JP2813452B2 - Method for producing hydrophilic membrane - Google Patents

Method for producing hydrophilic membrane

Info

Publication number
JP2813452B2
JP2813452B2 JP2292541A JP29254190A JP2813452B2 JP 2813452 B2 JP2813452 B2 JP 2813452B2 JP 2292541 A JP2292541 A JP 2292541A JP 29254190 A JP29254190 A JP 29254190A JP 2813452 B2 JP2813452 B2 JP 2813452B2
Authority
JP
Japan
Prior art keywords
membrane
weight
water
hydrophilic polymer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2292541A
Other languages
Japanese (ja)
Other versions
JPH04166219A (en
Inventor
賢作 小松
健彦 岡本
修 楠戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2292541A priority Critical patent/JP2813452B2/en
Publication of JPH04166219A publication Critical patent/JPH04166219A/en
Application granted granted Critical
Publication of JP2813452B2 publication Critical patent/JP2813452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は親水化膜の製造方法、特に蛋白等の吸着が少
なく、かつ耐汚染性に優れた親水化膜の製造方法に関す
るものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hydrophilized membrane, and more particularly to a method for producing a hydrophilized membrane having little adsorption of proteins and the like and excellent in stain resistance.

(従来の技術) 近年、分離操作において選択透過性を有する分離膜を
用いた技術の進展はめざましく、各種の用途で実用化さ
れている。かかる分離膜として、通常セルロース系、ポ
リイミド系、ポリアクリロニトリル系、ポリビニルアル
コール系、ポリスルホン系等の素材が使用されている。
なかでもポリスルホン系樹脂のような疎水性高分子は、
耐熱性、耐酸性、耐アルカリ性、耐酸化剤性等の物理的
および化学的性質に優れ、また製膜も容易な点から、各
種用途に盛んに使用されている。
(Prior Art) In recent years, in a separation operation, a technique using a separation membrane having selective permeability has been remarkably advanced, and has been put to practical use in various applications. As such a separation membrane, a cellulose-based, polyimide-based, polyacrylonitrile-based, polyvinyl alcohol-based, or polysulfone-based material is generally used.
Above all, hydrophobic polymers such as polysulfone resins are
Because of its excellent physical and chemical properties such as heat resistance, acid resistance, alkali resistance, and oxidizing agent resistance, and easy film formation, it is widely used in various applications.

しかし、疎水性高分子からなる分離膜は、膜を乾燥さ
せると透過性能が著しく減少し、再度使用するためには
湿潤化処理をしなければならない。また、蛋白等の吸着
がおこりやすく膜の汚染や目詰まりをおこしやすいなど
の欠点がある。これらの欠点は膜素材の疎水性に起因し
ているところが大きく、これらを解決する方法として疎
水性の分離膜に親水性を付与させることが提案されてい
る。かかる疎水性分離膜に親水性を付与させる方法とし
て、例えば次のような方法がある。
However, permeation performance of a separation membrane made of a hydrophobic polymer is significantly reduced when the membrane is dried, and must be wetted before it can be used again. In addition, there is a drawback that adsorption of proteins and the like is apt to occur and membrane contamination and clogging are liable to occur. These disadvantages are largely attributable to the hydrophobicity of the membrane material, and as a method for solving these problems, it has been proposed to impart hydrophilicity to a hydrophobic separation membrane. As a method for imparting hydrophilicity to such a hydrophobic separation membrane, for example, there is the following method.

(1)混合原液法 疎水性高分子にポリビニルピロリドン等の親水性高分
子を混合した原液を用いて製膜し、膜中に親水性高分子
を残存させることにより親水性をもたせる方法(特開昭
58−104940号公報、同60−97001号公報、同61−93801号
公報など) (2)膜表面改質法 製膜後に膜素材に物理的または化学的手法でスルホン
酸基等の親水基を導入する方法(特開昭59−196322号公
報、同60−87803号公報、同62−45303号公報など) (3)含浸法 膜を親水性高分子の溶液中に含浸させて膜中に親水性
高分子を残存させる方法(特開昭61−161103号公報、同
61−268032号公報、同63−229108号公報など) (発明が解決しようとする課題) (1)の方法は分離膜の製造が容易ではあるが、親水
性高分子を膜中に均一に分散させるために親水性高分子
を比較的大量に添加する必要がある。しかし、膜素材と
親水性高分子の溶媒中での相溶性が製膜原液の安定性に
影響を与えるため、疎水性高分子と混合できる親水性高
分子の種類や添加量が限定される。
(1) Mixed stock solution method A method of forming a film using a stock solution in which a hydrophilic polymer such as polyvinylpyrrolidone is mixed with a hydrophobic polymer and leaving the hydrophilic polymer in the film to make it hydrophilic Akira
(58-104940, 60-97001, 61-93801, etc.) (2) Membrane surface modification method After film formation, a hydrophilic group such as a sulfonic acid group is physically or chemically added to the film material. Introducing method (JP-A-59-196322, JP-A-60-87803, JP-A-62-45303, etc.) (3) Impregnation method The membrane is impregnated with a hydrophilic polymer solution to make the membrane hydrophilic. Method for leaving a conductive polymer (JP-A-61-161103,
(Problems to be Solved by the Invention) The method (1) is easy to produce a separation membrane, but the hydrophilic polymer is uniformly dispersed in the membrane. For this purpose, it is necessary to add a relatively large amount of a hydrophilic polymer. However, since the compatibility of the membrane material and the hydrophilic polymer in the solvent affects the stability of the stock solution, the type and amount of the hydrophilic polymer that can be mixed with the hydrophobic polymer are limited.

