JP2795211B2 - Biomagnetic measurement device - Google Patents

Biomagnetic measurement device

Info

Publication number
JP2795211B2
JP2795211B2 JP7066942A JP6694295A JP2795211B2 JP 2795211 B2 JP2795211 B2 JP 2795211B2 JP 7066942 A JP7066942 A JP 7066942A JP 6694295 A JP6694295 A JP 6694295A JP 2795211 B2 JP2795211 B2 JP 2795211B2
Authority
JP
Japan
Prior art keywords
magnetic field
current source
measurement
subject
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7066942A
Other languages
Japanese (ja)
Other versions
JPH08229016A (en
Inventor
泰志 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP7066942A priority Critical patent/JP2795211B2/en
Publication of JPH08229016A publication Critical patent/JPH08229016A/en
Application granted granted Critical
Publication of JP2795211B2 publication Critical patent/JP2795211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、生体から発生する微
弱な磁気を検出し、これを画像化することによって、医
学上有用な診断情報を提供する生体磁気計測装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biomagnetism measuring apparatus for detecting weak magnetism generated from a living body and forming an image of the weak magnetism to provide medically useful diagnostic information.

【0002】[0002]

【従来の技術】生体に刺激を与えると、細胞膜を挟んで
形成されている分極がこわれ生体活動電流が流れる。こ
の生体活動電流は、脳や心臓において現れ、脳波,心電
図として記録される。また、生体活動電流によって生じ
る磁界は、脳磁図,心磁図として記録される。
2. Description of the Related Art When a living body is stimulated, the polarization formed across a cell membrane is broken and a living activity current flows. This biological activity current appears in the brain and heart, and is recorded as an electroencephalogram and an electrocardiogram. The magnetic field generated by the biological activity current is recorded as a magnetoencephalogram and a magnetocardiogram.

【0003】近年、生体内の微小な磁界を計測する装置
として、SQUID(Superconducting Quantum Interf
ace Device: 超電導量子干渉計)を用いた磁気センサが
開発された。このセンサを頭部の外側に置き、脳内に生
じた生体活動電流による微小磁界を無侵襲に計測するこ
とができる。このような計測を多数の測定点で行い、そ
の測定点を含む測定面上の多数点の磁界強度をスプライ
ン補間などによって求め、このうち同じ磁界強度の点を
連結することにより図5に示すような等磁界線図が得ら
れる。この図に示した等磁界線図は単一の電流双極子
(電流源)によって生じた磁界強度を検出して得られた
ものであって、図中の白丸は測定点、黒丸は補間によっ
て磁界強度が算出される測定面上の多数の格子点であ
る。このような等磁界線図は生体活動電流源の大まかな
位置関係など、医学上有用な診断情報を与える。
In recent years, as a device for measuring a minute magnetic field in a living body, a SQUID (Superconducting Quantum Interf
(ace Device: superconducting quantum interferometer). By placing this sensor outside the head, it is possible to non-invasively measure a minute magnetic field due to a biological activity current generated in the brain. Such measurement is performed at many measurement points, and the magnetic field strength of many points on the measurement surface including the measurement points is obtained by spline interpolation or the like, and the points having the same magnetic field strength are connected as shown in FIG. A simple isomagnetic field diagram can be obtained. The isomagnetic field diagram shown in this figure is obtained by detecting the magnetic field intensity generated by a single current dipole (current source). In the figure, white circles indicate measurement points, and black circles indicate magnetic fields obtained by interpolation. There are a number of grid points on the measurement plane for which the intensity is calculated. Such an isomagnetic field map provides medically useful diagnostic information such as a rough positional relationship of the biological activity current source.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな構成を有する従来例の場合には、次のような問題が
ある。すなわち、従来例によれば、測定面上の多数の格
子点上の磁界強度を補間によって求めているので、測定
点(磁気センサ)が配置された領域の外側に位置する各
格子点については、補間処理時に参照する実測定データ
が少なくなる。そのため前記測定領域外の格子点につい
て補間によって求められた磁界強度には誤差を多く含
む。その結果、例えば、得られた等磁界線図の前記測定
領域の外側にあたる領域に、現実には存在しない電流源
があたかもあるような線図が現れることもある。
However, the prior art having such a structure has the following problems. That is, according to the conventional example, since the magnetic field strengths on a large number of grid points on the measurement surface are obtained by interpolation, for each grid point located outside the area where the measurement points (magnetic sensors) are arranged, Actual measurement data referenced during the interpolation processing is reduced. Therefore, the magnetic field strength obtained by interpolation for the grid points outside the measurement area contains many errors. As a result, for example, a diagram may appear as if a current source that does not actually exist is present in a region outside the measurement region in the obtained isomagnetic field diagram.

【0005】この発明は、このような事情に鑑みてなさ
れたものであって、磁気センサが配置された領域の外側
の領域についても磁界強度を正確に求めて、信頼性の高
い等磁界線図を得ることができる生体磁気計測装置を提
供することを目的とする。
[0005] The present invention has been made in view of such circumstances, and a magnetic field intensity is accurately obtained even in a region outside a region where a magnetic sensor is arranged, so that a highly reliable isomagnetic field diagram is obtained. It is an object of the present invention to provide a biomagnetism measurement device capable of obtaining the above.

【0006】[0006]

【課題を解決するための手段】この発明は、このような
目的を達成するために、次のような構成をとる。すなわ
ち、この発明に係る生体磁気計測装置は、(a)被検体
の診断対象領域に近接する各位置(測定点)に配備さ
れ、前記診断対象領域内の生体活動電流源による微小磁
界を計測する複数個の磁気センサと、(b)前記各磁気
センサで計測された各測定点の実測磁界強度と、前記診
断対象領域内に想定した多数の格子点(被検体内格子
点)上に単位大きさの電流源を置いたと仮定した場合に
前記各磁気センサで検出される磁界強度に関連した既知
の係数群とに基づき、前記各被検体内格子点上の電流源
の大きさ,方向などの物理量を算出する電流源算出手段
と、(c)前記電流源算出手段によって得られた各被検
体内格子点上の電流源の物理量と、各被検体内格子点上
に単位大きさの電流源を置いたと仮定した場合に前記各
磁気センサが置かれた測定面上の多数の格子点(測定面
格子点)の各位置で発生する磁界強度に関連した既知の
係数群とに基づき、各測定面格子点上の磁界強度を算出
する磁界強度算出手段と、(d)前記磁界強度算出手段
によって得られた測定面格子点群の内、等磁界強度の格
子点を順次連結することによって等磁界線図を求める画
像処理手段と、を備えたことを特徴とする。
The present invention has the following configuration to achieve the above object. That is, the biomagnetism measuring apparatus according to the present invention is (a) disposed at each position (measurement point) of the subject close to the diagnosis target area, and measures a minute magnetic field by a biological activity current source in the diagnosis target area. A plurality of magnetic sensors; (b) measured magnetic field intensities at each measurement point measured by each of the magnetic sensors; and a unit size on a number of lattice points (lattice points in the subject) assumed in the diagnosis target area. And a known coefficient group related to the magnetic field strength detected by each of the magnetic sensors when the current source is placed, based on the magnitude and direction of the current source on each of the lattice points in the subject. Current source calculating means for calculating a physical quantity; and (c) a physical quantity of a current source on each intra-subject grid point obtained by the current source calculating means, and a unit-size current source on each intra-subject grid point. Each magnetic sensor Field strength calculation for calculating the magnetic field strength on each measurement plane grid point based on a known group of coefficients related to the magnetic field strength generated at each of a large number of grid points (measurement plane grid points) on the measurement plane Means; and (d) image processing means for obtaining an isomagnetic field map by sequentially connecting grid points having the same magnetic field strength among the grid points of the measurement plane obtained by the magnetic field strength calculating means. It is characterized by.

【0007】[0007]

【作用】この発明の作用は次のとおりである。各磁気セ
ンサで測定された各測定点における磁界強度と、多数の
被検体内格子点上に単位大きさの電流源を置いたと仮定
した場合に各磁気センサで検出される磁界強度に関連し
た既知の係数群とに基づいて、各被検体内格子点上の電
流源の大きさ、方向などの物理量が算出される。そし
て、これら被検体内格子点上の各電流源によって生じる
各測定面格子点における磁界強度が、磁界強度算出手段
によって求められる。すなわち、各測定面格子点の磁界
強度は、各測定点での磁界強度を補間によって求めるの
ではなく、一旦、被検体内格子点上の電流源を算出し、
これら電流源によって生じる各測定面格子点の磁界強度
を算出することによって得られるものである。したがっ
て、磁気センサが置かれた領域から外れた領域にある各
測定面格子点の磁界強度も比較的精度よく求められるの
で、画像処理手段によって作成される等磁界線図は信頼
性の高いものになる。
The operation of the present invention is as follows. The known magnetic field intensity at each measurement point measured by each magnetic sensor and the magnetic field intensity detected by each magnetic sensor when assuming that a unit-sized current source is placed on a number of lattice points in the subject Based on these coefficient groups, physical quantities such as the size and direction of the current source on each intra-subject grid point are calculated. Then, the magnetic field intensity at each measurement plane lattice point generated by each current source on these intra-subject lattice points is obtained by the magnetic field intensity calculation means. That is, the magnetic field strength at each measurement plane grid point is not calculated by interpolation of the magnetic field strength at each measurement point.
This is obtained by calculating the magnetic field strength at each measurement plane lattice point generated by these current sources. Therefore, since the magnetic field strength of each measurement plane grid point in the area deviating from the area where the magnetic sensor is placed can be obtained relatively accurately, the isomagnetic field map created by the image processing means is highly reliable. Become.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は、本発明に係る生体磁気計測装置の一実施
例の概略構成を示すブロック図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the biomagnetism measuring apparatus according to the present invention.

【0009】図中、符号1は磁気シールドルームであ
り、この磁気シールドルーム1内に被検体Mが仰臥され
るベッド2と、被検体Mの診断対象領域である例えば脳
に近接配備され、脳内に生じた生体活動電流源による微
小磁界を無侵襲に計測するためのマルチチャンネルSQ
UIDセンサ3とが設けられている。マルチチャンネル
SQUIDセンサ3は、デュアーと呼ばれる容器内に二
次元配置された複数個のの磁気センサを液体窒素などの
冷媒に浸漬して収納している。各磁気センサは、検出コ
イルと補償コイルとからなる一対のコイルを一次元ある
いは3次元に配置したコイル本体と、これに接続される
SQUID素子によって構成されている。なお、本実施
例において各磁気センサ(特に上記コイル本体)は球面
上に配置されており、以下ではこの面を測定面という。
また、測定面上における各磁気センサの配置位置を測定
点という。
In FIG. 1, reference numeral 1 denotes a magnetically shielded room, in which a bed 2 on which a subject M is supine and a diagnosis target area of the subject M, for example, a brain, are arranged in close proximity. Multi-channel SQ for non-invasive measurement of minute magnetic field generated by a biological activity current source generated inside
A UID sensor 3 is provided. In the multi-channel SQUID sensor 3, a plurality of magnetic sensors arranged two-dimensionally are immersed in a refrigerant such as liquid nitrogen and stored in a container called a Dewar. Each magnetic sensor is composed of a coil body in which a pair of coils consisting of a detection coil and a compensation coil are arranged one-dimensionally or three-dimensionally, and a SQUID element connected thereto. In this embodiment, each magnetic sensor (particularly, the coil body) is arranged on a spherical surface, and this surface is hereinafter referred to as a measurement surface.
The position of each magnetic sensor on the measurement surface is referred to as a measurement point.

【0010】マルチチャンネルSQUIDセンサ3で検
出された各測定点の磁界データはデータ変換ユニット4
に与えられてデジタルデータに変換された後、データ収
集ユニット5に集められる。刺激装置6は、被検体Mに
電気的刺激(あるいは音、光刺激など)を与えるための
ものである。ホジショニングユニット7は、マルチチャ
ンネルSQUIDセンサ3を基準として3次元座標系に
対する被検体Mの位置関係を把握するための装置であ
る。例えば、被検体Mの複数箇所に小コイルを取付け、
これらの小コイルにホジショニングユニット7から給電
する。そして、各コイルから発生した磁界をマルチチャ
ンネルSQUIDセンサ3で検出することにより、マル
チチャンネルSQUIDセンサ3に対する被検体Mの位
置関係を把握する。なお、マルチチャンネルSQUID
センサ3に対する被検体Mの位置関係を把握するための
手法は、これ以外に、デュワーに投光器を取り付けて光
ビームを被検体Mに照射して両者の関係を把握するもの
や、あるいは特開平5−237065号、特開平6−7
88925号などに開示された種々の手法が用いられ
る。
The magnetic field data at each measurement point detected by the multi-channel SQUID sensor 3 is
Is converted into digital data and collected by the data collection unit 5. The stimulating device 6 is for giving an electrical stimulus (or a sound, a light stimulus, or the like) to the subject M. The positioning unit 7 is a device for grasping the positional relationship of the subject M with respect to the three-dimensional coordinate system with reference to the multi-channel SQUID sensor 3. For example, small coils are attached to a plurality of locations of the subject M,
Power is supplied to these small coils from the positioning unit 7. Then, the magnetic field generated from each coil is detected by the multi-channel SQUID sensor 3 to grasp the positional relationship of the subject M with respect to the multi-channel SQUID sensor 3. In addition, multi-channel SQUID
Other methods for ascertaining the positional relationship of the subject M with respect to the sensor 3 include a method in which a projector is attached to a dewar to irradiate the subject M with a light beam and the relationship between the two is grasped. No.-237065, JP-A-6-7
Various techniques disclosed in, for example, US Pat.

【0011】本実施例の要部であるデータ解析ユニット
8は、データ収集ユニット5に集められた磁界データに
基づいて被検体Mの診断対象領域内にある電流源を算出
する電流源算出部9と、その電流源に基づいて測定面上
の磁界強度を算出する磁界強度算出部10と、測定面上
の磁界強度の算出結果から等磁界線図を作成する画像処
理部11などから構成されている。カラーモニタ12お
よびカラープリンタ13は、データ解析ユニット8で得
られた等磁界線図などを表示あるいは印字出力するため
のものである。
A data analysis unit 8, which is a main part of the present embodiment, includes a current source calculation unit 9 which calculates a current source in a diagnosis target area of the subject M based on magnetic field data collected by the data collection unit 5. And a magnetic field strength calculating unit 10 for calculating a magnetic field strength on the measurement surface based on the current source, an image processing unit 11 for creating an isomagnetic field map from a calculation result of the magnetic field strength on the measurement surface, and the like. I have. The color monitor 12 and the color printer 13 are for displaying or printing out the isomagnetic field diagram and the like obtained by the data analysis unit 8.

【0012】以下、図2に示したフローチャートを参照
してデータ解析ユニット8で実行される等磁界線図の作
成処理を中心に説明する。
Hereinafter, a description will be given centering on the processing for creating an isomagnetic field map executed by the data analysis unit 8 with reference to the flowchart shown in FIG.

【0013】ステップS1:マルチチャンネルSQUI
Dセンサ3と被検体Mの位置関係を設定したのち、被検
体Mの診断対象領域内の生体活動電流源によって生じた
微小磁界(各測定点における磁界強度)をマルチチャン
ネルSQUIDセンサ3によって計測し、得られた各測
定点の磁界データをデータ収集ユニット5に収集する。
データ収集が終わるとステップS2に示した電流源算出
部9の処理に移る。
Step S1: Multi-channel SQUI
After the positional relationship between the D sensor 3 and the subject M is set, the multi-channel SQUID sensor 3 measures a minute magnetic field (magnetic field intensity at each measurement point) generated by a biological activity current source in the diagnosis target area of the subject M. Then, the obtained magnetic field data of each measurement point is collected in the data collection unit 5.
When the data collection is completed, the process proceeds to the process of the current source calculation unit 9 shown in step S2.

【0014】ステップS2:図3に示すように被検体M
の診断対象領域(例えば、脳M’)内に多数の格子点
(被検体内格子点)Nj (j=1〜n)を設定する。な
お、図3中の符号P0 は脳M’内に存在する真の電流
源、Si (i=1〜m)はマルチチャンネルSQUID
センサ3を構成する複数個(m個)の磁気センサ、PL
は測定面である。これらの格子点Nj上に、図4に示す
ように未知の電流源(電流双極子)Pj (j=1〜n)
を仮定し、以下に示す演算処理によって各電流源Pjを
算出する。
Step S2: As shown in FIG.
A large number of grid points (grid points in the subject) N j (j = 1 to n) are set in the diagnosis target area (for example, the brain M ′). The symbol P 0 in FIG. 3 is a true current source existing in the brain M ′, and S i (i = 1 to m) is a multi-channel SQUID.
Plural (m) magnetic sensors constituting sensor 3, PL
Is a measurement surface. An unknown current source (current dipole) P j (j = 1 to n) is placed on these lattice points Nj as shown in FIG.
And each current source Pj is calculated by the following arithmetic processing.

【0015】各被検体内格子点Nj 上に電流源Pj があ
ると仮定した場合に、マルチチャンネルSQUIDセン
サ3の各磁気センサSiで検出される磁界Bi(i=1
〜m)は次式(1)で表される。
Assuming that a current source P j is present on each in-subject lattice point N j , a magnetic field Bi (i = 1) detected by each magnetic sensor Si of the multi-channel SQUID sensor 3
To m) are represented by the following equation (1).

【0016】[0016]

【数1】 (Equation 1)

【0017】上式(1)において、αij(i=1〜m,
j=1〜n)は、各被検体内格子点Nj 上に単位大きさ
の電流源を置いた場合に各磁気センサSi の各位置で検
出される磁界強度を表す既知の係数群である。ここで、
上式(1)の各要素を以下のように表す。
In the above equation (1), α ij (i = 1 to m,
j = 1 to n) is a known coefficient group that represents the magnetic field intensity detected at each position of the magnetic sensor S i when placing the current source unit magnitude on each subject in the lattice point N j is there. here,
Each element of the above equation (1) is represented as follows.

【0018】[0018]

【数2】 (Equation 2)

【0019】そうすると、上式(1)は次式(2)のよ
うな線形の関係式で表すことができる。 〔B〕=A〔P〕 ……(2)
Then, the above equation (1) can be expressed by a linear relational equation such as the following equation (2). [B] = A [P] (2)

【0020】ここで、Aの逆行列をA- で表すと、
〔P〕は次式(3)で表される。 〔P〕=A- 〔B〕 ……(3)
Here, when the inverse matrix of A is represented by A ,
[P] is represented by the following equation (3). [P] = A - [B] ... (3)

【0021】上式(3)で表される連立方程式は、式の
個数m(磁気センサの数)よりも未知数の数n(電流源
の数)の方が大きいので、解が求められない。そこで、
ベクトル〔P〕のノルム|P|を最小にするという条件
を付加する。すると、上式(3)は次式(4)のように
表される。 〔P〕=A+ 〔B〕 ……(4)
In the simultaneous equations represented by the above equation (3), the number of unknowns n (the number of current sources) is larger than the number m of equations (the number of magnetic sensors), and therefore no solution is obtained. Therefore,
A condition is added to minimize the norm | P | of the vector [P]. Then, the above equation (3) is expressed as the following equation (4). [P] = A + [B] (4)

【0022】上式(4)でA+ は次式(5)で表される
一般逆行列である。 A+ =At ( AAt -1 ……(5)
In the above equation (4), A + is a generalized inverse matrix represented by the following equation (5). A + = A t (AA t ) -1 (5)

【0023】上式(4),(5)を解くことにより、被
検体Mの診断対象領域の内部に設定した被検体内格子点
j における各電流源Pj の物理量(大きさ,方向)を
求めることができる。求められた電流源Pj は真の電流
源P0 に近いにものになる。
By solving the above equations (4) and (5), the physical quantity (magnitude, direction) of each current source P j at the intra-subject lattice point N j set inside the diagnosis target area of the subject M is obtained. Can be requested. The obtained current source P j is close to the true current source P 0 .

【0024】なお、被検体内格子点Nj 上の電流源Pj
を求める手法は、上述したような手法(一般に最小ノル
ム法と呼ばれる)に限らず、例えば実測された磁界デー
タと、各被検体内格子点に大きさ,方向の異なる仮想の
電流源を順に置いた場合に計測されるシミュレーション
磁界データとの二乗平均誤差を最小にするという条件を
用いて各電流源の物理量を算出してもよい。電流源Pi
が算出されると、ステップS3に示した磁界強度算出部
10の処理に移る。
Note that the current source P j on the lattice point N j in the subject is
Is not limited to the method described above (generally called the minimum norm method). For example, for example, an actually measured magnetic field data and a virtual current source having a different size and direction at each lattice point in the subject are sequentially placed. The physical quantity of each current source may be calculated using the condition that the root mean square error with the simulation magnetic field data measured in this case is minimized. Current source P i
Is calculated, the process proceeds to the process of the magnetic field strength calculation unit 10 shown in step S3.

【0025】ステップS3:各被検体内格子点上の電流
源Pj によって生じる、測定面PL上に想定した多数の
格子点(測定面格子点:図4中に符号Qk (k=1〜
q)で示す)の各位置における磁界強度Bk を次式
(6)によって算出する。
[0025] Step S3: generated by the current source P j on the subject in the lattice points, a number of lattice points assumed on a measurement surface PL (measurement surface grid point: code Q k (k = 1~ in FIG
The magnetic field strength B k at each position indicated by q)) is calculated by the following equation (6).

【0026】[0026]

【数3】 (Equation 3)

【0027】上式(6)において、βkjは各被検体内格
子点Nj 上に単位大きさの電流源を置いた場合に測定面
上の各格子点Qk の各位置に発生する磁界強度を表す既
知の係数群である。被検体内格子点Nj の磁界強度が求
まると、ステップS4に示す画像処理部11の処理に移
る。
In the above equation (6), β kj is a magnetic field generated at each position of each grid point Q k on the measurement surface when a current source having a unit size is placed on each in-subject grid point N j. This is a group of known coefficients representing the intensity. When the magnetic field strength in the subject lattice point N j is obtained, proceeds to the processing of the image processing unit 11 shown in step S4.

【0028】ステップS4:各測定面格子点Qk の磁界
強度から、例えば10fT(フェムトテスラ)間隔の等
磁界線図を描くために、各測定面格子点Qk の磁界強度
から10fT近傍の点を全て探し出し、各探索点を線で
連結し、続いて20fT近傍の点を全て探し出して線で
連結し、以下、10fTごとに同様の処理を繰り返し実
行する。なお、等磁界線図は必ずしも線で描画する必要
はなく、例えば、等磁界強度0ft以上10fT未満の
領域、10fT以上20ft未満の領域、…の各領域を
濃淡を徐々に変化させて塗りつぶすことにより、等磁界
線図を作成してもよい。このようにして得られた等磁界
線図のデータがカラーモニタ12やカラープリンタ13
に出力される。
[0028] Step S4: the magnetic field intensity of each measuring surface grid point Q k, for example 10fT to draw isomagnetic diagram of (femto Tesla) intervals, the point of 10fT near the magnetic field intensity of each measuring surface grid point Q k , All the search points are connected by a line, all the points near 20 fT are searched out and connected by a line, and the same process is repeatedly executed every 10 fT. It is not always necessary to draw the isomagnetic field diagram with lines. For example, the isomagnetic field intensity is 0 ft or more and less than 10 fT, 10 fT or more and less than 20 ft,. , An isomagnetic field map may be created. The data of the isomagnetic field map obtained in this manner is stored in the color monitor 12 or the color printer 13.
Is output to

【0029】以上のようにして得られた等磁界線図は、
被検体内の推定された電流源によって生じる磁界強度か
ら得られるものであるので、磁気センサが設置された領
域から外れた領域についても比較的精度よく等磁界線図
が描かれる。また、上述した最小ノルム法によって電流
源を推定する手法を用いると、被検体内格子点上の電流
源と測定面格子点の磁界強度を算出する2回の演算処理
によって等磁界線図を得ることができるので、多数の測
定面格子点の磁界強度を逐一補間によって求める従来例
に比較して演算処理の回数が少なくなり、それだけ等磁
界線図を高速に得ることができる。
The isomagnetic field diagram obtained as described above is
Since it is obtained from the magnetic field strength generated by the estimated current source in the subject, an isomagnetic field diagram is drawn with relatively high accuracy even in a region outside the region where the magnetic sensor is installed. Also, when the above-described method of estimating the current source by the minimum norm method is used, an isomagnetic field diagram is obtained by performing two operations of calculating the magnetic field strength between the current source on the grid point in the subject and the grid point on the measurement plane. Therefore, the number of arithmetic processes is reduced as compared with the conventional example in which the magnetic field strengths at a large number of grid points on the measurement surface are obtained by one-by-one interpolation.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、この発
明によれば、各測定面格子点の磁界強度は、各測定点で
の磁界強度を補間することによって求めるのではなく、
一旦、被検体内格子点上の電流源を算出し、これら電流
源によって生じる各測定面格子点の各位置での磁界強度
を算出して得られるものであるので、磁気センサが置か
れた領域から外れた領域にある各測定面格子点の磁界強
度も比較的精度よく求められ、その結果、信頼性の高い
等磁界線図を作成することができる。
As is apparent from the above description, according to the present invention, the magnetic field strength at each grid point on each measurement surface is not determined by interpolating the magnetic field strength at each measurement point.
Once the current sources on the grid points in the subject are calculated and the magnetic field strength at each position of each measurement plane grid point generated by these current sources is obtained, the area where the magnetic sensor is placed The magnetic field strength of each measurement plane grid point in a region deviated from the distance is also determined relatively accurately, and as a result, a highly reliable isomagnetic field diagram can be created.

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に係る生体磁気計測装置の概略構成を示
すブロック図である。
FIG. 1 is a block diagram illustrating a schematic configuration of a biomagnetism measurement device according to an embodiment.

【図2】実施例装置の処理手順を示したフローチャート
である。
FIG. 2 is a flowchart illustrating a processing procedure of the apparatus according to the embodiment.

【図3】診断対象領域内に設定される被検体内格子点群
の模式図である。
FIG. 3 is a schematic diagram of an intra-subject lattice point group set in a diagnosis target region;

【図4】被検体内格子点上に想定される電流源の模式図
である。
FIG. 4 is a schematic diagram of a current source assumed on a lattice point in a subject.

【図5】等磁界線図の一例を示した図である。FIG. 5 is a diagram showing an example of a magnetic field diagram.

【符号の説明】[Explanation of symbols]

3…マルチチャンネルSQUIDセンサ 8…データ解析ユニット 9…電流源算出部 10…磁界強度算出部 11…画像処理部 3 Multi-channel SQUID sensor 8 Data analysis unit 9 Current source calculation unit 10 Magnetic field intensity calculation unit 11 Image processing unit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a)被検体の診断対象領域に近接する各
位置(測定点)に配備され、前記診断対象領域内の生体
活動電流源による微小磁界を計測する複数個の磁気セン
サと、(b)前記各磁気センサで計測された各測定点の
実測磁界強度と、前記診断対象領域内に想定した多数の
格子点(被検体内格子点)上に単位大きさの電流源を置
いたと仮定した場合に前記各磁気センサで検出される磁
界強度に関連した既知の係数群とに基づき、前記各被検
体内格子点上の電流源の大きさ,方向などの物理量を算
出する電流源算出手段と、(c)前記電流源算出手段に
よって得られた各被検体内格子点上の電流源の物理量
と、各被検体内格子点上に単位大きさの電流源を置いた
と仮定した場合に前記各磁気センサが置かれた測定面上
の多数の格子点(測定面格子点)の各位置で発生する磁
界強度に関連した既知の係数群とに基づき、各測定面格
子点上の磁界強度を算出する磁界強度算出手段と、
(d)前記磁界強度算出手段によって得られた測定面格
子点群の内、等磁界強度の格子点を順次連結することに
よって等磁界線図を求める画像処理手段と、を備えたこ
とを特徴とする生体磁気計測装置。
(A) a plurality of magnetic sensors arranged at respective positions (measurement points) of a subject in proximity to a diagnosis target region and measuring a minute magnetic field by a biological activity current source in the diagnosis target region; (B) The measured magnetic field strength at each measurement point measured by each of the magnetic sensors and a current source having a unit size placed on a large number of grid points (lattice points in the subject) assumed within the diagnosis target area. Current source calculation for calculating physical quantities such as the magnitude and direction of the current source on each of the lattice points in the subject based on a known group of coefficients related to the magnetic field strength detected by each of the magnetic sensors when assumed. Means, and (c) the physical quantities of the current sources on each intra-subject grid point obtained by the current source calculating means, and the case where a unit-sized current source is placed on each intra-subject grid point. A number of grid points (measurement points) on the measurement surface on which the magnetic sensors are placed Based on the known coefficient group associated with the magnetic field intensity generated at each position of the surface grid points), and the magnetic field intensity calculating means for calculating the magnetic field intensity on the measurement plane lattice points,
(D) image processing means for obtaining an isomagnetic field diagram by sequentially connecting grid points having the same magnetic field strength among the grid points of the measurement plane obtained by the magnetic field strength calculating means. Biomagnetic measurement device.
JP7066942A 1995-02-28 1995-02-28 Biomagnetic measurement device Expired - Fee Related JP2795211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7066942A JP2795211B2 (en) 1995-02-28 1995-02-28 Biomagnetic measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7066942A JP2795211B2 (en) 1995-02-28 1995-02-28 Biomagnetic measurement device

Publications (2)

Publication Number Publication Date
JPH08229016A JPH08229016A (en) 1996-09-10
JP2795211B2 true JP2795211B2 (en) 1998-09-10

Family

ID=13330574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7066942A Expired - Fee Related JP2795211B2 (en) 1995-02-28 1995-02-28 Biomagnetic measurement device

Country Status (1)

Country Link
JP (1) JP2795211B2 (en)

Also Published As

Publication number Publication date
JPH08229016A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
US6230037B1 (en) Biomagnetic field measuring method and apparatus
Numminen et al. Transformation of multichannel magnetocardiographic signals to standard grid form
US7668581B2 (en) Biomagnetic measurement apparatus
JPH0966037A (en) Magnetism of living body measuring instrument
US6374131B1 (en) Biomagnetism measuring method and apparatus
JP2795211B2 (en) Biomagnetic measurement device
JP3387236B2 (en) Biomagnetic measurement device
JP4006543B2 (en) Bioactive current source estimation device
JP2500715B2 (en) Living activity current source estimation device
JP4791797B2 (en) Biomagnetic field measurement device
JP4000343B2 (en) Bioactive current source estimation device
Abraham-Fuchs et al. Fusion of Biomagnetlsm with MR or CT Images by Contour-Fitting
JPH04303416A (en) Device for measuring magnetism of living body
JP3298312B2 (en) Biological activity current source estimation device
JP3237359B2 (en) Life activity current source estimation method
JP2752884B2 (en) Life activity current source estimation method
JP3227958B2 (en) Life activity current source estimation method
JPH03251226A (en) Organism magnetic measuring method
JP7002416B2 (en) Magnetic field measuring device
JPH08266499A (en) Biomagnetic measuring apparatus
SWAIN Measurement And Analysis Of Magnetocardiograms For Shielded And Unshielded Setups
JPH0435642A (en) Biomagnetic measuring equipment
JP2752885B2 (en) Life activity current source estimation method
JP3324262B2 (en) Life activity current source estimation method
JP3407509B2 (en) Biological activity current source display

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees