JP2836358B2 - Differential amplifier circuit - Google Patents

Differential amplifier circuit

Info

Publication number
JP2836358B2
JP2836358B2 JP4087704A JP8770492A JP2836358B2 JP 2836358 B2 JP2836358 B2 JP 2836358B2 JP 4087704 A JP4087704 A JP 4087704A JP 8770492 A JP8770492 A JP 8770492A JP 2836358 B2 JP2836358 B2 JP 2836358B2
Authority
JP
Japan
Prior art keywords
differential pair
unbalanced
fet
capacity
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4087704A
Other languages
Japanese (ja)
Other versions
JPH05259761A (en
Inventor
克治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4087704A priority Critical patent/JP2836358B2/en
Publication of JPH05259761A publication Critical patent/JPH05259761A/en
Application granted granted Critical
Publication of JP2836358B2 publication Critical patent/JP2836358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、差動増幅回路に係り、
特にMOSトランジスタで構成される差動増幅回路に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential amplifier circuit,
In particular, the present invention relates to a differential amplifier circuit composed of MOS transistors.

【0002】[0002]

【従来の技術】MOSトランジスタで差動増幅回路を構
成する場合、トランスコンダクタンスの直線性が問題と
なるが、この直線性を改善した差動増幅回路としては、
従来、例えば図4や図5、図6に示すものが知られてい
る。これらは、以下に示す文献に詳記されているので参
照されたし。
2. Description of the Related Art When a differential amplifier circuit is composed of MOS transistors, the linearity of transconductance poses a problem. As a differential amplifier circuit with improved linearity,
Conventionally, for example, those shown in FIGS. 4, 5, and 6 are known. These are referred to since they are described in detail in the following documents.

【0003】図4:A.Nedungadi and T.R.Viswanathan
“Design of Linear CMOS Transco-nductance Element
s”IEEE TRANSACTION ON CIRCUITS AND SYSTEMS,VOL,C
AS-31,NO.10,pp.891-894,OCTOBER 1984.
FIG. 4: A. Nedungadi and TRViswanathan
“Design of Linear CMOS Transco-nductance Element
s ”IEEE TRANSACTION ON CIRCUITS AND SYSTEMS, VOL, C
AS-31, NO.10, pp.891-894, OCTOBER 1984.

【0004】図5:Zhenhua Wang and Walter Guggenbu
hl“A Voltage-Controllable Line-ar MOS Transconduc
tor Using Bias Offset Technique ”IEEE JOURNAL OF
SOL-ID-STATE CIRCUITS,VOL.25,NO.1,PP.315-317,FEBRU
ARY 1990.
FIG. 5: Zhenhua Wang and Walter Guggenbu
hl “A Voltage-Controllable Line-ar MOS Transconduc
tor Using Bias Offset Technique ”IEEE JOURNAL OF
SOL-ID-STATE CIRCUITS, VOL.25, NO.1, PP.315-317, FEBRU
ARY 1990.

【0005】図6:Francois Krummenacher and Norber
t Joehl “A 4-MHz CMOS Continuo-us-Time Filter wit
h On-Chip Automatic Tuning”IEEE JOURNAL OF SOLID-
STA-TE CIRCUITS,V0L.23,NO.3 pp.750-758,JUNE 1988.
FIG. 6: Francois Krummenacher and Norber
t Joehl “A 4-MHz CMOS Continuo-us-Time Filter wit
h On-Chip Automatic Tuning ”IEEE JOURNAL OF SOLID-
STA-TE CIRCUITS, V0L.23, NO.3 pp.750-758, JUNE 1988.

【0006】[0006]

【発明が解決しようとする課題】しかし、これらトラン
スコンダクタンスの直線性を改善した従来の差動増幅回
路では、出力電流値が最大でも駆動電流の1/3や1/
2以下しかなく電流効率が悪く(図4、図6)、安定な
オフセット電圧を発生することが困難であり(図5)、
また全体として製造偏差や温度特性に弱いという問題が
ある。
However, in the conventional differential amplifier circuit in which the transconductance linearity is improved, even if the output current value is maximum, the output current value is one-third or one-third of the drive current.
2 or less, the current efficiency is poor (FIGS. 4 and 6), and it is difficult to generate a stable offset voltage (FIG. 5).
In addition, there is a problem that manufacturing tolerance and temperature characteristics are weak as a whole.

【0007】本発明の目的は、高い電流効率で、かつ製
造偏差や温度特性の影響を少なくし、トランスコンダク
タンスの直線性を改善できる新規構成の差動増幅回路を
提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a differential amplifier circuit having a novel configuration which has high current efficiency, reduces the influence of manufacturing deviation and temperature characteristics, and can improve the linearity of transconductance.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
本発明の差動増幅回路は次の如き構成を有する。即ち、
本発明の差動増幅回路は、能力(ゲート幅とゲート長の
比)が等しい2つのFETとこれらを駆動する第1の定
電流源とを備える平衡差動対と; 能力が1:Kである
2つのFETとこれらを駆動する第2の定電流源とを備
える第1の不平衡差動対と; 能力が1:Kである2つ
のFETとこれらを駆動する前記第2の定電流源と値の
等しい定電流源とを備える第2の不平衡差動対と; を
備え、差動入力対を、平衡差動対の一方のFETと第1
の不平衡差動対の能力がKであるFETと第2の不平衡
差動対の能力が1であるFETとのゲート同士及び平衡
差動対の他方のFETと第1の不平衡差動対の能力が1
であるFETと第2の不平衡差動対の能力がKであるF
ETとのゲート同士をそれぞれ共通接続して構成し;
差動出力対を、平衡差動対の他方のFETと第1の不平
衡差動対の能力がKであるFETと第2の不平衡差動対
の能力が1であるFETとのドレイン同士及び平衡差動
対の一方のFETと第1の不平衡差動対の能力が1であ
るFETと第2の不平衡差動対の能力がKであるFET
とのドレイン同士をそれぞれ共通接続して構成してあ
る; ことを特徴とするものである。
To achieve the above object, a differential amplifier circuit according to the present invention has the following configuration. That is,
A differential amplifier circuit according to the present invention includes: a balanced differential pair including two FETs having equal capacities (ratio of gate width and gate length) and a first constant current source for driving the FETs; A first unbalanced differential pair including two FETs and a second constant current source for driving them; two FETs having a capacity of 1: K and the second constant current source for driving them And a second unbalanced differential pair having a constant current source having the same value as that of the first pair.
The gate of the FET having the capability of the unbalanced differential pair of K and the gate of the FET having the capability of the second unbalanced differential pair of 1, and the other FET of the balanced differential pair and the first unbalanced differential Ability of pair 1
And the capability of the second unbalanced differential pair is K
ET and the gates are connected to each other in common;
The differential output pair is formed by the drains of the other FET of the balanced differential pair, the FET of which the capacity of the first unbalanced differential pair is K, and the FET of which the capacity of the second unbalanced differential pair is 1 And one FET of the balanced differential pair and an FET whose capacity of the first unbalanced differential pair is 1 and an FET whose capacity of the second unbalanced differential pair is K
And the drains are commonly connected to each other.

【0009】[0009]

【作用】次に、前記の如く構成される本発明の差動増幅
回路の作用を説明する。本発明では、2つの不平衡差動
対を所謂たすきがけし、これに平衡差動対を逆接続した
ので、電流効率を高く設定しても差動増幅回路のトラン
スコンダクタンスの直線性を改善できる。このとき、各
FETは飽和領域で動作するので、温度特性は同一とな
り、従って定電流源で容易に温度補償できる。また製造
偏差の影響に関しては、差動で動作するので最も顕著に
影響を受けるスレッショルド電圧が相殺され回路動作に
寄与せず、またトランスコンダクタンスパラメータも特
性が相似形で動くので、全体として製造偏差の影響を受
けないようにできる。
Next, the operation of the differential amplifier circuit of the present invention configured as described above will be described. In the present invention, two unbalanced differential pairs are so-called cross-connected, and the balanced differential pair is connected in reverse, so that even if the current efficiency is set high, the linearity of the transconductance of the differential amplifier circuit can be improved. . At this time, since each FET operates in the saturation region, the temperature characteristics are the same, and therefore the temperature can be easily compensated by the constant current source. Regarding the influence of manufacturing deviation, the threshold voltage, which is most significantly affected because it operates differentially, does not contribute to circuit operation, and the transconductance parameter also operates in a similar manner, so that the manufacturing deviation as a whole Can be unaffected.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例に係る差動増幅回路を
示す。なお、FET(MOSトランジスタ)に関し符号
は従来(図4、図5、図6)と同一符号を使用するが、
これは同一物であることを意味しない。また、記号も説
明の便宜上同一記号を使用する場合もあるが、これは内
容の同一を意味するものではない。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a differential amplifier circuit according to one embodiment of the present invention. The same reference numerals are used for the FETs (MOS transistors) as in the related art (FIGS. 4, 5, and 6).
This does not mean that they are the same. Also, the same symbol may be used for the sake of convenience of description, but this does not mean that the content is the same.

【0011】この差動増幅回路は、能力(ゲート幅W/
ゲート長L)が、M1:M2=K:1である2つのトラ
ンジスタ(M1、M2)及びこれを駆動する定電流源I
0 を備える(第1の)不平衡差動対と、能力が、M3:
M4=1:Kである2つのトランジスタ(M3、M4)
及びこれを駆動する定電流源I0 を備える(第2の)不
平衡差動対と、能力が、M5:M6=K′:K′である
2つのトランジスタ(M5、M6)及びこれを駆動する
定電流源I0 ′を備える平衡差動対との3つの差動対を
中心に構成される。
This differential amplifier circuit has a capacity (gate width W /
Two transistors (M1, M2) having a gate length L) of M1: M2 = K: 1 and a constant current source I for driving the transistors (M1, M2)
The (first) unbalanced differential pair with 0 and the capability is M3:
Two transistors (M3, M4) where M4 = 1: K
And a (second) unbalanced differential pair having a constant current source I 0 for driving the same and two transistors (M 5, M 6) having the capability of M 5: M 6 = K ′: K ′ and driving the same And a balanced differential pair having a constant current source I 0 ′.

【0012】これら3つの差動対の相互間では、平衡差
動対の一方のトランジスタM5と第1の不平衡差動対の
能力がKであるトランジスタM1と第2の不平衡差動対
の能力が1であるトランジスタM3とのゲート同士及び
平衡差動対の他方のトランジスタM6と第1の不平衡差
動対の能力が1であるトランジスタM2と第2の不平衡
差動対の能力がKであるトランジスタM4とのゲート同
士がそれぞれ共通接続されて差動入力対を構成してい
る。
[0012] Between these three differential pairs, one transistor M5 of the balanced differential pair and the transistor M1 of which the capacity of the first unbalanced differential pair is K and the transistor M5 of the second unbalanced differential pair are used. The gates of the transistor M3 having the capability of 1 and the other transistor M6 of the balanced differential pair and the capability of the transistor M2 and the second unbalanced differential pair having the capability of the first unbalanced differential pair are 1 The gates of the transistor M4 of K are commonly connected to each other to form a differential input pair.

【0013】また、平衡差動対の他方のトランジスタM
6と第1の不平衡差動対の能力がKであるトランジスタ
M1と第2の不平衡差動対の能力が1であるトランジス
タM3とのドレイン同士及び平衡差動対の一方のトラン
ジスタM5と第1の不平衡差動対の能力が1であるトラ
ンジスタM2と第2の不平衡差動対の能力がKであるト
ランジスタM4とのドレイン同士がそれぞれ共通接続さ
れて差動出力対を構成している。
The other transistor M of the balanced differential pair
6 and the drain of transistor M1 having the capability of the first unbalanced differential pair of K and the transistor M3 of the capability of the second unbalanced differential pair being 1 and one transistor M5 of the balanced differential pair having The drains of a transistor M2 whose first unbalanced differential pair has a capacity of 1 and a transistor M4 whose second unbalanced differential pair has a capacity of K are commonly connected to each other to form a differential output pair. ing.

【0014】つまり、2つの不平衡差動対では所謂たす
きがけのように能力が異なるトランジスタのドレイン同
士が共通接続され、これに対し平衡差動対では配置的に
反対側のトランジスタのドレインが接続(逆接続)され
ている。
In other words, in two unbalanced differential pairs, the drains of transistors having different capacities are connected in common, as in a so-called crosstalk, whereas in the balanced differential pair, the drains of transistors on opposite sides are connected. (Reverse connection).

【0015】以上の構成において、飽和領域で動作して
いるとすると、M1のドレイン電流Id1は数式1、M2
のドレイン電流Id2は数式2、M3のドレイン電流Id3
は数式3、M4のドレイン電流Id4は数式4、M5のド
レイン電流Id5は数式5、M6のドレイン電流Id6は数
式6となる。
In the above configuration, assuming that the device operates in the saturation region, the drain current I d1 of M1 is given by the following equation (1).
Of the drain current I d2 is the drain current I d3 of formula 2, M3
Is the expression 3, the drain current Id4 of the M4 is the expression 4, the drain current Id5 of the M5 is the expression 5, and the drain current Id6 of the M6 is the expression 6.

【0016】[0016]

【数1】Id1=Kβ(VGS1 −VT)2 I d1 = Kβ (V GS1 −V T ) 2

【0017】[0017]

【数2】Id2=β(VGS2 −VT)2 ## EQU2 ## I d2 = β (V GS2 −V T ) 2

【0018】[0018]

【数3】Id3=β(VGS3 −VT)2 ## EQU3 ## I d3 = β (V GS3 −V T ) 2

【0019】[0019]

【数4】Id4=Kβ(VGS4 −VT)2 ## EQU4 ## I d4 = Kβ (V GS4 −V T ) 2

【0020】[0020]

【数5】Id5=K′β(VGS5 −VT)2 I d5 = K′β (V GS5 −V T ) 2

【0021】[0021]

【数6】Id6=K′β(VGS6 −VT)2 [6] I d6 = K'β (V GS6 -V T) 2

【0022】ここで、VT はスレッショルド電圧、V
GSi はゲート・ソース間電圧である。またβはトランジ
スタのトランスコンダクタンスパラメータであり、モビ
リティμ、単位面積当たりのゲート酸化膜容量COX、ゲ
ート幅W及びゲート長Lを用いて数式7と表せる。
Here, V T is a threshold voltage, V
GSi is a gate-source voltage. Β is a transconductance parameter of the transistor, and can be expressed by Expression 7 using mobility μ, gate oxide film capacitance C OX per unit area, gate width W, and gate length L.

【0023】[0023]

【数7】β=μCOX(W/L)(1/2)## EQU7 ## β = μC OX (W / L) (1/2)

【0024】そして、定電流源I0 は数式8、定電流源
0 ′は数式9、各差動対のトランジスタ相互間のゲー
ト・ソース間電圧の差は等しく数式10である。
The constant current source I 0 is given by equation (8), the constant current source I 0 ′ is given by equation (9), and the difference between the gate and source voltages between the transistors of each differential pair is equal to equation (10).

【0025】[0025]

【数8】I0 =Id1+Id2=Id3+Id4 ## EQU8 ## I 0 = I d1 + I d2 = I d3 + I d4

【0026】[0026]

【数9】I0 ′=Id5+Id6 ## EQU9 ## I 0 ′ = I d5 + I d6

【0027】[0027]

【数10】 VGS1 −VGS2 =VGS3 −VGS4 =VGS5 −VGS6 [Number 10] V GS1 -V GS2 = V GS3 -V GS4 = V GS5 -V GS6

【0028】従って、数式1〜同10から、第1の不平
衡差動対でのドレイン電流の差電流ΔI1 は数式11、
第2の不平衡差動対でのドレイン電流の差電流ΔI2
数式12、平衡差動対でのドレイン電流の差電流はΔI
3 は数式13と得られる。なお、数式13において、
K′は数式14、I0 ′は数式15とおいている。
Accordingly, from Equations (1) and (10), the difference current ΔI 1 of the drain current in the first unbalanced differential pair is given by Equation (11).
The difference current ΔI 2 of the drain current in the second unbalanced differential pair is expressed by the following equation (12), and the difference current of the drain current in the balanced differential pair is ΔI
3 is obtained by Expression 13. Note that in Equation 13,
K ′ is expressed by Expression 14, and I 0 ′ is expressed by Expression 15.

【0029】[0029]

【数11】 [Equation 11]

【0030】[0030]

【数12】 (Equation 12)

【0031】[0031]

【数13】 (Equation 13)

【0032】[0032]

【数14】 [Equation 14]

【0033】[0033]

【数15】 (Equation 15)

【0034】さて、当該差動増幅回路の差動出力電流の
差電流ΔIは、平衡差動対のトランジスタのドレインが
所謂逆接続されているので、数式16となるが、これを
入力電圧VINで微分したものが当該差動増幅回路のトラ
ンスコンダクタンスである(数式17)。
[0034] Now, the difference current ΔI of the differential output current of the differential amplifier circuit, the drain of the transistor of the balanced differential pair is called reverse connection, although the equation 16, inputs the voltage V IN Is the transconductance of the differential amplifier circuit (Equation 17).

【0035】[0035]

【数16】ΔI=ΔI1 +ΔI2 −ΔI3 ΔI = ΔI 1 + ΔI 2 −ΔI 3

【0036】[0036]

【数17】 [Equation 17]

【0037】ここで、平衡差動対は当該差動増幅回路の
トランスコンダクタンスの直線性の改善を目的とするの
で、その寄与の程度を検討するため、数式18、同19
を満足するa、bなるパラメータを考える。
Here, the balanced differential pair aims at improving the linearity of the transconductance of the differential amplifier circuit.
Let us consider parameters a and b that satisfy

【0038】[0038]

【数18】K″・I0 ″=a2 ・K′・I0K ″ · I 0 ″ = a 2 · K ′ · I 0

【0039】[0039]

【数19】K″/I0 ″=b・K′/I0K ′ / I 0 ″ = b · K ′ / I 0

【0040】そして、例えばK=4、K=2とした場合
のa、bの各値についての数式11〜同13を入力電圧
INで微分し数式17に従ってトランスコンダクタンク
スの値を求めると、図2(K=4)及び図3(K=2)
となる。図2及び図3において、a=0、b=0の場合
は平衡差動対がない場合のトランスコンダクタンクスで
あり、a≠0、b≠0であるa、bの各値に対する曲線
が平衡差動対の寄与を示す。
When, for example, K = 4 and K = 2, Equations 11 to 13 for each value of a and b are differentiated by the input voltage V IN to obtain the value of transconductance according to Equation 17. FIG. 2 (K = 4) and FIG. 3 (K = 2)
Becomes 2 and 3, when a = 0 and b = 0, there is a transconductance without a balanced differential pair. Show the contribution of the differential pair.

【0041】大きな改善効果があり、入力電圧範囲が数
式20で示される範囲において、
There is a great improvement effect, and when the input voltage range is in the range shown by Expression 20,

【0042】[0042]

【数20】√(I0 /(Kβ))≧│VIN数 (I 0 / (Kβ)) ≧ │V IN

【0043】即ち、横軸は正規化してあるが、ほぼ−1
/√K〜+1/√Kの範囲においてトランスコンダクタ
ンスがほぼ一定値となることが理解できる。
That is, although the horizontal axis is normalized, it is almost -1.
It can be understood that the transconductance is substantially constant in the range of / √K to + 1 / √K.

【0044】次に、数式18と同19から、K″は数式
21と求まり、I0 ″は数式22と求まるので、平衡差
動対のトランジスタの能力(W/L)も定電流源も独立
して設定できる。従って、電流効率を従来よりも高く設
定した場合でも当該差動増幅回路のトランスコンダクタ
ンスを改善できる。図2、図3はそのことを示してい
る。
Next, from equations (18) and (19), K ″ is obtained as equation (21), and I 0 ″ is obtained as equation (22). Therefore, the capacity (W / L) of the transistor of the balanced differential pair and the constant current source are independent. Can be set. Therefore, even when the current efficiency is set higher than the conventional one, the transconductance of the differential amplifier circuit can be improved. 2 and 3 illustrate this.

【0045】[0045]

【数21】 (Equation 21)

【0046】[0046]

【数22】 (Equation 22)

【0047】なお、当該差動増幅回路では、各トランジ
スタは、飽和領域で動作するので、温度特性は同一とな
り、従って定電流源で容易に温度補償できる。また、製
造偏差の影響に関しては、スレッショルド電圧VT が最
も影響を受け、トランスコンダクタンスパラメータβも
影響を受けるが、差動で動作するのでスレッショルド電
圧VT は相殺され回路動作に寄与せず、またトランスコ
ンダクタンスパラメータも特性が相似形で動くので、全
体として製造偏差の影響を受けないようにできる。
In the differential amplifier circuit, since each transistor operates in the saturation region, the temperature characteristics are the same, and therefore, the temperature can be easily compensated by the constant current source. With respect to the influence of the manufacturing deviation, the threshold voltage VT is most affected and the transconductance parameter β is also affected.However, since the differential operation is performed, the threshold voltage VT is canceled out and does not contribute to the circuit operation. Since the characteristics of the transconductance parameter move in a similar manner, the transconductance parameter can be totally unaffected by the manufacturing deviation.

【0048】[0048]

【発明の効果】以上説明したように、本発明の差動増幅
回路によれば、2つの不平衡差動対を所謂たすきがけ
し、これに平衡差動対を逆接続したので、電流効率を高
く設定しても差動増幅回路のトランスコンダクタンスの
直線性を改善できる。このとき、各FETは飽和領域で
動作するので、温度特性は同一となり、従って定電流源
で容易に温度補償できる。また製造偏差の影響に関して
は、差動で動作するので最も顕著に影響を受けるスレッ
ショルド電圧が相殺され回路動作に寄与せず、またトラ
ンスコンダクタンスパラメータも特性が相似形で動くの
で、全体として製造偏差の影響を受けないようにでき
る、等の効果がある。
As described above, according to the differential amplifying circuit of the present invention, two unbalanced differential pairs are so-called crossed, and a balanced differential pair is connected in reverse, so that the current efficiency can be improved. Even if it is set high, the linearity of the transconductance of the differential amplifier circuit can be improved. At this time, since each FET operates in the saturation region, the temperature characteristics are the same, and therefore the temperature can be easily compensated by the constant current source. Regarding the influence of manufacturing deviation, the threshold voltage, which is most significantly affected because it operates differentially, does not contribute to circuit operation, and the transconductance parameter also operates in a similar manner, so that the manufacturing deviation as a whole There are effects such as not being affected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る差動増幅回路の回路図
である。
FIG. 1 is a circuit diagram of a differential amplifier circuit according to one embodiment of the present invention.

【図2】本発明の差動増幅回路のトランスコンダクタン
ス特性図(K=4)である。
FIG. 2 is a transconductance characteristic diagram (K = 4) of the differential amplifier circuit of the present invention.

【図3】本発明の差動増幅回路のトランスコンダクタン
ス特性図(K=2)である。
FIG. 3 is a transconductance characteristic diagram (K = 2) of the differential amplifier circuit of the present invention.

【図4】従来の差動増幅回路の回路図である。FIG. 4 is a circuit diagram of a conventional differential amplifier circuit.

【図5】従来の差動増幅回路の回路図である。FIG. 5 is a circuit diagram of a conventional differential amplifier circuit.

【図6】従来の差動増幅回路の回路図である。FIG. 6 is a circuit diagram of a conventional differential amplifier circuit.

【符号の説明】[Explanation of symbols]

M1〜M6 MOSトランジスタ I0 定電流源 I0 ′ 定電流源 VIN 入力電圧 K 能力(ゲート幅/ゲート長) K′ 能力(ゲート幅/ゲート長)M1 to M6 MOS transistors I 0 constant current source I 0 ′ constant current source V IN input voltage K capability (gate width / gate length) K ′ capability (gate width / gate length)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 能力(ゲート幅とゲート長の比)が等し
い2つのFETとこれらを駆動する第1の定電流源とを
備える平衡差動対と; 能力が1:Kである2つのFE
Tとこれらを駆動する第2の定電流源とを備える第1の
不平衡差動対と; 能力が1:Kである2つのFETと
これらを駆動する前記第2の定電流源と値の等しい定電
流源とを備える第2の不平衡差動対と; を備え、差動
入力対を、平衡差動対の一方のFETと第1の不平衡差
動対の能力がKであるFETと第2の不平衡差動対の能
力が1であるFETとのゲート同士及び平衡差動対の他
方のFETと第1の不平衡差動対の能力が1であるFE
Tと第2の不平衡差動対の能力がKであるFETとのゲ
ート同士をそれぞれ共通接続して構成し; 差動出力対
を、平衡差動対の他方のFETと第1の不平衡差動対の
能力がKであるFETと第2の不平衡差動対の能力が1
であるFETとのドレイン同士及び平衡差動対の一方の
FETと第1の不平衡差動対の能力が1であるFETと
第2の不平衡差動対の能力がKであるFETとのドレイ
ン同士をそれぞれ共通接続して構成してある; ことを
特徴とする差動増幅回路。
1. A balanced differential pair comprising two FETs having the same capacity (ratio of gate width to gate length) and a first constant current source for driving the two FETs; and two FEs having a capacity of 1: K.
A first unbalanced differential pair comprising T and a second constant current source for driving them; two FETs having a capacity of 1: K; the second constant current source for driving them; A second unbalanced differential pair having an equal constant current source; and a differential input pair, wherein the FET of one of the balanced differential pair and the first unbalanced differential pair have a capacity of K. And the second unbalanced differential pair has a gate of one FET, and the other FET of the balanced differential pair and the FE of the first unbalanced differential pair have one performance
T and the gate of the FET of which the capacity of the second unbalanced differential pair is K are commonly connected to each other; and the differential output pair is formed by connecting the other FET of the balanced differential pair with the first unbalanced FET. The FET whose differential pair has a capacity of K and the second unbalanced differential pair have a capacity of 1
And the other FET of the balanced differential pair, the FET of which the capacity of the first unbalanced differential pair is 1, and the FET of which the capacity of the second unbalanced differential pair is K. A differential amplifier circuit having drains commonly connected to each other;
JP4087704A 1992-03-11 1992-03-11 Differential amplifier circuit Expired - Lifetime JP2836358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4087704A JP2836358B2 (en) 1992-03-11 1992-03-11 Differential amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4087704A JP2836358B2 (en) 1992-03-11 1992-03-11 Differential amplifier circuit

Publications (2)

Publication Number Publication Date
JPH05259761A JPH05259761A (en) 1993-10-08
JP2836358B2 true JP2836358B2 (en) 1998-12-14

Family

ID=13922310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4087704A Expired - Lifetime JP2836358B2 (en) 1992-03-11 1992-03-11 Differential amplifier circuit

Country Status (1)

Country Link
JP (1) JP2836358B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384207B2 (en) * 1995-09-22 2003-03-10 株式会社デンソー Differential amplifier circuit
KR100576716B1 (en) 2003-12-23 2006-05-03 한국전자통신연구원 Transconductor circuit of compensating the distortion of output current
CN100459417C (en) * 2005-06-14 2009-02-04 北京大学 Differential amplifier in low voltage and low power consumption and high isolation

Also Published As

Publication number Publication date
JPH05259761A (en) 1993-10-08

Similar Documents

Publication Publication Date Title
US5578965A (en) Tunable operational transconductance amplifier and two-quadrant multiplier employing MOS transistors
JP2556293B2 (en) MOS OTA
US4520324A (en) MOS Gain controlled amplifier
JPH03114305A (en) Current mirror circuit
JPH088457B2 (en) Differential amplifier circuit
JP2841978B2 (en) Frequency multiplication / mixer circuit
JPH10209781A (en) Electronic circuit including differential circuit
US6617923B2 (en) Linear transconductance amplifier
JP2778540B2 (en) Logarithmic amplifier circuit
JPH0235485B2 (en)
JP2836358B2 (en) Differential amplifier circuit
JPS6119134B2 (en)
JP2560542B2 (en) Voltage-current conversion circuit
JP2914005B2 (en) Differential amplifier circuit
JPS6132842B2 (en)
JP3113420B2 (en) Gm-C filter
JPH0586684B2 (en)
JP2526808B2 (en) Tunable MOS OTA
JPH0257721B2 (en)
JP2596256B2 (en) Square circuit
JPH051648B2 (en)
JP2541868B2 (en) MOS transistor circuit
JP3036121B2 (en) Pseudo-log IF amplifier
JP2808855B2 (en) Constant voltage circuit
JP3030985B2 (en) Frequency mixer circuit