また(2)の方法は反応させる薬品が危険物であるこ
とが多く取扱いに注意を要するうえ、反応中に膜素材の
分解や膜の変質がおこる恐れがあるため反応の制御が非
常に難しい。また製造工程が長く、工業的規模での実施
には不適当である。
In the method (2), the chemical to be reacted is a dangerous substance in many cases, and care must be taken in handling. In addition, the decomposition of the film material or the deterioration of the film may occur during the reaction, so that it is very difficult to control the reaction. In addition, the production process is long and is not suitable for implementation on an industrial scale.

さらに(3)の方法は限外過レベルの孔径の小さな
膜では親水性高分子を含浸させることが困難であり、ま
た親水性高分子の溶液中に浸漬させたときに膜のポアを
詰めてしまうため、適用される分離膜が比較的ポーラス
な精密過膜等に限定される。さらに膜性能の制御も困
難である。
Further, in the method (3), it is difficult to impregnate the hydrophilic polymer with a membrane having a pore diameter of an ultra-excess level, and when the membrane is immersed in a solution of a hydrophilic polymer, the pores of the membrane are filled. Therefore, the applied separation membrane is limited to a relatively porous precision membrane or the like. Further, it is difficult to control the film performance.

したがつて、本発明の目的は、膜素材や製造条件の限
定のない、製造が容易な親水化膜の製造方法を提供する
ことにある。
Therefore, an object of the present invention is to provide a method for producing a hydrophilized membrane that is easy to produce without any limitation on the membrane material and production conditions.

(課題を解決するための手段) 本発明者らは、上記従来技術の問題点を徹底的に検討
した結果、凝固液に親水性高分子を含有させると、凝固
時に親水性高分子が膜内部に拡散するが、この膜内部に
拡散した親水性高分子は、意外にも洗浄によつて完全に
抽出されず膜内部及び膜表面に残存することを見出し、
さらに検討した結果本発明に到達したものである。すな
わち本発明は、疎水性高分子と溶媒、非溶媒、または膨
潤剤からなる溶液をノズルから凝固液へ押し出して製膜
する際に、凝固液として0.1〜20重量%の親水性高分子
を含有する溶液を用い、膜内部および膜表面に該親水性
高分子を残存させることを特徴とする親水化膜の製造方
法である。
(Means for Solving the Problems) As a result of thoroughly examining the problems of the above-mentioned conventional technology, the present inventors have found that when a hydrophilic polymer is contained in a coagulation liquid, the hydrophilic polymer is coagulated inside the membrane during coagulation. It was found that the hydrophilic polymer diffused into the membrane surprisingly was not completely extracted by washing and remained in the membrane and on the membrane surface,
As a result of further study, the present invention has been reached. That is, the present invention comprises a solution comprising a hydrophobic polymer and a solvent, a non-solvent, or a swelling agent, which is extruded from a nozzle into a coagulating liquid to form a film, containing 0.1 to 20% by weight of a hydrophilic polymer as a coagulating liquid. A method for producing a hydrophilized film, characterized by using a solution to be treated and leaving the hydrophilic polymer inside and on the surface of the film.

本発明の特徴は、凝固液に親水性高分子を含有した溶
液を使用し、凝固時に親水性高分子の拡散により該親水
性高分子を膜表面や膜内部に残存させて親水性効果をも
たすことにある。そのため、製膜溶液と凝固液に含有さ
れる親水性高分子の組合せは特に限定はない。したがつ
て、製膜溶液は公知の技術をそのまま使用できる。膜素
材も例えば、ポリスルホン、ポリエーテルスルホン、ポ
リアミド、ポリイミド、ポリアクリロニトリル、ポリス
チレン、ポリフツ化ビニリデン、ポリ塩化ビニル、ポリ
メタクリル酸メチル等乾湿式または湿式法を使用できる
ものであれば制限はなく、様々な疎水性高分子が適用で
きる。
The feature of the present invention is to use a solution containing a hydrophilic polymer in a coagulating liquid, and to diffuse the hydrophilic polymer at the time of coagulation to leave the hydrophilic polymer on the film surface or inside the film to have a hydrophilic effect. To be helpful. Therefore, the combination of the hydrophilic polymer contained in the film forming solution and the coagulation liquid is not particularly limited. Therefore, a well-known technique can be used for the film forming solution as it is. The membrane material is not limited, for example, polysulfone, polyether sulfone, polyamide, polyimide, polyacrylonitrile, polystyrene, polyvinylidene fluoride, polyvinyl chloride, polymethyl methacrylate, etc. A suitable hydrophobic polymer can be applied.

また、凝固液に添加する親水性高分子も膜素材や製膜
原液に制限されず、例えば、ポリビニルアルコール、ポ
リ酢酸ビニル、ポリビニルピロリドン、ポリエチレンオ
キサイド、ポリアクリル酸、アクリルアミド系、カルボ
キシメチルセルロースやエチルセルロース等のセルロー
ス系、エチレン・ビニルアルコール共重合体及びこれら
の変性ポリマーやコポリマー等を用いることができる。
乾湿式または湿式法では従来より凝固液として水を主成
分とした凝固液を使用することが多いため、本発明にお
いては水溶性高分子が好適に用いられる。ただし、水溶
性高分子の場合は、膜の使用時に親水性高分子が若干量
溶出する恐れがあるため、物理的または化学的に架橋し
て不溶化できるものが望ましい。中でも、ポリビニルア
ルコールはカチオンやアニオン変性等の誘導体が数多く
有り、またアセタール化等で容易に架橋できるために特
に好適である。
Further, the hydrophilic polymer to be added to the coagulation solution is not limited to the membrane material or the stock solution, but includes, for example, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, polyethylene oxide, polyacrylic acid, acrylamide, carboxymethyl cellulose, ethyl cellulose, and the like. Cellulose-based, ethylene-vinyl alcohol copolymers and modified polymers and copolymers thereof.
In the dry-wet method or the wet method, since a coagulation liquid containing water as a main component has been often used as a coagulation liquid, a water-soluble polymer is preferably used in the present invention. However, in the case of a water-soluble polymer, since a small amount of the hydrophilic polymer may be eluted when the membrane is used, it is desirable that the polymer can be physically or chemically crosslinked and insolubilized. Among them, polyvinyl alcohol is particularly preferable because it has a large number of derivatives such as cations and anions modified, and can be easily crosslinked by acetalization.

これらの膜素材や親水性高分子の選択は任意であり、
用途や処理液の特性等を考慮にいれて選択することがで
きる。
The choice of these membrane materials and hydrophilic polymers is optional,
The selection can be made in consideration of the use and the characteristics of the processing solution.

本発明の製造方法は限外過膜、精密過膜、透析膜
等いずれにも適用できる。また公知の乾湿式または湿式
法が適用でき、膜の形状も平膜状、中空糸状、チューブ
状等特に限定されることはない。特に中空糸状は2重環
状ノズルの中心部より押し出す内部凝固液に親水性高分
子を添加すれば親水性高分子の濃度の制御が容易であ
り、効率よく均一に親水性効果をもたすことができる。
また、親水性高分子量が少なくてすむのでコスト的にも
有利である。
The production method of the present invention can be applied to any of an ultraperfusion membrane, a precision membrane, a dialysis membrane and the like. In addition, a known dry-wet or wet method can be applied, and the shape of the membrane is not particularly limited, such as a flat membrane, a hollow fiber, and a tube. In particular, in the case of a hollow fiber, it is easy to control the concentration of the hydrophilic polymer by adding a hydrophilic polymer to the internal coagulation liquid extruded from the center of the double annular nozzle, and to have a uniform and effective hydrophilic effect. Can be.
In addition, since the amount of the hydrophilic polymer is small, it is advantageous in terms of cost.

凝固液には、例えば水、アルコール類、グリコール類
等膜素材に対して非溶媒または貧溶媒の単独または2種
類以上の混合溶液、またはそれらと溶媒との混合溶液等
に親水性高分子を添加した系が用いられるが、それらの
非溶媒または貧溶媒は親水性高分子が溶解でき、かつ凝
固時に膜中に拡散させ膜に取り込ませる必要がある。し
たがつて、親水性高分子はできるだけ分子量の低い方が
均一に分散し易く好ましいが、高分子量であれば添加量
が少量で済む利点がある。凝固液中の親水性高分子の添
加量は、種類や分子量によつて異なるが、通常0.1〜20
重量%、好ましくは1〜10重量%である。0.1重量%以
下では充分な親水性効果が得られず、20重量%以上では
過剰な親水性高分子の洗浄に時間がかかり経済的ではな
い。また、中空糸膜では内部凝固液にのみ添加したり、
外部凝固液にのみ添加することによつて、片側の面、例
えば処理液と接する面の方をより親水性高分子の残存率
を高めて親水性を増大化させることも可能である。
For the coagulation liquid, a hydrophilic polymer is added to a film material such as water, alcohols, glycols or the like, a non-solvent or a poor solvent alone or a mixed solution of two or more, or a mixed solution of these and a solvent. These non-solvents or poor solvents need to be capable of dissolving the hydrophilic polymer, and need to be diffused into the membrane during coagulation and incorporated into the membrane. Accordingly, the hydrophilic polymer preferably has as low a molecular weight as possible because it is easily dispersed uniformly. However, a high molecular weight has the advantage of requiring a small amount of addition. The amount of the hydrophilic polymer added in the coagulation liquid varies depending on the type and molecular weight, but is usually 0.1 to 20.
% By weight, preferably 1 to 10% by weight. When the content is less than 0.1% by weight, a sufficient hydrophilic effect cannot be obtained, and when the content is more than 20% by weight, it takes a long time to wash an excessive hydrophilic polymer, which is not economical. Also, for hollow fiber membranes, it can be added only to the internal coagulation liquid,
By adding only to the external coagulation liquid, it is also possible to increase the hydrophilicity by increasing the residual ratio of the hydrophilic polymer on one surface, for example, the surface in contact with the processing liquid.

次に、凝固液に浸漬して得られた膜は水洗や熱水処理
をして溶媒、非溶媒または膨潤剤を抽出する。この際、
親水性高分子として水溶性高分子を用いた場合は同時に
抽出されるが、抽出される親水性高分子はほとんどが過
剰分であって親水性高分子が完全に抽出されることはな
い。これは、凝固時に親水性高分子が膜素材に取り込ま
れた状態で残るためと推測できる。そのため水溶性高分
子であつても親水性効果を発揮する量は充分に残存す
る。しかし、水溶性高分子はこのままだと使用時にわず
かながら溶出する恐れがあり、食品関係やメデイカル関
係等の用途によつて問題となる場合がある。このような
場合には物理的または化学的手段で親水性高分子を不溶
化させることが好ましい。
Next, the film obtained by immersion in the coagulation liquid is washed with water or treated with hot water to extract a solvent, a non-solvent or a swelling agent. On this occasion,
When a water-soluble polymer is used as the hydrophilic polymer, the water-soluble polymer is extracted at the same time. However, most of the extracted hydrophilic polymer is an excess, and the hydrophilic polymer is not completely extracted. This can be presumed to be because the hydrophilic polymer remains in the state of being taken into the membrane material during coagulation. Therefore, even if it is a water-soluble polymer, a sufficient amount to exhibit a hydrophilic effect remains. However, the water-soluble polymer may be slightly eluted at the time of use if left as it is, which may cause a problem depending on uses such as food-related and medical-related. In such a case, it is preferable to insolubilize the hydrophilic polymer by physical or chemical means.

このようにして製造された膜は、親水性に優れてお
り、乾燥しても透水性性能が低下することがないため完
全ドライ膜としても使用できる。これによつて、モジユ
ール化、その保存や運搬等の作業性が大幅に向上するた
め、製造コストの低下につなげることができる。
The membrane produced in this way is excellent in hydrophilicity, and does not deteriorate in water permeability even when dried, so that it can be used as a completely dry membrane. As a result, the workability such as modularization, storage and transport thereof is greatly improved, which can lead to a reduction in manufacturing cost.

(実施例) 次に本発明の製造方法を実施例によつて更に詳しく説
明する。
(Example) Next, the manufacturing method of the present invention will be described in more detail with reference to examples.

なお、透水性の測定は、有効過長15cmのモジユール
を作成し、膜に25℃の純水で1kg/cm2の水圧をかけ、透
過した純水の量を測定して算出した。
The water permeability was calculated by preparing a module having an effective length of 15 cm, applying a water pressure of 1 kg / cm 2 to the membrane with pure water at 25 ° C., and measuring the amount of permeated pure water.

実施例1 ポリスルホン(UDEL P−1700アモコ社製)19重量
%、ポリエチレングリコール(#600三洋化成社製)29
重量%、ジメチルホルムアミド52重量%を混合溶解して
製膜溶液とした。これをアプリケーターを用い30℃でガ
ラス板上にキヤステイングし、10秒間空気中に放置した
後に、ポリビニルアルコール(PVA−217クラレ社製)2
重量%、ジメチルホルムアミド78重量%、水20重量%か
らなる50℃の凝固液に浸漬し凝固させた。できた膜を充
分に水洗したのちに、硫酸存在下でグルタールアルデヒ
ドを用いてポリビニルアルコールを架橋し、90℃の熱水
で1時間洗浄した。これを60℃で5時間乾燥した後、分
離膜の透水性を測定したところ4m3/m2・hr・kg/cm2であ
つた。この膜を75重量%のエタノールで湿潤化した後
と、更に再乾燥した後の透水性を測定したが、どちらも
最初の透水性と変わらず、恒久的な親水性を有している
ことが認められた。
Example 1 Polysulfone (UDEL P-1700 manufactured by Amoko) 19% by weight, polyethylene glycol (# 600 manufactured by Sanyo Chemical) 29
% By weight and 52% by weight of dimethylformamide were mixed and dissolved to prepare a film forming solution. This is cast on a glass plate at 30 ° C. using an applicator and left in the air for 10 seconds, and then polyvinyl alcohol (PVA-217, manufactured by Kuraray) 2
It was immersed and coagulated in a coagulation liquid at 50 ° C., which consisted of 80% by weight, 78% by weight of dimethylformamide and 20% by weight of water. After sufficiently washing the resulting film with water, the polyvinyl alcohol was crosslinked with glutaraldehyde in the presence of sulfuric acid, and washed with hot water at 90 ° C. for 1 hour. After drying at 60 ° C. for 5 hours, the water permeability of the separation membrane was measured and found to be 4 m 3 / m 2 · hr · kg / cm 2 . The water permeability was measured after wetting the membrane with 75% by weight of ethanol and after re-drying, and it was confirmed that both membranes had the same permanent water permeability and had permanent hydrophilicity. Admitted.

実施例2 実施例1で用いた製膜溶液を30℃に保ち、外径1.6m
m、内径0.8mmの2重環状ノズルより内部凝固液としてポ
リビニルアルコール(PVA−205クラレ社製)3重量%、
ジメチルホルムアミド79重量%、水18重量%からなる30
℃の混合溶液と同時に吐出し、10cmの加湿空気中を通し
た後、外部凝固液である50℃の水に浸漬して、外径1.3m
m、内径0.8mmの中空糸膜を得た。この膜を水洗して溶
媒、ポリエチレングリコール及び過剰のポリビニルアル
コールを洗浄除去後、実施例1と同様にポリビニルアル
コールの架橋と熱水処理を行い、60℃で8時間乾燥し
た。この膜の透水性は2.7m3/m2・hr・kg/cm2であり、湿
潤化した後と再乾燥した後の透水性の変化はみられず恒
久的な親水性が認められた。
Example 2 The film forming solution used in Example 1 was kept at 30 ° C., and the outer diameter was 1.6 m.
m, 3% by weight of polyvinyl alcohol (PVA-205 manufactured by Kuraray) as an internal coagulating liquid from a double annular nozzle with an inner diameter of 0.8 mm,
30 consisting of 79% by weight of dimethylformamide and 18% by weight of water
The mixture was discharged simultaneously with the mixed solution at 10 ° C, passed through 10 cm of humidified air, and immersed in 50 ° C water, which is an external coagulation liquid, with an outer diameter of 1.3 m
m, a hollow fiber membrane having an inner diameter of 0.8 mm was obtained. This film was washed with water to remove the solvent, polyethylene glycol and excess polyvinyl alcohol, and then crosslinked with polyvinyl alcohol and treated with hot water in the same manner as in Example 1 and dried at 60 ° C. for 8 hours. The water permeability of this membrane was 2.7 m 3 / m 2 · hr · kg / cm 2 , and there was no change in water permeability after wetting and re-drying, indicating permanent hydrophilicity.

実施例3 内部凝固液にポリビニルアルコール(PVA−203)8重
量%、エタノール75重量%、水17重量%で構成される溶
液、外部凝固液にポリビニルアルコール(PVA−203)2
重量%水溶液を使用した以外は実施例2と同様にして中
空糸膜を得た。この膜の湿潤化した後と再乾燥した後の
透水性はいづれも0.8m3/m2・hr・kg/cm2であり、実施例
2と同様に恒久的な親水性が認められた。
Example 3 A solution composed of 8% by weight of polyvinyl alcohol (PVA-203), 75% by weight of ethanol and 17% by weight of water in the internal coagulating liquid, and polyvinyl alcohol (PVA-203) 2 in the external coagulating liquid
A hollow fiber membrane was obtained in the same manner as in Example 2 except that a weight% aqueous solution was used. The water permeability of the membrane after wet and after re-drying was 0.8 m 3 / m 2 · hr · kg / cm 2 in both cases, and permanent hydrophilicity was recognized as in Example 2.

実施例4 内部凝固液としてカルボン酸変性ポリビニルアルコー
ル(KL−506クラレ社製)3重量%、ジメチルホルムア
ミド75重量%、水22重量%の混合溶液を用いた以外は実
施例2同様にして中空糸膜を得た。この膜の湿潤化した
後と再乾燥した後の透水性はいづれも1.6m3/m2・hr・kg
/cm2であり、実施例2と同様に恒久的な親水性が認めら
れた。
Example 4 Hollow fiber in the same manner as in Example 2 except that a mixed solution of 3% by weight of carboxylic acid-modified polyvinyl alcohol (manufactured by Kuraray Co., Ltd.), 75% by weight of dimethylformamide, and 22% by weight of water was used as the internal coagulating liquid. A membrane was obtained. Izure After the wet and re-dried permeability after the membrane is also 1.6m 3 / m 2 · hr · kg
/ cm 2 , and permanent hydrophilicity was recognized as in Example 2.

実施例5 ポリスルホン19重量%、無水塩化リチウム1重量%、
ジメチルホルムアミド80重量%混合溶解して製膜原液と
した。これを内部凝固液としてポリビニルピロリドン
(K−30 JAF社製)5重量%、ジメチルホルムアミド8
0重量%、水15重量%で構成される溶液と共に外径0.9m
m、内径0.4mmの2重環状ノズルから40℃で吐出し、15cm
の加湿空気中を通した後、外部凝固液である40℃の水に
浸漬した。更に水洗30分、熱水処理60分を行い、60℃で
乾燥して外径0.6mm、内径0.4mmの中空糸膜を得た。この
膜を160℃で8時間乾燥処理しポリビニルピロリドンを
不溶化させた。得られた膜の湿潤化後と再乾燥した後の
透水性はいづれも3.4m3/m2・hr・kg/cm2で、実施例2と
同様に恒久的な親水性が認められた。
Example 5 19% by weight of polysulfone, 1% by weight of anhydrous lithium chloride,
Dimethylformamide (80% by weight) was mixed and dissolved to form a stock solution. This was used as an internal coagulation liquid by polyvinylpyrrolidone (K-30 manufactured by JAF) 5% by weight, dimethylformamide 8
0.9m outer diameter with a solution consisting of 0% by weight and 15% by weight of water
m, discharge from a double annular nozzle with an inner diameter of 0.4mm at 40 ° C, 15cm
And then immersed in water at 40 ° C. as an external coagulating liquid. Further, the membrane was washed with water for 30 minutes and treated with hot water for 60 minutes, and dried at 60 ° C. to obtain a hollow fiber membrane having an outer diameter of 0.6 mm and an inner diameter of 0.4 mm. This film was dried at 160 ° C. for 8 hours to insolubilize polyvinylpyrrolidone. The resulting membrane had a water permeability of 3.4 m 3 / m 2 · hr · kg / cm 2 both after wetting and after re-drying, and permanent hydrophilicity was recognized as in Example 2.

実施例6 内部凝固液としてビニルピロリドン・4級化ジメチル
アミノエチルメタクリレート共重合体(GAFQUAT #755
GAF社製)2重量%、ジメチルホルムアミド75重量
%、水23重量%を使用した以外は実施例5と同様にして
中空糸膜を得た。湿潤化後と再乾燥した後の透水性は1.
5m3/m2・hr・kg/cm2で、実施例2と同様に恒久的な親水
性が認められた。
Example 6 A vinylpyrrolidone / quaternized dimethylaminoethyl methacrylate copolymer (GAFQUAT # 755) was used as an internal coagulating liquid.
A hollow fiber membrane was obtained in the same manner as in Example 5 except that 2% by weight (manufactured by GAF), 75% by weight of dimethylformamide, and 23% by weight of water were used. The water permeability after wetting and after re-drying is 1.
At 5 m 3 / m 2 · hr · kg / cm 2 , permanent hydrophilicity was recognized as in Example 2.

実施例7 ポリスルホン酸17重量%、ポリエチレングリコール34
重量%、ジメチルアセトアミド49重量%を混合溶解して
製膜原液とした。これを内部凝固液としてポリビニルア
ルコール(PVA−203)1重量%、ジメチルアセトアミド
50重量%、水49重量%で構成される溶液と共に外径0.5m
m、内径0.25mmの2重環状ノズルから50℃で吐出し、5cm
の加湿空気中を通した後、外部凝固液である50℃の水に
浸漬した。次に、水洗30分、熱水処理30分を行い膜を洗
浄した後に、実施例2と同様な方法でポリビニルアルコ
ールを不溶化し、更に60℃の温水で1時間水洗し50℃で
8時間乾燥させて外径290μm、内径200μmの中空糸膜
を得た。この膜の透水性は0.25m3/m2・hr・kg/cm2で実
施例2と同様に恒久的な親水性が認められた。
Example 7 17% by weight of polysulfonic acid, polyethylene glycol 34
And dimethylacetamide (49% by weight) were mixed and dissolved to form a membrane-forming stock solution. This is used as an internal coagulating liquid, 1% by weight of polyvinyl alcohol (PVA-203), dimethylacetamide
0.5m outer diameter with a solution consisting of 50% by weight and 49% by weight of water
m, discharged from a double annular nozzle with an inner diameter of 0.25 mm at 50 ° C, 5 cm
And then immersed in 50 ° C. water as an external coagulating liquid. Next, the membrane was rinsed with water for 30 minutes and then treated with hot water for 30 minutes, and then the polyvinyl alcohol was insolubilized in the same manner as in Example 2. Thus, a hollow fiber membrane having an outer diameter of 290 μm and an inner diameter of 200 μm was obtained. Permeability of this membrane was 0.25 m 3 / m 2 · hr · kg / cm 2 , and permanent hydrophilicity was recognized as in Example 2.

次に、この膜を9600本束ねて有効面積1.7m2の人工腎
臓用モジユールを作製した。このモジユールを用いた透
析性能の評価結果を表−1荷示す。
Next, a module for an artificial kidney having an effective area of 1.7 m 2 was produced by bundling 9600 of these membranes. Table 1 shows the evaluation results of the dialysis performance using this module.

実施例8 ポリイミド(2080D アツプジヨン社製)18重量%、
エチレングリコール18重量%、ジメチルホルムアミド64
重量%を混合溶解し製膜溶液とした。この溶液を30℃に
保ち、外径1.6mm、内径0.8mmの2重環状ノズルより内部
凝固液としてポリビニルアルコール(PVA−205)3重量
%、ジメチルホルムアミド70重量%、水27重量%で構成
される30℃の混合溶液と同時に吐出し、15cmの加湿空気
中を通した後、外部凝固液である30℃の水に浸漬し外径
1.3mm、内径0.8mmの中空糸膜を得た。この膜を水洗して
溶媒、エチレングリール、過剰のポリビニルアルコール
を洗浄除去後、実施例1と同様にポリビニルアルコール
の架橋と熱水処理を行い、60℃で8時間乾燥した。この
膜の透水性は1.2m3/m2・hr・kg/cm2であり、湿潤化した
後と再乾燥した後の透水性の変化は全くみられず恒久的
な親水性が認められた。
Example 8 18% by weight of polyimide (2080D manufactured by Appilion Corporation)
Ethylene glycol 18% by weight, dimethylformamide 64
Wt% were mixed and dissolved to form a film forming solution. This solution was kept at 30 ° C., and was composed of 3% by weight of polyvinyl alcohol (PVA-205), 70% by weight of dimethylformamide, and 27% by weight of water as an internal coagulating liquid from a double annular nozzle having an outer diameter of 1.6 mm and an inner diameter of 0.8 mm. At the same time as the mixed solution at 30 ° C, pass through a humidified air of 15 cm, then immerse in 30 ° C water,
A hollow fiber membrane having a diameter of 1.3 mm and an inner diameter of 0.8 mm was obtained. This film was washed with water to remove the solvent, ethylene glycol, and excess polyvinyl alcohol, and then crosslinked with polyvinyl alcohol and treated with hot water in the same manner as in Example 1, and dried at 60 ° C. for 8 hours. The water permeability of the film was 1.2m 3 / m 2 · hr · kg / cm 2, wetting and permeability changes after the redrying after not observed at all permanent hydrophilicity was observed .

(発明の効果) 以上のように特定量の親水性高分子を含有する凝固液
を用いることによつて、製膜溶液を変えず、工程もあま
り増えず、しかも凝固液に親水性高分子を含有させると
いうわずかの操作で、各用途に適した物性を有する親水
性膜を容易に製造することができる。そのため、工業用
途やメデイカル用途等幅広い分野での使用が可能であ
る。
(Effect of the Invention) As described above, by using the coagulating liquid containing a specific amount of the hydrophilic polymer, the film forming solution is not changed, the number of steps is not increased, and the hydrophilic polymer is added to the coagulating liquid. With a slight operation of adding a hydrophilic film, a hydrophilic film having physical properties suitable for each application can be easily produced. Therefore, it can be used in a wide range of fields such as industrial use and medical use.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−55308(JP,A) 特開 昭63−28405(JP,A) 特開 昭60−7853(JP,A) 特開 昭62−294405(JP,A) 特開 昭57−133211(JP,A) 特開 平2−135131(JP,A) 特公 平5−63214(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B01D 69/02 B01D 71/68 B01D 71/64──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-55308 (JP, A) JP-A-63-28405 (JP, A) JP-A-60-7853 (JP, A) JP-A-62 294405 (JP, A) JP-A-57-133211 (JP, A) JP-A-2-135131 (JP, A) JP-B 5-63214 (JP, B2) (58) Fields investigated (Int. 6 , DB name) B01D 69/02 B01D 71/68 B01D 71/64

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】疎水性高分子と溶媒、非溶媒、または膨脹
剤からなる溶液をノズルから凝固浴へ押し出して製膜す
る際に、凝固液として0.1〜20重量%の親水性高分子を
含有する溶液を用い、膜内部および膜表面に該親水性高
分子を残存させることを特徴とする親水化膜の製造方
法。
When a solution comprising a hydrophobic polymer and a solvent, a non-solvent, or an expanding agent is extruded from a nozzle into a coagulation bath to form a film, 0.1 to 20% by weight of a hydrophilic polymer is contained as a coagulation liquid. A method for producing a hydrophilized film, wherein the hydrophilic polymer is left inside the film and on the surface of the film using a solution to be hydrolyzed.
JP2292541A 1990-10-29 1990-10-29 Method for producing hydrophilic membrane Expired - Fee Related JP2813452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2292541A JP2813452B2 (en) 1990-10-29 1990-10-29 Method for producing hydrophilic membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2292541A JP2813452B2 (en) 1990-10-29 1990-10-29 Method for producing hydrophilic membrane

Publications (2)

Publication Number Publication Date
JPH04166219A JPH04166219A (en) 1992-06-12
JP2813452B2 true JP2813452B2 (en) 1998-10-22

Family

ID=17783120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2292541A Expired - Fee Related JP2813452B2 (en) 1990-10-29 1990-10-29 Method for producing hydrophilic membrane

Country Status (1)

Country Link
JP (1) JP2813452B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543465A (en) * 1993-03-19 1996-08-06 Gambro Dialysatoren Gmbh & Co. Process for the production of hydrophilic membranes
DE60141026D1 (en) * 2000-07-27 2010-02-25 Nof Corp MODIFIED HOLLOW FIBER MEMBRANE
DE102004008219B3 (en) * 2004-02-19 2005-10-27 Membrana Gmbh Integral asymmetric membrane, process for its preparation and its use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955308A (en) * 1982-09-21 1984-03-30 Toyobo Co Ltd Separation membrane for gas
JPS607853A (en) * 1983-06-29 1985-01-16 帝人株式会社 Permselective hollow yarn membrane, serum component separation method using same, serum separator, serum component separating apparatus and blood treating apparatus
JPH0712416B2 (en) * 1986-07-17 1995-02-15 東洋紡績株式会社 Hollow fiber type substance separation membrane

Also Published As

Publication number Publication date
JPH04166219A (en) 1992-06-12

Similar Documents

Publication Publication Date Title
US4720343A (en) Macroporous asymmetrical hydrophilic membrane made of a synthetic polymer
US4113912A (en) Hydrophilic porous structures and process for production thereof
US4810384A (en) Hydrophilic PVDF semipermeable membrane
EP0394193B1 (en) Coated membranes
US20080214687A1 (en) Cross Linking Treatment of Polymer Membranes
JPH05192551A (en) Solvent resisting composite membrane
JPH0525529B2 (en)
JP2519831B2 (en) Method for producing charged separation membrane
JP3617194B2 (en) Permselective separation membrane and method for producing the same
JP2813452B2 (en) Method for producing hydrophilic membrane
JPS6238205A (en) Semi-permeable membrane for separation
JP3216910B2 (en) Porous hollow fiber membrane
JP2899352B2 (en) Porous hollow fiber membrane
JP2899347B2 (en) Porous hollow fiber membrane
JP3043093B2 (en) Separation membrane treatment method
AU2006261581B2 (en) Cross linking treatment of polymer membranes
JP2883406B2 (en) Hydrophilic membrane
JPS6160165B2 (en)
JPS61125408A (en) Method for making porous polyolefin hollow yarn hydrophilic
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JPH08131793A (en) Treatment film for donating hydrophilic effects
JP3524637B2 (en) Method for producing polymer porous membrane
JPH0470936B2 (en)
JPS6211503A (en) Film for drying and filtration
JPH054126B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees