In the example of FIG. 1, the expansion and contraction directions are three-axis directions of x, y, and z, and the expansion and contraction rate is z.
The axis value γ is large, for example, 0.015, and the other α-axis and α-axis values α, β are relatively small values, such as 0.007 and 0.008, respectively. Note that “all directions” may be provided as a support for the expansion / contraction direction.

次にステップS4にて、個々のパッチS(u、v)を定
義している16個の制御点ベクトルPij(i,j=0〜3)の
3軸成分について伸縮率α、β、γの補正を行う。補正
された制御点ベクトルの値は、 (1+α)Pijx,(1+β)Pijy,(1+γ)Pijz となる。即ち、第1図に示すように元のパッチS(u,
v)に対し、α、β、γで定まる3軸方向の補正δ、 (1+α)Sx(u,v) (1+β)Sy(u,v) (1+γ)Sz(u,v) を行った点線で示す新たなパッチS′(u,v)が得られ
る。この補正したパッチに基く曲面は、ステップS5でパ
ッチ境界線のセグメントモデル等の形式でディスプレイ
に表示される。
Next, in step S4, the expansion and contraction ratios α, β, and γ are set for the three axis components of the 16 control point vectors P ij (i, j = 0 to 3) that define the individual patches S (u, v). Is corrected. The corrected values of the control point vector are (1 + α) P ijx , (1 + β) P ijy , and (1 + γ) P ijz . That is, as shown in FIG. 1, the original patch S (u,
For v), the correction δ in three axial directions determined by α, β, and γ, (1 + α) S x (u, v) (1 + β) S y (u, v) (1 + γ) S z (u, v) A new patch S '(u, v) indicated by the dotted line is obtained. The curved surface based on the corrected patch is displayed on the display in step S5 in the form of a segment model of the patch boundary line or the like.

従ってこの修正されたパッチの集合で表現された形状
モデルの曲面に関し、第2図の自由曲面切削用工具径路
生成部2で凹型用工具径路を形成すれば、x、y、zの
各軸方向に個々の比率α、β、γで伸縮させたモールド
金型を加工することができる。このモールド金型を使用
して成形した成形品の3軸の寸法誤差は極めて小さい。
Therefore, with respect to the curved surface of the shape model represented by the set of modified patches, if the tool path for concave shape is formed by the tool path generating unit 2 for free-form surface cutting in FIG. In this case, a mold that has been expanded and contracted at individual ratios α, β, and γ can be processed. The dimensional error of the three axes of a molded product molded using this mold is extremely small.

次に第5図は別の伸縮率補正手法を示す略線図であ
る。この手法は形状モデルに対し工具形状だけオフセッ
トさせたオフセット曲面について伸縮率補正を行うもの
である。オフセット面は第6図のように形状モデルの表
面SよりNCミーリングマシン3の切削工具であるボール
エンドミルBMの半径r分だけオフセットさせた面であ
り、工具径路はこのオフセット面上において生成され
る。
Next, FIG. 5 is a schematic diagram showing another expansion / contraction rate correction method. This method corrects the expansion / contraction ratio for an offset curved surface obtained by offsetting the shape model by the tool shape. The offset plane is a plane which is offset from the surface S of the shape model by the radius r of the ball end mill BM which is a cutting tool of the NC milling machine 3 as shown in FIG. 6, and the tool path is generated on this offset plane. .

第7図に示すように、パッチS(u,v)上に多数のサ
ンプル点Kiを格子状に設定し、各サンプル点において曲
面の法線方向で長さrのオフセットベクトルFiを求め、
各ベクトルFiの終点Qiで定義される多面体によりオフセ
ット面Fを表現する。
As shown in FIG. 7, the patch S (u, v) a number of sample points K i on set in a grid pattern, determine the offset vector F i of length r in the normal direction of the curved surface at each sample point ,
The offset plane F is represented by a polyhedron defined by an end point Q i of each vector F i .

伸縮率の補正は、各オフセットベクトルFiの3軸成分
に対する1+α、1+β、1+γの乗算によって行われ
る。これにより第5図に示すようにベクトルFiに補正ベ
クトルδ(αxi、βyi、γzi)が加えられ、終点がQi
にシフトする。工具径路は終点Qi′を結んで形成される
三角形又は四角形の要素から成る多面体上に設定され
る。この例においても、3軸の夫々の補正計数α、β、
γを個別に指定することにより、各軸独立に伸縮率補正
を行うことができる。
Correction stretch ratio is, 1 + alpha relative to 3-axis component of the offset vector F i, 1 + β, is performed by multiplication of 1 + gamma. As a result, as shown in FIG. 5, the correction vector δ (αx i , βy i , γz i ) is added to the vector F i , and the end point is Q i ′.
Shift to The tool path is set on a polyhedron composed of triangular or square elements formed by connecting the end points Q i ′. Also in this example, the correction coefficients α, β,
By individually specifying γ, the expansion and contraction ratio can be corrected independently for each axis.

次に第8図は第2図の工具径路生成部2において生成
した工具径路の3軸データに対し伸縮率補正を行う手法
を示す。例えば、第11図に示すような半球形の凸型11を
加工するときには、まず設計した凸型11の3次元モデル
の曲面上に多数のオフセットベクトルFiを立て、その終
点座標によりオフセット面Fを作り、このオフセット面
上に工具径路TPを設定する。工具径路TPは3軸ミーリン
グマシン3の座標データとして生成されるので、このデ
ータ(xi、yi、zi)に対し、α、β、γの伸縮率補正を
行って、修正された工具径路TP′(点線)に沿ってフラ
イス加工を行う。
Next, FIG. 8 shows a method of performing expansion / contraction correction on the three-axis data of the tool path generated by the tool path generator 2 in FIG. For example, when processing a hemispherical convex mold 11 as shown in FIG. 11, a large number of offset vectors Fi are first set on the curved surface of the designed three-dimensional model of the convex mold 11, and the offset plane F is determined by the coordinates of the end point. And set the tool path TP on this offset plane. Since the tool path TP is generated as coordinate data of the three-axis milling machine 3, the data (x i , y i , z i ) are subjected to α, β, γ expansion and contraction correction to obtain a corrected tool. Milling is performed along the path TP '(dotted line).

第8図の例では、z軸方向の伸縮率γは零で、他の2
軸x、yの伸縮率α、βにより補正を行って、幾分横長
の楕円体に変形した目的物を得ている。伸縮率α、βを
負にすることにより、第11図の凸型11aのような縦形楕
円体に加工することもできる。
In the example of FIG. 8, the expansion and contraction ratio γ in the z-axis direction is zero, and the other two
Correction is performed using the expansion and contraction ratios α and β of the axes x and y to obtain the target object which is transformed into a somewhat oblong ellipsoid. By making the expansion and contraction ratios α and β negative, a vertical ellipsoid like a convex 11a in FIG. 11 can be formed.

第9図は工具径路生成の一手法を示す線図で、まず図
(A)のようにオフセットベクトルの終点Qiが成す4辺
形の各辺と、x−z平面と平行な定平面yiとの交点C1
C2……を求める。第9図(B)に示すように、定平面yi
上の点C1、C2……を結んだ線が工具径路であり、各点は
3軸座標値(x1、yi、z1)(x2、yi、z2)……で定まっ
ている。
FIG. 9 is a diagram showing a method of generating a tool path. First, as shown in FIG. 9A, each side of a quadrilateral formed by the end point Q i of the offset vector and a constant plane y parallel to the xz plane. Intersection C 1 with i ,
Ask for C 2 …. As shown in FIG. 9 (B), the constant plane y i
The line connecting the upper points C 1 , C 2 ... Is the tool path, and each point is represented by three-axis coordinate values (x 1 , y i , z 1 ) (x 2 , y i , z 2 ). It is fixed.

第9図(C)のように、yi値(i=1、2……)を固
定してx軸座標をx方向の工具移動に伴って増加させ、
x座標値x1、x2……に対応するz座標値z1、z2……が工
具高さとなるように工具位置を制御する。yiの一つが終
了するごとに、工具を微小幅Δだけステップ移動させ、
これを繰り返すことにより、曲面切削が行われる。
As shown in FIG. 9 (C), the x-axis coordinate is increased with the tool movement in the x direction while the y i value (i = 1, 2,...) Is fixed,
The tool position is controlled so that the z coordinate values z 1 , z 2, ... corresponding to the x coordinate values x 1 , x 2 ,. Each time one of y i is completed, the tool is moved step by minute width Δ,
By repeating this, curved surface cutting is performed.

第8図に示した手法は、第9図の工具径路TPを構成す
る点列C1、C2……のデータに対し伸縮率α、β、γの補
正を施すものである。
The method shown in FIG. 8 is for correcting the expansion / contraction ratios α, β, and γ to the data of the point sequence C 1 , C 2, ... Constituting the tool path TP in FIG.

〔発明の効果〕〔The invention's effect〕

本発明は上述のように、コンピュータ援用により設計
した型の形状モデルの3次元データに対し、3軸独立の
伸縮率補正を施すことを特徴とする。従って本発明によ
ると、成形材料、金型等の熱収縮率又は熱膨張率によ
り、成形品に方向性のある寸法誤差が、成形品の形状や
成形材の特性等に起因して生じるような場合でも、3軸
ごとの伸縮率補正により、誤差を修正し得る高精度の型
を得ることができるようになる。
As described above, the present invention is characterized in that three-dimensional independent expansion / contraction correction is performed on three-dimensional data of a shape model of a model designed with the aid of a computer. Therefore, according to the present invention, due to the heat shrinkage or the coefficient of thermal expansion of the molding material, the mold, etc., a directional dimensional error in the molded product is generated due to the shape of the molded product, the characteristics of the molded material, and the like. Even in this case, a high-precision mold capable of correcting an error can be obtained by correcting the expansion and contraction rate for each of the three axes.

【図面の簡単な説明】[Brief description of the drawings]

第1図は自由曲面を構成するパッチ(画素)に対して3
軸の伸縮率補正を施す手法を示す立体線図、第2図は本
発明が適用されるCAD/CAMシステムのブロック図、第3
図は伸縮率補正のフローチャート、第4図はパッチを表
現するベジエ曲面の制御点を示す立体図、第5図は工具
径路を求めるためのオフセットベクトルに対し伸縮率補
正を施す手法を示す立体線図、第6図はボールエンドミ
ルのオフセットベクトルを示す断面図、第7図はパッチ
に対して形成されるオフセット面を示す立体線図、第8
図は工具径路に対して伸縮率補正を施す手法を示す断面
図、第9図A〜Cは工具径路生成の手順を示す線図、第
10図は成形品の断面形状を示す断面図、第11図は放電加
工を示す断面図である。 なお図面に用いた符号において、 1……自由曲面生成処理部 2……自由曲面切削用工具径路生成部 3……NCミーリングマシン 4……入力装置 5……ディスプレイ装置 10……成形品 11……凸型 12……凹型 S(u,v)……パッチ BM……ホールエンドミル Pij……制御点 F……オフセット面 Fi……オフセットベクトル TP……工具径路 である。
FIG. 1 shows 3 for a patch (pixel) constituting a free-form surface.
FIG. 2 is a block diagram of a CAD / CAM system to which the present invention is applied, and FIG.
FIG. 4 is a flowchart of expansion / contraction correction, FIG. 4 is a three-dimensional diagram showing control points of a Bezier surface representing a patch, and FIG. 5 is a three-dimensional line showing a method of performing expansion / contraction correction on an offset vector for obtaining a tool path. FIG. 6, FIG. 6 is a sectional view showing an offset vector of the ball end mill, FIG. 7 is a three-dimensional diagram showing an offset plane formed on the patch, FIG.
FIG. 9 is a cross-sectional view showing a method for performing expansion / contraction correction on a tool path, FIGS. 9A to 9C are diagrams showing a procedure of tool path generation, and FIGS.
FIG. 10 is a cross-sectional view showing a cross-sectional shape of a molded article, and FIG. 11 is a cross-sectional view showing electric discharge machining. In addition, in the code | symbol used for drawing, 1 ... Free-form surface generation process part 2 ... Tool path generation part for free-form surface cutting 3 ... NC milling machine 4 ... Input device 5 ... Display device 10 ... Molded product 11 ... ... convex 12 ... concave S (u, v) ... patch BM ... hole end mill P ij ... control point F ... offset plane F i ... offset vector TP ... tool path.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】パラメトリック曲面より成る多数のパッチ
の接続で与えられた自由曲面に対し、直交3軸の伸縮率
α、β、γを夫々設定するステップと、 個々のパッチの各制御点の3軸データの夫々に対し、1
+α、1+β、1+γの補正を施すステップとを具備
し、 型成形に伴って生じる成形品の方向性のある寸法誤差に
ついて、これを修正した3次元モデルを得て、この3次
元モデルに基いて成形型の数値制御加工データを生成す
ることを特徴とする型製造方法。
1. A step of setting expansion and contraction ratios α, β, and γ in three orthogonal axes for a free-form surface given by connecting a number of patches composed of parametric surfaces, and a step of setting three control points of each patch. 1 for each axis data
And performing a correction of + α, 1 + β, and 1 + γ to obtain a three-dimensional model in which a directional dimensional error of a molded product caused by mold forming is corrected, and based on the three-dimensional model, A mold manufacturing method characterized by generating numerical control processing data of a molding die.
【請求項2】パラメトリック曲面より成る多数のパッチ
の接続で与えられた自由曲面に対し、直交3軸の伸縮率
α、β、γを夫々設定するステップと、 上記自由曲面を切削目標とする工具の刃先から工具中心
までオフセットさせたオフセット面上の3軸データに対
し、1+α、1+β、1+γの補正を施すステップとを
具備し、 型成形に伴って生じる成形品の方向性のある寸法誤差に
ついて、これを修正した成形型の数値制御加工データを
上記オフセット面上に生成することを特徴とする型製造
方法。
2. A step of setting expansion and contraction ratios α, β, and γ in three orthogonal axes for a free-form surface given by connecting a number of patches composed of parametric surfaces, and a tool having the free-form surface as a cutting target. Correcting 1 + α, 1 + β, 1 + γ to the three-axis data on the offset plane offset from the cutting edge of the tool to the center of the tool. And a method for producing numerically controlled machining data of a molding die in which the modified data is generated on the offset surface.
JP1024918A 1989-02-03 1989-02-03 Mold manufacturing method Expired - Fee Related JP2850344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1024918A JP2850344B2 (en) 1989-02-03 1989-02-03 Mold manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1024918A JP2850344B2 (en) 1989-02-03 1989-02-03 Mold manufacturing method

Publications (2)

Publication Number Publication Date
JPH02205975A JPH02205975A (en) 1990-08-15
JP2850344B2 true JP2850344B2 (en) 1999-01-27

Family

ID=12151533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1024918A Expired - Fee Related JP2850344B2 (en) 1989-02-03 1989-02-03 Mold manufacturing method

Country Status (1)

Country Link
JP (1) JP2850344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328710A (en) * 2001-05-01 2002-11-15 Toshiba Mach Co Ltd Die working system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280999A1 (en) 2009-12-23 2011-11-17 Provo Craft And Novelty, Inc. Foodstuff Crafting Apparatus, Components, Assembly, and Method for Utilizing the Same
JP2012181895A (en) * 2011-03-02 2012-09-20 Bridgestone Corp Resin stamper for imprint and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328710A (en) * 2001-05-01 2002-11-15 Toshiba Mach Co Ltd Die working system

Also Published As

Publication number Publication date
JPH02205975A (en) 1990-08-15

Similar Documents

Publication Publication Date Title
JPH0373882B2 (en)
US6738507B2 (en) Apparatus and method for correlating part design geometry, manufacturing tool geometry, and manufactured part geometry
JP2850344B2 (en) Mold manufacturing method
JP2000235407A (en) Display method, computer readable recording medium recorded with display program and display device
Alexander et al. Layered manufacturing of surfaces with open contours using localized wall thickening
JPH0664486B2 (en) 3D curve creation method
JP3512091B2 (en) Free-form surface creation method and free-form surface creation device
Bradley Rapid prototyping models generated from machine vision data
JP6896144B2 (en) Tool path generation method
JP2001242919A (en) Calculation method for cutter reference surface, computer readable storage medium to store program of cutter reference surface calculation and computer equipment for it
JP4102057B2 (en) 3D product creation method and apparatus, 3D product processing model creation program
JP2822194B2 (en) Method and apparatus for creating a two-dimensional projection diagram of a three-dimensional shape model using a computer
JPH09270026A (en) Device and method for generating free curved surface
JP2767865B2 (en) Automatic blur surface data creation device
JP2696914B2 (en) Mold making method
Gupta et al. A Numerical Investigation to Compare Point Cloud and STL-Based Toolpath Strategies for 5-Axis Incremental Sheet Forming
JP2918192B2 (en) Processing data creation method
JP2830026B2 (en) Free-form surface machining data creation method
JP2792764B2 (en) Numerical control data editing device
JP2801384B2 (en) High accuracy method for machining offset surface
JP3757064B2 (en) Draft generation method
JP2007286858A (en) Preparation device and preparing method for surface model
JP2775768B2 (en) How to create offset surface data
JP4067083B2 (en) Three-dimensional shape processing apparatus, draft generation method, program, and storage medium
JPH01304585A (en) Model manufacturing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees