JP2847983B2 - Method for producing positive electrode active material for thermal battery and thermal battery using the same - Google Patents

Method for producing positive electrode active material for thermal battery and thermal battery using the same

Info

Publication number
JP2847983B2
JP2847983B2 JP3041552A JP4155291A JP2847983B2 JP 2847983 B2 JP2847983 B2 JP 2847983B2 JP 3041552 A JP3041552 A JP 3041552A JP 4155291 A JP4155291 A JP 4155291A JP 2847983 B2 JP2847983 B2 JP 2847983B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
thermal battery
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3041552A
Other languages
Japanese (ja)
Other versions
JPH04280071A (en
Inventor
彰規 粟野
博資 山崎
和典 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3041552A priority Critical patent/JP2847983B2/en
Publication of JPH04280071A publication Critical patent/JPH04280071A/en
Application granted granted Critical
Publication of JP2847983B2 publication Critical patent/JP2847983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱電池用正極活物質の製
造法およびそれを用いた熱電池に関し、特にリチウム/
二硫化鉄系熱電池の正極活物質を改良した熱電池用正極
活物質の製造法およびそれを用いた熱電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material for a thermal battery and a thermal battery using the same.
The present invention relates to a method for producing a positive electrode active material for a thermal battery in which the positive electrode active material of an iron disulfide-based thermal battery is improved, and a thermal battery using the same.

【0002】[0002]

【従来の技術】熱電池は、常温では不活性であるが、高
温に加熱すると活性になり、外部へ電力を供給しうるよ
うになる電池で、貯蔵型電池の一種である。従って、5
〜10年あるいはそれ以上の貯蔵後においても製造直後
となんら電池特性が変わらないので緊急用電源に利用さ
れている。本電池は、高温で作動させるために電極反応
が進みやすく分極も少ないので高率放電特性にすぐれ、
さらに、使用希望時には起動信号を入れると瞬時に電力
を取り出せるなどの特長を有する。しかし近年では、益
々高出力化が望まれており、特に高電位を必要とする場
合が多い。一方リチウムを負極とする二硫化鉄系熱電池
における素電池の開路電圧は、約2.2〜2.3Vであ
る。また放電時の作動電圧は、放電が進むにつれて正極
反応の場合は、集電部から離れた正極層の深部で起こる
ようになり電気抵抗が増加するため平均作動電圧を1.
6V〜1.8Vとして設計しなければならない。そのた
め、高電圧出力が必要になる場合、素電池の積層枚数が
増えて電池の体積や重量が増加してしまい、電池の小
形,軽量化が難しくなるという短所を有していた。
2. Description of the Related Art A thermal battery is inactive at room temperature, but becomes active when heated to a high temperature, and can supply electric power to the outside, and is a kind of storage battery. Therefore, 5
Even after storage for up to 10 years or more, it is used as an emergency power supply because the battery characteristics do not change at all after production. Since this battery is operated at high temperature, the electrode reaction is easy to proceed and there is little polarization, so it has excellent high rate discharge characteristics,
Another feature is that power can be taken out instantly when a start signal is input when use is desired. However, in recent years, higher output has been increasingly demanded, and in particular, high potential is often required. On the other hand, the open circuit voltage of the unit cell in the iron disulfide thermal battery using lithium as a negative electrode is about 2.2 to 2.3 V. The operating voltage at the time of discharge, in the case of a positive electrode reaction as the discharge proceeds, occurs at a deep portion of the positive electrode layer away from the current collector and increases the electric resistance.
It must be designed between 6V and 1.8V. For this reason, when high voltage output is required, the number of unit cells stacked increases, and the volume and weight of the battery increase, making it difficult to reduce the size and weight of the battery.

【0003】この課題を解決するために従来から用いら
れてきた技術は、二硫化鉄を正極活物質とする正極合剤
中に、良導電性物質を添加する方法が検討されており、
電導材としてステンレス粉末または黒鉛粉末を、正極合
剤中に添加することが検討された。
As a technique conventionally used to solve this problem, a method of adding a highly conductive substance to a positive electrode mixture containing iron disulfide as a positive electrode active material has been studied.
It has been studied to add a stainless powder or a graphite powder as a conductive material into the positive electrode mixture.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の二つの
手法とも次のような問題点があり実用的ではなかった。
すなわち上記前者の場合、当初はステンレス薄板が正極
集電板にも用いられていることから正極活物質FeS2
と反応しにくい材料と予想して使用した。しかし、その
結果正極合剤中の電子伝導性は向上するが、粉末のステ
ンレスを使用するため反応性が高く二硫化鉄とステンレ
ス粉末中の鉄が次式の反応 FeS2+Fe ⇒ 2FeS により二硫化鉄が分解反応を起こしやすいため、かえっ
て放電容量を低下させるという致命的な欠点があった。
また、上記後者の場合には、黒鉛粉末がかさ高く、正極
層が厚くなり素電池の体積が増加し、ひいては電池の大
形化を招くという問題を生じた。
However, the above two methods are not practical due to the following problems.
That is, in the case of the former, since the stainless steel sheet was also used initially as the positive electrode current collector, the positive electrode active material FeS 2 was used.
It was expected to be a material that did not easily react with and used. However, as a result, although the electron conductivity in the positive electrode mixture is improved, the reactivity is high due to the use of powdered stainless steel, and iron disulfide and iron in the stainless steel powder are reacted by the following formula: FeS 2 + Fe ⇒ 2FeS Iron has a fatal drawback that the discharge capacity is rather reduced since the decomposition reaction is easily caused by iron.
Further, in the latter case, there is a problem that the graphite powder is bulky, the positive electrode layer is thickened, the volume of the unit cell is increased, and the battery is increased in size.

【0005】本発明は、このような従来の課題を解消
し、放電時の正極層内の内部抵抗の上昇を低減させ、高
い作動電圧を供給し、小形で軽量な熱電池を提供できる
熱電池用正極活物質の製造法およびそれを用いた熱電池
を提供することを目的とする。
The present invention solves such a conventional problem, reduces the rise in internal resistance in the positive electrode layer during discharge, supplies a high operating voltage, and provides a small and lightweight thermal battery. It is an object of the present invention to provide a method for producing a positive electrode active material for use and a thermal battery using the same.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
本発明の熱電池用正極活物質の製造法およびそれを用い
た熱電池は、出発物質として鉄粉もしくは少なくとも表
面が鉄酸化物または水酸化鉄である鉄粉と、金属バナジ
ウム粉末と硫黄とを用いてこれら三者を混合する工程
と、その混合物を350℃〜500℃の温度で加熱合成
する工程と、合成物を粉砕する工程を経て正極活物質と
する製造法であって、得られる正極活物質中のバナジウ
ム含有比を5〜20重量%とするものである。そして、
上記のようにして合成された正極活物質に電解質および
バインダーを混合して正極合剤とし、負極のリチウムも
しくはリチウム合金と、電解質を保持させたバインダー
の粉末を主体とする電解質層とを組み合わせて素電池を
成型して、これと発熱剤とを組み合わせることでリチウ
ム/二硫化鉄系熱電池を構成するものである。
Means for Solving the Problems To solve this problem, a method for producing a positive electrode active material for a thermal battery according to the present invention and a thermal battery using the same are characterized in that iron powder or iron oxide or water having at least a surface is used as a starting material. Iron powder, which is iron oxide, a step of mixing the three using metal vanadium powder and sulfur, a step of heating and synthesizing the mixture at a temperature of 350 ° C to 500 ° C, and a step of pulverizing the compound. A method for producing a positive electrode active material through a positive electrode active material, wherein the vanadium content ratio in the obtained positive electrode active material is 5 to 20% by weight. And
The positive electrode active material synthesized as described above is mixed with an electrolyte and a binder to form a positive electrode mixture, and the lithium or lithium alloy of the negative electrode is combined with an electrolyte layer mainly containing a binder powder holding the electrolyte. A unit cell is formed, and a lithium / iron disulfide-based heat cell is formed by combining this with a heating agent.

【0007】[0007]

【作用】この構成により本発明の熱電池用正極活物質お
よびそれを用いた熱電池は、鉄が硫化物化する際に同時
にバナジウムも硫化物化するために、二硫化鉄の結晶格
子内にバナジウムが組み込まれた二硫化鉄と二硫化バナ
ジウムの複合化合物ができる。この二硫化バナジウムは
半導体物質であり、電池が作動する温度領域での電子伝
導度は著しく増加する。そのため正極合剤中の内部抵抗
が低下し、その結果素電池の作動電圧を高くすることと
なる。
According to this structure, in the positive electrode active material for a thermal battery of the present invention and the thermal battery using the same, vanadium is sulfided at the same time as iron is sulfided, so that vanadium is contained in the crystal lattice of iron disulfide. A complex compound of incorporated iron disulfide and vanadium disulfide is formed. This vanadium disulfide is a semiconductor material, and the electron conductivity in the temperature range where the battery operates is significantly increased. For this reason, the internal resistance in the positive electrode mixture decreases, and as a result, the operating voltage of the unit cell increases.

【0008】[0008]

【実施例】以下本発明の一実施例の熱電池用正極活物質
の製造法およびそれを用いた熱電池を図面を用いて説明
する。図1において、出発物質としては、鉄粉、もしく
は少なくとも表面が鉄酸化物または水酸化鉄である鉄粉
とバナジウム粉および硫黄を用い、鉄粉およびバナジウ
ム粉に関しては、350mesh以下の粒径の粉末を用い
た。原料の混合比は、合成する正極活物質中のバナジウ
ム含有量が所定の重量%になり、かつ鉄もバナジウムも
二硫化物となるように設定した。例えば、バナジウムを
10重量%含有する正極活物質を製造する場合には、鉄
粉を36.6重量%、金属バナジウムを10重量%、そ
して硫黄を53.4重量%とする混合比を設定する。こ
の時の硫黄の量は鉄とバナジウムが、二硫化鉄となるた
めに必要な量としている。本実施例では、一回の混合重
量を500gとし、それぞれ秤取された原料を磁器製の
ボールミル混合機で1時間混合した。その後、混合物を
磁器製のるつぼに入れて蓋をし、さらに蓋付きの鉄製の
容器に入れて電気炉により、450℃で3時間加熱合成
を行なった。加熱合成としては、270℃から690℃
まで可能ではあるが、350℃未満では硫化反応の進行
が遅く、500℃を超える温度では生成した二硫化鉄が
分解し始めるので工業的には350℃〜500℃の範囲
が好ましい。合成物は冷却した後、磁器製の乳鉢に入れ
て粉砕し200mesh以下の粒度とした。また今回の実施
例では前記の加熱合成工程と粉砕工程を3回繰り返して
行ない、最終の合成物を正極活物質とした。1回の加熱
合成でも硫化物化は可能であるが、より高品位な硫化
物、すなわちより二硫化物化させるためには、複数回の
加熱合成工程と粉砕工程を繰り返すことが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for producing a positive electrode active material for a thermal battery according to one embodiment of the present invention and a thermal battery using the same will be described with reference to the drawings. In FIG. 1, iron powder or iron powder whose surface is at least iron oxide or iron hydroxide, vanadium powder, and sulfur are used as starting materials. For iron powder and vanadium powder, powder having a particle size of 350 mesh or less is used. Was used. The mixing ratio of the raw materials was set such that the content of vanadium in the cathode active material to be synthesized was a predetermined weight%, and both iron and vanadium were disulfides. For example, when producing a positive electrode active material containing 10% by weight of vanadium, a mixing ratio of 36.6% by weight of iron powder, 10% by weight of metal vanadium, and 53.4% by weight of sulfur is set. . The amount of sulfur at this time is the amount necessary for iron and vanadium to become iron disulfide. In this example, the weight of each mixture was 500 g, and the weighed raw materials were mixed for 1 hour by a porcelain ball mill mixer. Thereafter, the mixture was placed in a porcelain crucible and capped, and further placed in an iron container with a lid, and heat-synthesized at 450 ° C. for 3 hours in an electric furnace. 270 ° C to 690 ° C for heat synthesis
Although it is possible up to 350 ° C., the progress of the sulfurization reaction is slow at a temperature lower than 350 ° C., and at a temperature higher than 500 ° C., the produced iron disulfide starts to decompose. After cooling, the composite was placed in a porcelain mortar and ground to a particle size of 200 mesh or less. Further, in this example, the above-mentioned heating synthesis step and pulverization step were repeated three times, and the final synthesized product was used as the positive electrode active material. Sulfidation can be performed by one heat synthesis, but it is preferable to repeat the heat synthesis step and the pulverization step a plurality of times in order to make higher-quality sulfide, that is, more disulfide.

【0009】また、上記の実施例では原料の1つに鉄粉
を用いているが、特開昭58−115031号公報に開
始されている手法によって作られた、少なくとも表面が
水酸化鉄である鉄粉を用いても同様の効果のある正極活
物質が得られ、且つ鉄の硫化も促進されて高品位なもの
が得られる。
Although iron powder is used as one of the raw materials in the above embodiment, at least the surface is made of iron hydroxide produced by a method started in Japanese Patent Application Laid-Open No. 58-115031. Even if iron powder is used, a positive electrode active material having the same effect can be obtained, and sulfuration of iron is promoted, so that a high-quality one can be obtained.

【0010】図2Aは、本実施例のバナジウム含有率1
0重量%の正極活物質のX線回折パターンを示してお
り、図2Bは従来の正極活物質のX線回折パターンを示
している。図2A中△印で示すVS2のものと特定でき
るピークと、FeS2の回折ピーク●印が存在してお
り、両者の結晶構造がそれぞれ単独に、また混ざり合っ
て存在している。以上のような、本実施例により合成さ
れた正極活物質を用いて図3に示すような断面の素電池
を構成し、さらに図4のような積層型熱電池を試作し
た。図3の素電池4は、本実施例による正極活物質と、
LiCl−KCl溶融塩電解質と電解質を保持するため
のSiO2バインダーとの混合物を主体とする正極層1
と、負極活物質のリチウムを鉄粉によって固定化した負
極層2、およびLiCl−KCl溶融塩をMgOバイン
ダーに保持させた粉体の成型層を主体とする電解質層3
の一体成型体として構成されている。このように構成さ
れた素電池4を用いて、積層型熱電池を試作した。図4
において、4は図3の素電池で、必要数を直列積層構成
することで容易に所望の電圧が得られ、塩素酸カリウム
と鉄粉との均一混合物を主体とする発熱剤5と交互に積
層する。8は点火器でそのリード線は一対の点火器用端
子9に接続され、この端子よりパルス電流を通電すると
火炎を発してヒートパッド10を燃焼し、その火炎は、
導火帯11を燃焼して伝播される。12,13は正,負
極出力端子で、積層スタックの最上部と最下部から取り
出した内部リード線14,15と接続する。16は断熱
材、17は電池蓋、18は電池ケースでいずれもステン
レス鋼から構成され、それらの嵌合部を溶接密封する。
FIG. 2A shows a vanadium content of 1 in this embodiment.
FIG. 2B shows an X-ray diffraction pattern of 0% by weight of the positive electrode active material, and FIG. 2B shows an X-ray diffraction pattern of the conventional positive electrode active material. In FIG. 2A, a peak that can be identified as that of VS 2 indicated by a mark and a diffraction peak of FeS 2 that are indicated by a mark ● are present, and the crystal structures of both are present alone or in combination. A unit cell having a cross section as shown in FIG. 3 was constructed using the positive electrode active material synthesized according to the present example as described above, and a stacked thermal battery as shown in FIG. 4 was prototyped. The unit cell 4 in FIG. 3 includes a positive electrode active material according to the present embodiment,
Positive electrode layer 1 mainly composed of a mixture of a LiCl-KCl molten salt electrolyte and a SiO 2 binder for holding the electrolyte
And a negative electrode layer 2 in which lithium as a negative electrode active material is fixed by iron powder, and an electrolyte layer 3 mainly composed of a powder molding layer in which a LiCl—KCl molten salt is held by an MgO binder.
Are formed as an integral molded body. Using the unit cell 4 configured as described above, a laminated thermal battery was prototyped. FIG.
In the figure, reference numeral 4 denotes a unit cell shown in FIG. 3 in which a required voltage can be easily obtained by forming a required number of batteries in series and alternately laminated with a heating agent 5 mainly composed of a uniform mixture of potassium chlorate and iron powder. I do. Reference numeral 8 denotes an igniter whose lead wire is connected to a pair of igniter terminals 9. When a pulse current is supplied from this terminal, a flame is emitted and the heat pad 10 is burned.
It is propagated by burning the squib 11. Reference numerals 12 and 13 denote positive and negative output terminals, which are connected to internal lead wires 14 and 15 taken out from the uppermost portion and the lowermost portion of the stack. Reference numeral 16 denotes a heat insulating material, reference numeral 17 denotes a battery cover, and reference numeral 18 denotes a battery case, both of which are made of stainless steel, and their fitting portions are welded and sealed.

【0011】以上のように構成した積層型熱電池により
正極活物質の評価を行なった。図5は、本実施例の正極
活物質中のバナジウム含有量を変化させて、それぞれ積
層型熱電池を試作し、電流密度500mA/cm2の定電流
放電を行なったときの正極活物質の利用率を求めた結果
である。正極活物質のバナジウム含有率は利用率に影響
を与えており、特にバナジウム含有率が5〜20重量%
の範囲では、利用率が45%以上となり、電池の小形,
軽量化の点から工業的価値が大きい領域といえる。次に
本実施例の効果を比較例と比べた結果を述べる。図6は
素電池を直径43mm、電池の外径55mm、電池の厚さ3
8mmの形状における電流密度500mA/cm2の定電流放
電試験結果を示した図である。また、ここでセル抵抗を
調べるため、放電開始から20秒間隔でオープン電圧も
同時に計測し、オープン電圧と負荷時の電圧差からセル
1枚当りの抵抗を読み取る。その読み取った結果を、図
7に示した。なお素電池の直列数は15である。図6の
Aは、本実施例の電池の放電カーブを示し、Bは従来例
の電池の放電カーブを示す。放電カーブBは、作動直後
から1セル当りの作動電圧が低く2.0Vに満たないも
ので終止電圧24Vまでの持続時間も短いという結果で
あった。放電カーブAは、平均作動電圧が1セル当りで
2.1Vあり、放電カーブBと電圧レベルを比較すると
約1セル分高いことになる。また、このことより終止電
圧24Vまでの持続時間も本実施例では従来例と比べて
1.3倍と放電特性が改良される。図7のAは本実施例
の電池のセル抵抗、Bは従来例の電池のセル抵抗を示
す。図7に示す結果より、放電中のセル抵抗は、本実施
例の方が従来例よりも約13%小さい。このセル抵抗の
違いは、正極活物質の違いによるもので本実施例の正極
活物質に含まれる二硫化バナジウムの電子伝導度が向上
したためと考えられる。以上の結果より、放電特性が改
良される。
[0011] The positive electrode active material was evaluated using the laminated thermal battery configured as described above. FIG. 5 shows the use of the positive electrode active material when a constant-current discharge of a current density of 500 mA / cm 2 was carried out by experimentally producing a laminated thermal battery by changing the vanadium content in the positive electrode active material of the present example. This is the result of calculating the rate. The vanadium content of the positive electrode active material has an effect on the utilization rate, and particularly the vanadium content is 5 to 20% by weight.
In the range, the utilization rate is 45% or more,
It can be said that this is an area of great industrial value in terms of weight reduction. Next, the result of comparing the effect of the present embodiment with the comparative example will be described. FIG. 6 shows a cell having a diameter of 43 mm, a battery outer diameter of 55 mm, and a battery thickness of 3 mm.
FIG. 8 is a diagram showing the results of a constant current discharge test at a current density of 500 mA / cm 2 in a shape of 8 mm. In order to check the cell resistance, the open voltage is simultaneously measured at intervals of 20 seconds from the start of discharge, and the resistance per cell is read from the difference between the open voltage and the voltage at the time of load. The result of the reading is shown in FIG. The number of unit cells in series is 15. FIG. 6A shows the discharge curve of the battery of this embodiment, and FIG. 6B shows the discharge curve of the conventional battery. The discharge curve B was such that the operating voltage per cell was low and less than 2.0 V immediately after the operation, and the duration to the final voltage 24 V was short. The discharge curve A has an average operating voltage of 2.1 V per cell, and is higher by about one cell when comparing the voltage level with the discharge curve B. Further, from this, the discharge time is improved to 1.3 times in the present embodiment as compared with the conventional example in the duration up to the final voltage of 24 V. FIG. 7A shows the cell resistance of the battery of this embodiment, and B shows the cell resistance of the conventional battery. From the results shown in FIG. 7, the cell resistance during discharge is about 13% smaller in the present embodiment than in the conventional example. This difference in the cell resistance is attributed to the difference in the positive electrode active material, and is considered to be due to the improvement in the electron conductivity of vanadium disulfide contained in the positive electrode active material of this example. From the above results, the discharge characteristics are improved.

【0012】[0012]

【発明の効果】本発明によれば、以上の実施例の説明か
ら明らかなように、本発明の熱電池用正極活物質の製造
法およびそれを用いた熱電池によれば、正極活物質とし
て放電時の正極層内の内部抵抗の上昇の少ない二硫化鉄
と二硫化バナジウムの複合化合物を容易に作れ、これを
用いた熱電池は平均作動電圧レベルが向上し、正極活物
質の利用率を改善できる。従って小形で軽量な高性能熱
電池を提供することができるという効果が得られる。
According to the present invention, as is apparent from the above description of the examples, according to the method for producing a positive electrode active material for a thermal battery of the present invention and the thermal battery using the same, as the positive electrode active material, A composite compound of iron disulfide and vanadium disulfide with a small increase in internal resistance in the positive electrode layer during discharge can be easily made, and a thermal battery using this can improve the average operating voltage level and improve the utilization rate of the positive electrode active material. Can be improved. Therefore, the effect that a small and lightweight high-performance thermal battery can be provided is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の熱電池用正極活物質の製造
法およびそれを用いた熱電池における熱電池用正極活物
質の製造工程図
FIG. 1 is a diagram showing a method for producing a positive electrode active material for a thermal battery according to one embodiment of the present invention and a process for producing the positive electrode active material for a thermal battery in a thermal battery using the same.

【図2】同正極活物質のX線回折パターン図FIG. 2 is an X-ray diffraction pattern diagram of the positive electrode active material.

【図3】同素電池の構成を示す断面図FIG. 3 is a cross-sectional view illustrating a configuration of a unit cell.

【図4】図3の素電池を用いて構成された積層型熱電池
の縦断面図
FIG. 4 is a longitudinal sectional view of a stacked thermal battery configured using the unit cell of FIG. 3;

【図5】同熱電池用正極活物質のバナジウム含有量と正
極利用率の関係を示すグラフ
FIG. 5 is a graph showing the relationship between the vanadium content of the positive electrode active material for a thermal battery and the positive electrode utilization factor.

【図6】本実施例と従来例の電池の放電電圧,オープン
電圧と、持続時間の関係を示すグラフ
FIG. 6 is a graph showing the relationship between the discharge voltage, open voltage, and duration of the batteries of this embodiment and the conventional example.

【図7】図6の放電中のセル抵抗を示すグラフFIG. 7 is a graph showing cell resistance during discharge of FIG. 6;

【符号の説明】[Explanation of symbols]

1 正極層 2 負極層 3 電解質層 4 素電池 DESCRIPTION OF SYMBOLS 1 Positive electrode layer 2 Negative electrode layer 3 Electrolyte layer 4 Unit cell

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 6/30 - 6/36 H01M 4/58──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 6/ 30-6/36 H01M 4/58

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄粉、もしくは少なくとも表面が鉄酸化物
または水酸化鉄である鉄粉と、金属バナジウム粉末と硫
黄とを出発物質としてこれらを混合する工程と、その混
合物を350℃〜500℃の温度下で加熱合成する工程
と、その後合成物を粉砕する工程とを主体とし、前記合
成物中のバナジウム含有比が5〜20重量%である熱電
池用正極活物質の製造法。
1. A step of mixing iron powder or iron powder whose surface is at least iron oxide or iron hydroxide, metal vanadium powder and sulfur as starting materials, and mixing the mixture at 350 ° C. to 500 ° C. A method for producing a positive electrode active material for a thermal battery, comprising a step of heating and synthesizing at a temperature of the following, and a step of subsequently pulverizing the composite, wherein the content of vanadium in the composite is 5 to 20% by weight.
【請求項2】加熱合成工程と合成物の粉砕工程とを複数
回繰り返し行なう請求項1記載の熱電池用正極活物質の
製造法。
2. The method for producing a positive electrode active material for a thermal battery according to claim 1, wherein the step of heating and synthesizing and the step of pulverizing the compound are repeated a plurality of times.
【請求項3】鉄粉、もしくは少なくとも表面が鉄酸化物
または水酸化鉄である鉄粉と、金属バナジウム粉末と硫
黄を出発物質としてこれらを混合する工程と、その混合
物を350℃〜500℃の温度下で加熱合成する工程
と、その後合成物を粉砕する工程とを主体とし、前記合
成物中のバナジウム含有比が5〜20重量%である正極
活物質を用いた熱電池。
3. A step of mixing iron powder or iron powder whose surface is at least iron oxide or iron hydroxide, metal vanadium powder and sulfur as starting materials, and mixing the mixture at 350 ° C. to 500 ° C. A thermal battery mainly comprising a step of heating and synthesizing at a temperature and a step of pulverizing the composite, and using a positive electrode active material having a vanadium content ratio of 5 to 20% by weight in the composite.
JP3041552A 1991-03-07 1991-03-07 Method for producing positive electrode active material for thermal battery and thermal battery using the same Expired - Fee Related JP2847983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041552A JP2847983B2 (en) 1991-03-07 1991-03-07 Method for producing positive electrode active material for thermal battery and thermal battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041552A JP2847983B2 (en) 1991-03-07 1991-03-07 Method for producing positive electrode active material for thermal battery and thermal battery using the same

Publications (2)

Publication Number Publication Date
JPH04280071A JPH04280071A (en) 1992-10-06
JP2847983B2 true JP2847983B2 (en) 1999-01-20

Family

ID=12611594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041552A Expired - Fee Related JP2847983B2 (en) 1991-03-07 1991-03-07 Method for producing positive electrode active material for thermal battery and thermal battery using the same

Country Status (1)

Country Link
JP (1) JP2847983B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919587A (en) * 1996-05-22 1999-07-06 Moltech Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
US8088508B2 (en) 2005-01-31 2012-01-03 Panasonic Corporation Thermal battery

Also Published As

Publication number Publication date
JPH04280071A (en) 1992-10-06

Similar Documents

Publication Publication Date Title
KR100809854B1 (en) Positive electrode active material and non-aqueous electrolyte cell
JP3624088B2 (en) Powder material, electrode structure, manufacturing method thereof, and lithium secondary battery
JP2001110414A (en) Material for activating positive electrode of lithium secondary battery and the lithium secondary battery
JPS60121674A (en) Electrochemical cell structure
JP3082388B2 (en) Lithium secondary battery
JP5006548B2 (en) Thermal battery
JP2847983B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JP2847982B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JP2006236990A (en) Thermal cell
JP2751389B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP2005067924A (en) Method for manufacturing polyanion type lithium iron multiple oxide and battery using the same
JP2002216762A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JPS6335069B2 (en)
JPH0782857B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same
JPH05242896A (en) Positive electrode active material for thermal cell, manufacture thereof and thermal cell using it
JPH04280072A (en) Manufacture of positive electrode active material for thermal battery, and thermal battery using same
JP2751390B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JPH02284359A (en) Manufacture of thermo-battery and positive-electrode active material for thermo-battery
JP2751388B2 (en) Thermal battery
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3104321B2 (en) Non-aqueous electrolyte lithium secondary battery and method for producing the same
JP3079577B2 (en) Lithium-containing manganese dioxide, method for producing the same, and use thereof
JPH02284360A (en) Manufacture of thermo-battery and positive-electrode active material for thermo-battery
JP3770569B2 (en) Lithium composite oxide, method for producing the same, and positive electrode active material for lithium secondary battery
JP6966308B2 (en) Positive active material for lithium-ion batteries and their manufacturing methods, lithium-ion batteries, and lithium-ion battery systems

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees