JP2801451B2 - Jig for metal processing - Google Patents

Jig for metal processing

Info

Publication number
JP2801451B2
JP2801451B2 JP3342842A JP34284291A JP2801451B2 JP 2801451 B2 JP2801451 B2 JP 2801451B2 JP 3342842 A JP3342842 A JP 3342842A JP 34284291 A JP34284291 A JP 34284291A JP 2801451 B2 JP2801451 B2 JP 2801451B2
Authority
JP
Japan
Prior art keywords
jig
film
carbon film
metal
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3342842A
Other languages
Japanese (ja)
Other versions
JPH05169162A (en
Inventor
明俊 富山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3342842A priority Critical patent/JP2801451B2/en
Publication of JPH05169162A publication Critical patent/JPH05169162A/en
Application granted granted Critical
Publication of JP2801451B2 publication Critical patent/JP2801451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウムや銅等を
含む軟質金属を加工するための治具に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jig for processing a soft metal including aluminum, copper and the like.

【0002】[0002]

【従来技術】従来より、塑性変形を用いた金属加工法と
しては、圧延、引抜、せん断加工、曲げ、絞り、圧縮、
転造等が知られている。これらの加工を行うには、被加
工金属と点、線あるいは面で接触して被加工金属を塑性
変形させる加工治具が存在する。例えば、打抜用のポン
チやダイス、絞り加工用のポンチ、ダイス、伸線用のダ
イス等がこれに該当する。
2. Description of the Related Art Conventionally, metal working methods using plastic deformation include rolling, drawing, shearing, bending, drawing, compression,
Rolling and the like are known. In order to perform these processes, there is a processing jig that contacts the metal to be processed at a point, a line, or a plane and plastically deforms the metal to be processed. For example, punches and dies for punching, punches and dies for drawing, dies for drawing, and the like correspond to this.

【0003】これらの治具は、被加工金属と接触し、場
合によっては摺動しながら塑性変形を行わしめるため
に、治具自体耐摩耗性が高く、摩擦係数が低い、即ち摺
動特性に優れていることが要求されている。このような
観点から従来より加工用治具としては超硬合金製のもの
が最も一般的に用いられている。
[0003] Since these jigs come into contact with the metal to be processed and, in some cases, undergo plastic deformation while sliding, the jigs themselves have high wear resistance and a low friction coefficient, that is, have low sliding characteristics. It is required to be excellent. From such a viewpoint, a jig made of cemented carbide is most generally used as a processing jig.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、アル
ミニウムや銅等の軟質金属を加工する場合には、例え
ば、治具が焼結体からなる場合に、焼結体の表面に存在
するボイド部に金属が詰まり、溶着するといったビルド
アップ現象が生じ、これにより加工後の金属製品の表面
に荒れが生じるといった問題がある。そのため、治具を
再使用するために、治具の表面をダイヤモンド粉等で研
磨する工程が必要となり、しかも治具自体の寸法が変化
する等の問題が生じる。
However, when a soft metal such as aluminum or copper is processed, for example, when the jig is made of a sintered body, the voids existing on the surface of the sintered body may be damaged. There is a problem that a build-up phenomenon such as clogging and welding of metal occurs, which causes roughness on the surface of the processed metal product. Therefore, in order to reuse the jig, a step of polishing the surface of the jig with diamond powder or the like is required, and there is a problem that the dimensions of the jig itself change.

【0005】また、最近では製品の軽量化、低コスト化
に際して、例えば絞り加工等を行う場合に製品の肉厚を
薄くする傾向にある。このような場合、成形圧を小さく
することが必要であるが、従来の治具では摩擦係数が高
いために成形圧力を下げることが困難であった。
In recent years, in order to reduce the weight and cost of a product, the thickness of the product tends to be reduced when, for example, drawing is performed. In such a case, it is necessary to reduce the molding pressure, but it is difficult to reduce the molding pressure with a conventional jig due to a high friction coefficient.

【0006】これらの問題を解消するために固体又は液
体の潤滑材が用いられているが、これらの効果も充分で
なく、長期間の使用により前述したような治具の表面状
態が悪化し、製品に対して悪影響を及ぼすことは避けら
れないのが現状であった。
[0006] Solid or liquid lubricants have been used to solve these problems, but their effects are not sufficient, and the surface condition of the jig as described above deteriorates due to long-term use. At present, it is inevitable that the product will have an adverse effect.

【0007】また、最近では、金属加工用治具の表面に
ダイヤモンド膜を形成して耐摩耗性を向上させることも
提案されているが、摩擦係数低減の点からは充分に検討
されておらず、まして軟質金属の加工における溶着等の
問題については全く検討されていない。
In recent years, it has been proposed to form a diamond film on the surface of a jig for metal working to improve wear resistance, but it has not been sufficiently studied from the viewpoint of reducing the friction coefficient. In addition, the problem of welding and the like in the processing of soft metals has not been studied at all.

【0008】よって、本発明の目的は、アルミニウムや
銅等の軟質金属を加工する際に優れた摺動特性を有し、
溶着等の発生を抑制した金属加工用治具を提供すること
を目的とするものである。
Accordingly, an object of the present invention is to have excellent sliding characteristics when processing a soft metal such as aluminum or copper,
An object of the present invention is to provide a jig for metal processing in which occurrence of welding or the like is suppressed.

【0009】[0009]

【問題点を解決するための手段】本発明者等は上記目的
に対して検討を重ね、金属加工用治具に対して硬質炭素
膜を形成する場合の各種の成膜方法や、成膜される炭素
膜の特性について詳細に検討したところ、所定の母材の
表面にダイヤモンドと非晶質炭素から構成され、ラマン
分光スペクトル分析において1333±10cm-1に存
在する最大のピークの強度をH1 、1500±100c
-1に存在する最大のピークの強度をH2とした時、H
2 /H1 で表される強度比が0.2乃至20であり、そ
の表面粗さ(Rmax)が2μm以下の表面平滑性に優
れた硬質炭素膜を被覆形成することにより前記目的が達
成されることを知見した。
Means for Solving the Problems The inventors of the present invention have studied the above objects and have studied various methods for forming a hard carbon film on a metal working jig, and various methods for forming a hard carbon film. characteristics of the carbon film was examined in detail that is composed of diamond and amorphous carbon on the surface of a predetermined base material, the intensity of the largest peak present in 1333 ± 10 cm -1 in the Raman spectrum analysis H 1 1500 ± 100c
When the intensity of the largest peak existing at m −1 is H 2 , H
The above object is achieved by forming a hard carbon film having an intensity ratio represented by 2 / H 1 of 0.2 to 20 and a surface roughness (Rmax) of 2 μm or less and having excellent surface smoothness. I learned that

【0010】[0010]

【0011】以下、本発明を詳述する。本発明の金属加
工用治具は、所定の母材の表面に形成する硬質炭素膜を
被覆してなるものであるが、特にその膜の表面粗さを2
μm以下に制御することが重要である。被金属との接触
部において治具の表面粗さが加工後の製品の表面状態に
大きく影響を与えるためで、膜の表面粗さが2μmを越
えると、軟質金属との接触により膜に対して金属が溶着
しやすくなり、加工製品の表面が荒れたり、傷が付いた
りするとともに加工時の金属との接触抵抗が大きく、硬
質炭素膜の摩耗が大きくなったり、炭素膜の剥がれ等を
生じるためであり、特に1μm以下であることが望まし
い。
Hereinafter, the present invention will be described in detail. The metal working jig of the present invention is formed by coating a hard carbon film formed on the surface of a predetermined base material.
It is important to control the thickness to less than μm. This is because the surface roughness of the jig at the point of contact with the metal greatly affects the surface condition of the product after processing. If the surface roughness of the film exceeds 2 μm, The metal is easily welded, the surface of the processed product becomes rough and scratched, and the contact resistance with the metal during processing is large, the wear of the hard carbon film increases, the carbon film peels off, etc. It is particularly desirable that the thickness be 1 μm or less.

【0012】また、本発明によれば、膜自体の結晶性が
高く、ダイヤモンドのみから構成される場合には、膜を
構成する結晶の粒径が大きくなる傾向にあるために、膜
の表面粗さが大きくなる傾向にある。これに対して硬質
炭素膜の結晶性を低くし、ダイヤモンド中に非晶質炭素
を存在せしめることにより、膜の表面粗さは小さくなる
傾向にある。本発明によれば、膜の平均結晶粒径は結晶
の平均粒径が3μm以下、特に1μm以下の微細な結晶
であることが望ましい。
Further, according to the present invention, when the film itself has a high crystallinity and is composed only of diamond, the crystal constituting the film tends to have a large grain size, so that the surface roughness of the film is high. Tend to increase. On the other hand, by lowering the crystallinity of the hard carbon film and allowing amorphous carbon to be present in the diamond, the surface roughness of the film tends to decrease. According to the present invention, the average crystal grain size of the film is preferably a fine crystal having an average crystal grain size of 3 μm or less, particularly 1 μm or less.

【0013】また、本発明におけるダイヤモンドは、そ
れ自体立方晶の構造を呈し、膜に対して耐摩耗性を付与
することができるが、非晶質炭素はグラファイト的構造
を呈し、膜の摺動特性を向上することができる。かかる
硬質炭素膜は、ダイヤモンドと非晶質炭素との存在比率
が、ラマン分光スペクトル分析において1333±10
cm-1に存在する最大のピークの強度をH1 、1500
±100cm-1に存在する最大のピークの強度をH2
した時、H2 /H1 で表される強度比が0.2〜20、
特に1〜10の範囲にあることが望ましい。この比率
は、その値が小さくなるに従い膜の結晶性が高まること
を意味しており、その比率が0.2より低いと結晶性が
高く、ダイヤモンドの量が多くなり膜の硬度が高くなる
が、表面粗さが大きくなるとともに金属との摩擦係数が
上昇するために、膜の表面を研磨加工することが必要と
なる。また、上記比率が20を越えると、非晶質炭素が
多くなり、摺動特性は維持されるが膜の耐摩耗性が低下
する傾向にある。
The diamond of the present invention itself has a cubic structure and can provide abrasion resistance to the film. However, amorphous carbon has a graphite-like structure and the film has a sliding property. Characteristics can be improved. In such a hard carbon film, the existence ratio of diamond to amorphous carbon was 1333 ± 10
The intensity of the largest peak present at cm -1 is H 1 , 1500
When the intensity of the maximum peak existing at ± 100 cm −1 is defined as H 2 , the intensity ratio represented by H 2 / H 1 is 0.2 to 20,
In particular, it is desirable to be in the range of 1 to 10. This ratio means that the crystallinity of the film increases as the value decreases.If the ratio is lower than 0.2, the crystallinity increases, the amount of diamond increases, and the hardness of the film increases. Since the surface roughness increases and the coefficient of friction with metal increases, it is necessary to polish the surface of the film. On the other hand, when the above ratio exceeds 20, the amount of amorphous carbon increases, and the sliding characteristics are maintained, but the abrasion resistance of the film tends to decrease.

【0014】なお、本発明において、金属加工用治具の
母材としては特に限定されるものではないが、例えば窒
化珪素、炭化珪素等のセラミックス材料の他にWC−C
o系超硬合金やTiC、TiCNを主成分とするサーメ
ット等を用いることができるが、これらの中でも特に窒
化珪素を主体とするセラミックスが付着力が高いことか
ら望ましい。
In the present invention, the base material of the jig for metal working is not particularly limited. For example, in addition to ceramic materials such as silicon nitride and silicon carbide, WC-C
An o-based cemented carbide, a cermet containing TiC or TiCN as a main component, or the like can be used. Among them, a ceramic mainly containing silicon nitride is particularly preferable because of its high adhesive force.

【0015】硬質炭素膜の形成方法として、一般的なマ
イクロ波プラズマCVD法、熱フィラメントCVD法、
高周波プラズマCVD法、熱プラズマCVD法等が知ら
れているが、これらの方法は、一般に成膜できる領域が
小さいため、本発明の金属加工用治具の必要な部位全面
に成膜するためには、何度かに分けて成膜しなければな
らない。また、熱フィラメント法の場合は、治具の形状
に合わせてフィラメントを張る等の操作を要するため汎
用性に欠けるという問題がある。そこで、本発明におけ
る金属加工用治具を製造するためには、成膜方法とし
て、電子サイクロトロンプラズマCVD法(以下、EC
Rプラズマ法という)を採用する。この方法による製造
方法について図1をもとに説明する。反応炉1内には炭
素膜が形成される母材2が設置されている。また反応炉
の周囲には反応炉内にプラズマを発生させるためのマイ
クロ波発生装置3および磁界を発生させるための電磁コ
イル4が配置されている。
As a method of forming a hard carbon film, a general microwave plasma CVD method, a hot filament CVD method,
A high-frequency plasma CVD method, a thermal plasma CVD method, and the like are known. However, these methods generally have a small area where a film can be formed. Must be formed several times. Further, in the case of the hot filament method, there is a problem that versatility is lacking because an operation such as stretching a filament in accordance with the shape of the jig is required. Therefore, in order to manufacture the jig for metal working in the present invention, an electron cyclotron plasma CVD method (hereinafter referred to as EC) is used as a film forming method.
R plasma method). A manufacturing method according to this method will be described with reference to FIG. A base material 2 on which a carbon film is formed is installed in a reaction furnace 1. A microwave generator 3 for generating plasma in the reactor and an electromagnetic coil 4 for generating a magnetic field are arranged around the reactor.

【0016】かかる装置を用いて成膜する場合には、反
応炉内に炭素膜生成用ガスとして少なくとも炭素を含有
する原料ガスを、場合により水素等のキャリアガスとと
もにガス導入路5を経由して路内に導入する。そして、
反応炉内を圧力1torr以下の低圧力に維持すると同
時に、導波管6により2.45GHzのマイクロ波を炉
内に導入する。それと同時に電磁コイル4により約87
5ガウス以上のレベルの磁界を印加する。これにより、
電子はサイクロトロン周波数f=eB/2πm(m:電
子の質量、e:電子の電荷、B:磁束密度)に基づきサ
イクロトロン運動を起こす。この周波数がマイクロ波の
周波数(2.45GHz)と一致するとき、即ち、磁束
密度Bが875ガウスとなる時に、電子サイクロトロン
共鳴が生じる。これにより電子はマイクロ波のエネルギ
ーを著しく吸収して加速され、中性分子に衝突し電離を
起こさせ、低圧力でも高密度のプラズマを生成するよう
になる。
When a film is formed by using such an apparatus, a raw material gas containing at least carbon as a gas for forming a carbon film is supplied through a gas introduction path 5 together with a carrier gas such as hydrogen, if necessary, into a reaction furnace. Introduce in the road. And
While maintaining the inside of the reaction furnace at a low pressure of 1 torr or less, a microwave of 2.45 GHz is introduced into the furnace through the waveguide 6. At the same time, about 87
A magnetic field of a level of 5 gauss or more is applied. This allows
Electrons cause cyclotron motion based on the cyclotron frequency f = eB / 2πm (m: mass of electrons, e: charge of electrons, B: magnetic flux density). When this frequency coincides with the microwave frequency (2.45 GHz), that is, when the magnetic flux density B becomes 875 Gauss, electron cyclotron resonance occurs. As a result, the electrons are remarkably absorbed by the microwave energy, accelerated, collide with neutral molecules and cause ionization, and generate high-density plasma even at a low pressure.

【0017】なお、この時の基体の温度を150〜12
00℃に保持することにより、基体表面に炭素膜を形成
することができる。
The temperature of the substrate at this time is set to 150 to 12
By maintaining the temperature at 00 ° C., a carbon film can be formed on the substrate surface.

【0018】本発明において、前述した所定の特性を有
する硬質炭素膜を生成させる場合には、およそ基体温度
を150℃〜800℃、原料ガス濃度を10〜60%、
炉内圧力を1×10-3torr〜1torrの範囲に設
定すればよい。
In the present invention, when a hard carbon film having the above-mentioned predetermined characteristics is to be formed, the substrate temperature is about 150 ° C. to 800 ° C., the raw material gas concentration is about 10% to 60%,
The furnace pressure may be set in the range of 1 × 10 −3 torr to 1 torr.

【0019】上記製造方法において用いられる炭素含有
原料ガスとしては、メタン、エタン、プロパン等の炭化
水素ガスの他にCX Y Z (x、y、zはいずれも1
以上)で示されるような有機化合物やCO、CO2 等の
ガスを用いることもできる。
As the carbon-containing source gas used in the above-mentioned production method, in addition to hydrocarbon gases such as methane, ethane and propane, C x H Y O Z (x, y and z are each 1)
Organic compounds and gases such as CO and CO 2 as described above can also be used.

【0020】これらのガスの配合比率や種類は、特開昭
60−19197号や特開昭61−183198号等に
開示される公知の方法のいずれを用いても本発明の効果
に何ら影響を及ぼさない。
The mixing ratio and type of these gases have no effect on the effects of the present invention regardless of any of the known methods disclosed in JP-A-60-19197 and JP-A-61-183198. Has no effect.

【0021】さらに、本発明の金属加工用治具は、アル
ミニウム、銅あるいはこれらを主体とする合金等の軟質
金属を加工する場合に、特に有効であり、治具として
は、例えば、絞り加工に用いられるダイス、ポンチや伸
線に用いられる引抜ダイス等が挙げられる。
Further, the jig for metal working of the present invention is particularly effective when working with soft metals such as aluminum, copper or alloys mainly composed of aluminum and copper. Examples of the die include a die used, a punch and a drawing die used for wire drawing.

【0022】[0022]

【作用】本発明によれば、金属加工用治具の表面に形成
される硬質炭素膜の結晶性が低く、ダイヤモンドおよび
非晶質炭素より構成されるために、膜の結晶粒径が小さ
く、膜の表面粗さを小さくすることができる。また、膜
自体がダイヤモンドのみでなく、非晶質炭素を含むため
に耐摩耗性を付与しつつ摩擦係数を低減させ、摺動性を
向上することができる。
According to the present invention, since the hard carbon film formed on the surface of the metal working jig has low crystallinity and is composed of diamond and amorphous carbon, the crystal grain size of the film is small. The surface roughness of the film can be reduced. Further, since the film itself contains not only diamond but also amorphous carbon, the friction coefficient can be reduced while imparting wear resistance, and the slidability can be improved.

【0023】これにより、アルミニウムや銅等の軟質な
被加工金属の塑性変形による加工の際に被加工金属との
接触において優れた耐摩耗性を有し、摩擦係数を小さく
することができるとともに上記軟質金属の治具への溶着
を抑制することができる。
As a result, when a soft work metal such as aluminum or copper is worked by plastic deformation, it has excellent abrasion resistance in contact with the work metal and can have a small friction coefficient. Welding of the soft metal to the jig can be suppressed.

【0024】また、本発明における硬質炭素膜は摩擦係
数が低く、成形圧が低圧でも加工が可能となるために肉
厚の薄い金属の加工を行うことができる。
Further, the hard carbon film of the present invention has a low coefficient of friction and can be processed even at a low molding pressure, so that a thin metal can be processed.

【0025】[0025]

【実施例】【Example】

実施例1 図1に示したような装置を用いて、反応炉内に直径が4
0mm、表面粗さRmaxが0.1μmのAl2 3
よびY2 3 を助剤として含有する高密度窒化珪素質焼
結体製のディスク基体を設置し、ECRプラズマCVD
法により、最大2kガウスの強度の磁場を印加するとと
もに、マイクロ波出力3.0kWの条件で、基体温度6
50℃、炉内圧力0.3torrの条件で基体表面に成
膜を行った。なお、反応ガスとしてはメタンガス、CO
2 および水素ガスをそれぞれ54sccm、36scc
m、210sccmの流量比で混合したものを用いた。
この条件で炭素膜が約6μmの膜厚となるように作成し
た。
Example 1 Using a device as shown in FIG.
A disk substrate made of a high-density silicon nitride sintered body containing Al 2 O 3 and Y 2 O 3 having a thickness of 0 μm and a surface roughness Rmax of 0.1 μm as an auxiliary agent is installed, and ECR plasma CVD is performed.
By applying a magnetic field having a maximum intensity of 2 kGauss by the method and applying a microwave power of 3.0 kW, the substrate temperature 6
A film was formed on the substrate surface under the conditions of 50 ° C. and a furnace pressure of 0.3 torr. In addition, methane gas, CO
2 and hydrogen gas at 54 sccm and 36 sccc respectively
m, and mixed at a flow rate of 210 sccm.
Under these conditions, the carbon film was formed so as to have a thickness of about 6 μm.

【0026】得られた炭素膜に対して、膜表面のラマン
分光スペクトル分析を行ったところ、ダイヤモンドのピ
ークと非晶質炭素のピークが観察され、ダイヤモンドと
非晶質炭素との2相構造であることがわかった。なお、
ラマン分光は488nmのArレーザビームをビーム径
約1μmに絞って行った。ピーク強度比は1100cm
-1と1700cm-1の位置間で斜線を引き、これをベー
スラインとしてそれぞれのピークをローレンツタイプと
してカーブフィッティング処理を行い、ピーク分離した
後、各ピークの高さH1 、H2 を求め比率を算出したと
ころ、H2 /H1 =17であった。ここで、H1 は13
33±10cm-1に存在する最大のピーク強度、H2
1500±100cm-1に存在する最大のピーク強度で
ある。
When the obtained carbon film was subjected to Raman spectroscopic analysis of the film surface, a diamond peak and an amorphous carbon peak were observed, and a two-phase structure of diamond and amorphous carbon was observed. I found it. In addition,
The Raman spectroscopy was performed by narrowing an 488 nm Ar laser beam to a beam diameter of about 1 μm. Peak intensity ratio is 1100cm
Pull the hatched between positions -1 and 1700 cm -1, which performs curve fitting process each peak as the baseline as the Lorentz type, after peak separation, the ratio determined height H 1, H 2 of each peak was calculated, it was H 2 / H 1 = 17. Here, H 1 is 13
H 2 is the maximum peak intensity existing at 33 ± 10 cm −1 , and H 2 is the maximum peak intensity existing at 1500 ± 100 cm −1 .

【0027】また、炭素膜の表面粗さを触針式表面粗さ
計により評価したところ、Rmax0.3μm以下であ
った。
When the surface roughness of the carbon film was evaluated by a stylus type surface roughness meter, it was Rmax 0.3 μm or less.

【0028】さらに、この膜の摺動特性を評価するため
に、上記炭素膜が形成されたディスクと先端部が曲率半
径R=4.763mmのアルミニウム製のピンを用いて
ピンオンディスク法により摺動試験を行った。摺動条件
は荷重19.6N、摺動速度2m/sec、室温、大気
中、無潤滑で約45時間試験連続して試験を行った。
Further, in order to evaluate the sliding characteristics of the film, the disk on which the carbon film was formed and an aluminum pin having a tip having a radius of curvature R = 4.763 mm were slid by a pin-on-disk method. A dynamic test was performed. The sliding conditions were a load of 19.6 N, a sliding speed of 2 m / sec, room temperature, in the air, and without lubrication for about 45 hours.

【0029】この試験により摩擦係数、比摩耗量の評価
を行った。比較のために炭素膜を有しないディスクでも
同様な摺動試験を行った。その結果を摺動特性(距離)
に対する摩擦係数の変化として図2に示した。
By this test, the friction coefficient and the specific wear amount were evaluated. For comparison, a similar sliding test was performed on a disk having no carbon film. The result is expressed in sliding characteristics (distance)
FIG. 2 shows the change in the coefficient of friction with respect to.

【0030】図2によれば、炭素膜を被覆しないセラミ
ックディスクでは摩擦係数が0.4〜0.5の間を推移
しておりバラツキも大きい。それに対して、本発明に基
づき炭素膜を形成したディスクは、摺動初期から0.1
以下の低い摩擦係数を示し、ほとんどバラツキもないこ
とが判る。またディスクの摺動痕を観察すると、炭素膜
を被覆しなかったディスクはピンで削り取られた痕跡が
あり、その深さは約5μmであった。また摺動痕全体に
アルミニウムが溶着しているのが観察された。
According to FIG. 2, the friction coefficient of the ceramic disk not coated with the carbon film varies between 0.4 and 0.5, and the dispersion is large. On the other hand, the disk on which the carbon film is formed according to the present invention is 0.1% from the beginning of sliding.
It shows the following low coefficient of friction, and shows that there is almost no variation. Observation of the sliding trace of the disk revealed that the disk not covered with the carbon film had a trace of being scraped off with a pin and had a depth of about 5 μm. It was also observed that aluminum was welded to the entire sliding mark.

【0031】それに対して炭素膜を被覆したディスクは
アルミニウムピンではほとんど削り取られず、深さは1
μm以下であり、アルミニウムの溶着もほとんど見られ
なかった。
On the other hand, the disk coated with the carbon film is hardly scraped off by the aluminum pin and has a depth of 1
μm or less, and almost no aluminum welding was observed.

【0032】摺動痕を表面粗さ計で測定した結果を図3
に示した。図3より摺動痕の断面積を求め、また、アル
ミニウムピンの試験前後の重量変化を測定し、それより
ディスクの比摩耗量を算出した。その結果、炭素膜を形
成したディスクではアルミニウムピンの重量減少は0.
012g、比摩耗量は1.9×10-17 2 /Nであっ
たのに対して、炭素膜を形成しないディスクではアルミ
ニウムピンの重量減少量が0.096g、比摩耗量は
1.9×10-15 2 /Nであり、上記方法により炭素
膜を形成したディスクは、炭素膜を被覆しない窒化珪素
質焼結体に比較して100倍もの耐摩耗性を有し、アル
ミニウムの減少も1/10以下に抑えることができた。
FIG. 3 shows the results of measuring the sliding marks with a surface roughness meter.
It was shown to. The cross-sectional area of the sliding mark was determined from FIG. 3, the weight change of the aluminum pin before and after the test was measured, and the specific wear of the disk was calculated from the measured change. As a result, the weight reduction of the aluminum pin was 0.3% in the disk on which the carbon film was formed.
012 g, the specific wear amount was 1.9 × 10 −17 m 2 / N, whereas the disk without the carbon film had a weight loss of the aluminum pin of 0.096 g, and the specific wear amount was 1.9. × 10 −15 m 2 / N, and the disk on which the carbon film was formed by the above method has abrasion resistance 100 times that of a silicon nitride sintered body not coated with a carbon film, and a reduction in aluminum. Was also reduced to 1/10 or less.

【0033】実施例2 実施例1において、炭素膜の生成条件を表1に示す以外
は全く同様にして、前記窒化珪素質焼結体よりなるディ
スクの表面に炭素膜を形成した。得られた膜の表面粗
さ、前記ピンオンディスクにおける摩擦係数を測定し
た。
Example 2 A carbon film was formed on the surface of the disk made of the silicon nitride sintered body in the same manner as in Example 1 except that the conditions for forming the carbon film were as shown in Table 1. The surface roughness of the obtained film and the friction coefficient of the pin-on-disk were measured.

【0034】さらに、図4に示すような深絞り加工用の
窒化珪素製のダイス部7とポンチ部8において、被加工
金属と摺動する箇所に表1の条件で作成した炭素膜9を
被覆形成した。その後、この治具を用いて深絞り加工に
よりアルミニウムやCu製の容器の作成を行い、加工に
よる治具摺動面の状態および容器の表面について観察を
行った。その結果を表1に示す。
Further, in the die portion 7 and the punch portion 8 made of silicon nitride for deep drawing as shown in FIG. Formed. Thereafter, a container made of aluminum or Cu was prepared by deep drawing using the jig, and the state of the sliding surface of the jig and the surface of the container were observed. Table 1 shows the results.

【0035】[0035]

【表1】 [Table 1]

【0036】表1によれば、前記ラマン分光分析による
強度比H2 /H1 が0.2よりも小さい治具(試料No.
4、5)では、表面粗さが2μmを超え、摩擦係数も大
きく、深絞り加工により得られる容器の表面にキズが見
られた。これらをスカイフ研磨してRmax1μm以下
の鏡面に仕上げる(試料No.6、7)と摩擦係数も小さ
くなったが、このことから、強度比H2 /H1 が0.2
より小さいと表面を研磨加工しないと使用できないこと
がわかる。
According to Table 1, a jig (sample No. 1) having an intensity ratio H 2 / H 1 by Raman spectroscopy less than 0.2 was used.
In Nos. 4 and 5), the surface roughness exceeded 2 μm, the friction coefficient was large, and scratches were observed on the surface of the container obtained by deep drawing. When they were skiff-polished and finished to a mirror surface of Rmax 1 μm or less (Samples Nos. 6 and 7), the coefficient of friction also became small. From this, the strength ratio H 2 / H 1 was 0.2.
If it is smaller, it cannot be used unless the surface is polished.

【0037】これに対して、ダイヤモンドと非晶質炭素
を含み、前記ラマン分光分析による強度比H2 /H1
0.2乃至20の試料は、いずれも表面粗さが小さく、
摩擦係数も小さいものであり、深絞り加工の際にもビル
ドアップ減少を生じることなく、容器の表面はキズのな
い良好なものであった。
On the other hand, samples containing diamond and amorphous carbon and having an intensity ratio H 2 / H 1 of 0.2 to 20 by the Raman spectroscopic analysis all have small surface roughness,
The coefficient of friction was small, the build-up was not reduced even during deep drawing, and the surface of the container was good without scratches.

【0038】[0038]

【発明の効果】以上詳述した通り、本発明によればアル
ミニウムや銅等の軟質金属の塑性変形による加工に用い
られる治具に対して、優れた耐摩耗性および摺動性を付
与することができ、これにより加工時の軟質金属の治具
への溶着を防止し、治具の長寿命化を図ることができ
る。
As described above in detail, according to the present invention, a jig used for processing a soft metal such as aluminum or copper by plastic deformation is provided with excellent wear resistance and slidability. Thus, welding of the soft metal to the jig during processing can be prevented, and the life of the jig can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金属加工用治具における硬質炭素膜を
形成するための方法を説明するための概略配置図であ
る。
FIG. 1 is a schematic layout view for explaining a method for forming a hard carbon film in a jig for metal working of the present invention.

【図2】実施例1のピンオンディスク試験における摺動
時間と摩擦係数との関係を示した図である。
FIG. 2 is a diagram showing a relationship between a sliding time and a friction coefficient in a pin-on-disk test of Example 1.

【図3】実施例1のピンオンディスク試験後のディスク
表面の摺動痕の表面粗さを示す図であり、(a)が本発
明品、(b)が比較品を示す。
3A and 3B are diagrams showing the surface roughness of sliding marks on the disk surface after the pin-on-disk test of Example 1, wherein FIG. 3A shows a product of the present invention and FIG. 3B shows a comparative product.

【図4】絞り加工用の治具を示す図である。FIG. 4 is a view showing a jig for drawing.

【符号の説明】[Explanation of symbols]

1 反応炉 2 基材 3 マイクロ波発生装置 4 電磁コイル 5 ガス導入炉 DESCRIPTION OF SYMBOLS 1 Reaction furnace 2 Substrate 3 Microwave generator 4 Electromagnetic coil 5 Gas introduction furnace

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミニウム、銅あるいはこれらを含む合
金を加工するための治具であって、該治具の少なくとも
前記金属との接触面に、ダイヤモンドと非晶質炭素から
なり、ラマン分光スペクトル分析において1333±1
0cm-1に存在する最大のピークの強度をH1 、150
0±100cm-1に存在する最大のピークの強度をH2
とした時、H2 /H1 で表される強度比が0.2乃至2
0であり、且つ表面粗さ(Rmax)が2μm以下の硬
質炭素膜を被覆したことを特徴とする金属加工用治具。
1. A jig for processing aluminum, copper or an alloy containing the same, wherein at least a contact surface of the jig with the metal is made of diamond and amorphous carbon, and is subjected to Raman spectroscopy analysis. 1333 ± 1
The intensity of the largest peak existing at 0 cm -1 is H 1 , 150
The intensity of the largest peak existing at 0 ± 100 cm −1 is represented by H 2
, The intensity ratio represented by H 2 / H 1 is 0.2 to 2
A jig for metal working, which is coated with a hard carbon film having a surface roughness (Rmax) of 2 μm or less.
JP3342842A 1991-12-25 1991-12-25 Jig for metal processing Expired - Lifetime JP2801451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3342842A JP2801451B2 (en) 1991-12-25 1991-12-25 Jig for metal processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342842A JP2801451B2 (en) 1991-12-25 1991-12-25 Jig for metal processing

Publications (2)

Publication Number Publication Date
JPH05169162A JPH05169162A (en) 1993-07-09
JP2801451B2 true JP2801451B2 (en) 1998-09-21

Family

ID=18356918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342842A Expired - Lifetime JP2801451B2 (en) 1991-12-25 1991-12-25 Jig for metal processing

Country Status (1)

Country Link
JP (1) JP2801451B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3340001B2 (en) * 1995-10-31 2002-10-28 京セラ株式会社 Wear-resistant material
KR20080047917A (en) * 2006-11-27 2008-05-30 삼성에스디아이 주식회사 A carbon-based material for an electron emission source, an electron emission source comprising the same, an electron emission device comprising the electron emission source and a method for preparing the electron emission source
JP6933578B2 (en) * 2015-08-26 2021-09-08 東洋製罐グループホールディングス株式会社 Die and die module for ironing
JP6586325B2 (en) * 2015-08-31 2019-10-02 株式会社カナエ Method for manufacturing PTP package
JP6790731B2 (en) 2016-11-01 2020-11-25 東洋製罐グループホールディングス株式会社 Method of forming microperiodic structure grooves on the surface of diamond film
CN113039025B (en) * 2018-10-31 2024-01-12 东洋制罐集团控股株式会社 Machining jig, machining method, and method for manufacturing seamless can body
JP7268327B2 (en) * 2018-10-31 2023-05-08 東洋製罐グループホールディングス株式会社 ironing method
JP7415319B2 (en) * 2018-10-31 2024-01-17 東洋製罐グループホールディングス株式会社 Seamless can manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462468A (en) * 1987-08-28 1989-03-08 Idemitsu Petrochemical Co Metallic mold for molding metallic plate

Also Published As

Publication number Publication date
JPH05169162A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
Bhushan Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments
KR940009659B1 (en) Polycrystalline diamond tool and method of producting polycrystalline diamond tool
US20210069767A1 (en) Die for ironing working and die module
JP2801451B2 (en) Jig for metal processing
Zhang et al. Fabrication and application of chemical vapor deposition diamond-coated drawing dies
JP2017013136A (en) Coated tool
JP2842720B2 (en) Die for wire drawing and manufacturing method thereof
EP1165860B1 (en) Diamond-coated tool
JP3291105B2 (en) Hard carbon film and hard carbon film coated member
US6500488B1 (en) Method of forming fluorine-bearing diamond layer on substrates, including tool substrates
JP6308298B2 (en) Manufacturing method of coated tool
Takesue et al. Combined effect of gas blow induction heating nitriding and post-treatment with fine particle peening on surface properties and wear resistance of titanium alloy
KR20000067932A (en) Tool for coldforming operations
JP3340001B2 (en) Wear-resistant material
JP2783746B2 (en) Processing jig
EP3875183A1 (en) Jig for metal plastic working
JP3064166B2 (en) Jig for metal processing
JP3245320B2 (en) Hard carbon film and hard carbon film coated member
JPH07149583A (en) Hard carbon film-coated member
Sun et al. Fabrication and application of smooth composite diamond films
JP3548337B2 (en) Metal plastic working parts
JP7268327B2 (en) ironing method
JPH08158051A (en) Rigid carbon film
EP3690079B1 (en) Method for manufacturing hard carbon-based coating, and member provided with coating
JPH0463606A (en) Diamond tool having amorphous carbon layer formed on surface

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100710

Year of fee payment: 12