JP2785406B2 - Linear servo motor - Google Patents

Linear servo motor

Info

Publication number
JP2785406B2
JP2785406B2 JP60090A JP60090A JP2785406B2 JP 2785406 B2 JP2785406 B2 JP 2785406B2 JP 60090 A JP60090 A JP 60090A JP 60090 A JP60090 A JP 60090A JP 2785406 B2 JP2785406 B2 JP 2785406B2
Authority
JP
Japan
Prior art keywords
permanent magnet
field
magnetic flux
core
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60090A
Other languages
Japanese (ja)
Other versions
JPH03207256A (en
Inventor
哲男 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP60090A priority Critical patent/JP2785406B2/en
Publication of JPH03207256A publication Critical patent/JPH03207256A/en
Application granted granted Critical
Publication of JP2785406B2 publication Critical patent/JP2785406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Linear Motors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、精密位置決めや高速搬送などに用いて好
適なリニアサーボモータに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear servomotor suitable for precision positioning, high-speed conveyance, and the like.

〔従来の技術〕[Conventional technology]

各種の産業分野で応用されているリニアモータの中で
も、特に、界磁に永久磁石を用いたリニアサーボモータ
は、その位置決め性能や速度性能に優れたサーボ特性を
持つため、精密位置決めや高速搬送などに用いられる。
Among linear motors applied in various industrial fields, especially linear servo motors using permanent magnets for the field have servo characteristics with excellent positioning performance and speed performance. Used for

第5図は従来のリニアサーボモータの断面図、第6図
は同リニアサーボモータの界磁鉄心の上面図である。こ
れらの図において、1は界磁鉄心で、その上には界磁用
の複数の永久磁石2が一定間隔でN極、S極と交互にな
るように配置されている。また、これらの永久磁石2
は、自らが発生する界磁磁束の空間分布が正弦波になる
ようにそれぞれが斜めに配列されるスキュー構造になっ
ている。3は界磁鉄心1との間に空隙を有して配置され
る電機子鉄心で、その下部に設けられた複数のスロット
3aのそれぞれにコイル4が巻き回されている。ところ
で、永久磁石2から発生する界磁磁束φは、第5図に破
線で示すように空隙を介して電機子鉄心3に至り、背部
を軸方向に進み、再び空隙を介して隣接する永久磁石2
に至り、さらに、界磁鉄心1内を通って元の永久磁石2
に戻る。そして、この界磁磁束φによって、コイル4と
鎖交する磁束経路が形成され、コイル4には電機子鉄心
3の移動により誘起電圧が発生する。
FIG. 5 is a sectional view of a conventional linear servomotor, and FIG. 6 is a top view of a field iron core of the linear servomotor. In these figures, reference numeral 1 denotes a field iron core, on which a plurality of permanent magnets 2 for the field are arranged at regular intervals so as to alternate with N poles and S poles. In addition, these permanent magnets 2
Have a skew structure in which each is arranged obliquely so that the spatial distribution of the field magnetic flux generated by itself becomes a sine wave. Reference numeral 3 denotes an armature core disposed with a gap between the field core 1 and a plurality of slots provided thereunder.
A coil 4 is wound around each of 3a. By the way, the field magnetic flux φ generated from the permanent magnet 2 reaches the armature core 3 via the gap as shown by a broken line in FIG. 2
And further passes through the field iron core 1 and returns to the original permanent magnet 2.
Return to A magnetic flux path interlinking with the coil 4 is formed by the field magnetic flux φ, and an induced voltage is generated in the coil 4 by the movement of the armature core 3.

また、電機子鉄心3には、界磁磁束φを検出する図示
しない検出器(ホール素子など)が取り付けられてい
る。5は電機子鉄心3の速度制御や位置制御等を行う制
御回路で、前記検出器の検出信号を入力し、この入力信
号に基づく制御信号をドライバ6に供給する。そして、
ドライバ6はこの制御信号に従って、前記した誘起電圧
と同相の駆動電流を導体7及びブラシ8を介してコイル
4に供給する。コイル4では供給された駆動電流に応じ
た磁束を発生する。そして、このコイル4による磁束と
永久磁石2による界磁磁束φとの相互作用により電機子
鉄心3に推力が発生し、この電機子鉄心3が図示の矢印
Aのいずれかの方向に駆動される。
Further, a detector (not shown) (not shown) for detecting the field magnetic flux φ is attached to the armature core 3. Reference numeral 5 denotes a control circuit for performing speed control, position control, and the like of the armature core 3, receives a detection signal of the detector, and supplies a control signal based on the input signal to a driver 6. And
The driver 6 supplies a drive current having the same phase as the induced voltage to the coil 4 via the conductor 7 and the brush 8 in accordance with the control signal. The coil 4 generates a magnetic flux according to the supplied drive current. Then, an interaction between the magnetic flux generated by the coil 4 and the field magnetic flux φ generated by the permanent magnet 2 generates a thrust in the armature core 3, and the armature core 3 is driven in any direction indicated by an arrow A in the drawing. .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、リニアサーボモータの駆動原理は、一般の
永久磁石形の交流サーボモータと同じであり、リニアサ
ーボモータにとっては、速度変動や推力変動を可能な限
り抑制することがモータ特性の良否を決定する重要事項
である。そして、この推力変動を抑制するためには界磁
磁束の空間分布を正弦波にして、誘起電圧を正弦波に
し、発生推力を滑らかな一定値とする必要がある。
By the way, the driving principle of a linear servomotor is the same as that of a general permanent magnet type AC servomotor, and for a linear servomotor, suppressing the speed fluctuation and the thrust fluctuation as much as possible determines the quality of the motor characteristics. This is an important matter. Then, in order to suppress the thrust fluctuation, it is necessary to make the spatial distribution of the field magnetic flux a sine wave, make the induced voltage a sine wave, and make the generated thrust a smooth constant value.

しかし、リニアサーボモータでは界磁磁束を永久磁石
によって発生させているため、その空間磁束分布は正弦
波より短形波に近くなってしまう。そこで、従来は第6
図に示すように永久磁石を斜めに配列するスキュー構造
にしたり、界磁鉄心のスロットをスキュー構造にして、
誘起電圧を正弦波に近付けていたが、十分な効果が得ら
れなかった。
However, in the linear servomotor, the field magnetic flux is generated by the permanent magnet, so that the spatial magnetic flux distribution is closer to a rectangular wave than a sine wave. Therefore, conventionally, the sixth
As shown in the figure, a skew structure in which permanent magnets are arranged diagonally, or a slot in the field iron core is skewed,
Although the induced voltage was close to a sine wave, a sufficient effect was not obtained.

この発明は、前記問題に鑑みて成されたもので、界磁
磁束の空間分布を正弦波にしてモータ特性の優れたリニ
アサーボモータを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a linear servomotor having excellent motor characteristics by making the spatial distribution of field magnetic flux a sine wave.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するために、この発明では、界磁鉄心
の一面に配置された複数の永久磁石によって界磁磁束を
発生し、電機子鉄心に巻き回されたコイルによって前記
界磁磁束に相互作用をする磁束を発生し、当該電機子鉄
心を直線移動させるリニアサーボモータにおいて、前記
永久磁石の長手方向断面形状が2つの平行な円弧、2つ
の平行な楕円弧又は2つの平行な双曲線の一部で画定さ
れ、前記電機子鉄心の界磁鉄心と対向する面に前記永久
磁石の内周面が整合できる突部が長手方向に等間隔に設
けられ、この突部と前記永久磁石の内周面が整合されて
いる。
In order to achieve the above object, according to the present invention, a field magnetic flux is generated by a plurality of permanent magnets disposed on one surface of a field iron core, and the field magnetic flux interacts with a coil wound around an armature iron core. In the linear servomotor that generates a magnetic flux that moves and linearly moves the armature core, the permanent magnet has a longitudinal cross-sectional shape that is a part of two parallel circular arcs, two parallel elliptical arcs, or two parallel hyperbolas. Defined, protrusions that can align the inner peripheral surface of the permanent magnet are provided at equal intervals in the longitudinal direction on the surface of the armature core facing the field core, and the protrusion and the inner peripheral surface of the permanent magnet are provided. Be consistent.

〔作 用〕(Operation)

この発明では、永久磁石の断面形状が2つの平行な円
弧、楕円弧又は双曲線の一部で画定されているので、界
磁鉄心と永久磁石との間の空隙長が永久磁石の中心で最
も短く、端部にいくにしたがって長くなり、隣接する永
久磁石の間で一番長くなっている。従って、磁気回路の
パーミアンスは、永久磁石の中心で最も高く、端部にい
くにしたがって低くなり、隣接する永久磁石の間で一番
低くなる。
In the present invention, since the cross-sectional shape of the permanent magnet is defined by two parallel arcs, elliptical arcs, or parts of hyperbolas, the gap length between the field iron core and the permanent magnet is the shortest at the center of the permanent magnet, It becomes longer toward the end, and is the longest between adjacent permanent magnets. Therefore, the permeance of the magnetic circuit is highest at the center of the permanent magnet, decreases toward the end, and lowest between adjacent permanent magnets.

このことは、永久磁石側から見れば、永久磁石各部の
動作点が極中心から遠ざかるのに従って徐々に低くな
り、永久磁石の発生する磁束量が少くなっていると見る
ことができ、従って、界磁磁束の空間分布は正弦波に近
付き、界磁鉄心に加わる推力は滑らかな一定値になる。
From the viewpoint of the permanent magnet, it can be seen that the operating point of each part of the permanent magnet gradually decreases as the distance from the pole center increases, and that the amount of magnetic flux generated by the permanent magnet decreases. The spatial distribution of the magnetic flux approaches a sine wave, and the thrust applied to the field core becomes a smooth constant value.

〔実施例〕〔Example〕

次に図面を参照してこの発明の実施例について説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

第1図はこの発明の第1の実施例の構成を示す断面図
である。なお、この図において、第5図に従来例の各部
に対応する部分について同一の符号を付して説明を省略
する。
FIG. 1 is a sectional view showing the structure of the first embodiment of the present invention. In this figure, the same reference numerals are given to the parts corresponding to those of the conventional example in FIG. 5, and the description is omitted.

この図において、10は界磁鉄心であり、第2図に示す
複数の電気鉄板10a,10a,……から構成されている。この
電気鉄板10aの長手方向の一辺には、打ち抜き加工等に
よる円弧状の突部11が一定間隔で設けられており、この
電気鉄板を同一向きで積層することによって、上記界磁
鉄心10が形成されている。また、上述のように積層する
ことで、界磁鉄心10の上部には円弧状の突部11,11,……
が一定間隔で形成されることになる。一方、永久磁石13
は第2図に示すようにその長手方向断面形状が2つの平
行な円弧で画定されており、その内周面13aは界磁鉄心1
0の突部11と整合している。永久磁石13は、それ自身の
上部に現れる磁極がN極、S極と交互に現れるよう配置
されている。
In this drawing, reference numeral 10 denotes a field iron core, which comprises a plurality of electric iron plates 10a, 10a,... Shown in FIG. On one side in the longitudinal direction of the electric iron plate 10a, arc-shaped protrusions 11 formed by punching or the like are provided at regular intervals, and the field iron core 10 is formed by laminating the electric iron plates in the same direction. Have been. Also, by laminating as described above, arc-shaped projections 11, 11,...
Are formed at regular intervals. On the other hand, permanent magnet 13
As shown in FIG. 2, its longitudinal cross-sectional shape is defined by two parallel arcs, and its inner peripheral surface 13a is
It is aligned with the protrusion 11 of 0. The permanent magnet 13 is arranged such that the magnetic poles appearing at the top of the permanent magnet 13 appear alternately with the N pole and the S pole.

このように、界磁鉄心10に断面形状が2つの平行な円
弧で画定されている永久磁石13を設けることにより、界
磁鉄心10と電機子鉄心3の空隙のパーミアンス(磁気抵
抗の逆数)が一定ではなくなり、所定の空間分布を持つ
ようになる。すなわち、空隙のパーミアンスは、第3図
に示す実線のように磁極中心で最も高く、磁極切り換わ
り点で最も低くなり、界磁磁束Φの分布は矩形波から正
弦波に近付く。(なお、第3図中の一点鎖線は第5図に
示す従来のリニアサーボモータの界磁磁束Φの分布を示
している)したがって、電機子鉄心3は、ドライバ6か
ら供給される駆動電流によって滑らかに駆動される。
As described above, by providing the field magnet 10 with the permanent magnet 13 having a sectional shape defined by two parallel arcs, the permeance (reciprocal of the magnetoresistance) of the gap between the field iron core 10 and the armature core 3 is reduced. It is not constant and has a predetermined spatial distribution. That is, the permeance of the air gap is highest at the center of the magnetic pole and lowest at the switching point of the magnetic pole as shown by the solid line in FIG. 3, and the distribution of the field magnetic flux Φ approaches from a rectangular wave to a sine wave. (Note that the one-dot chain line in FIG. 3 indicates the distribution of the field magnetic flux Φ of the conventional linear servomotor shown in FIG. 5.) Therefore, the armature core 3 is driven by the drive current supplied from the driver 6. Drives smoothly.

次に、この発明の第2の実施例によるリニアサーボモ
ータの断面図を第4図に示す。この実施例では、界磁鉄
心10の突部11が楕円形で、永久磁石13の長手方向断面形
状が2つの平行な楕円弧で画定されている以外は第1実
施例と全く同様である。この例の場合も、第1図の実施
例と同様に、空隙のパーミアンスは、磁極中心で最も高
く、磁極切り換わり点で最も低くなり、界磁磁束Φの分
布は正弦波に近付く。したがって、電機子鉄心3はドラ
イバ6から供給される駆動電流によって滑らかに駆動さ
れる。
Next, FIG. 4 shows a sectional view of a linear servomotor according to a second embodiment of the present invention. This embodiment is exactly the same as the first embodiment, except that the projection 11 of the field iron core 10 is elliptical, and the longitudinal sectional shape of the permanent magnet 13 is defined by two parallel elliptical arcs. Also in this example, as in the embodiment of FIG. 1, the permeance of the air gap is the highest at the center of the magnetic pole and the lowest at the switching point of the magnetic pole, and the distribution of the field magnetic flux Φ approaches a sine wave. Therefore, the armature core 3 is smoothly driven by the drive current supplied from the driver 6.

なお、永久磁石13の形状は上述したものに限られるも
のではなく、電機子鉄心と永久磁石との間の空隙長がそ
れぞれの永久磁石の中心部で1番長く、端部にいくに従
って短くなるように永久磁石の形状を定めて、つまり長
手方向断面形状が2つの平行な双曲線の一部で画定され
るようにし、その永久磁石の内面と整合するように突部
を形成してもよい。いいかえれば、パーミアンス分布が
磁極中心で最も高く、磁極切り換わり点で最も低くなり
モータの空隙長との相関で、空間高調波が最も少なくな
るようにすればよい。
The shape of the permanent magnet 13 is not limited to the above-described one, and the gap length between the armature iron core and the permanent magnet is the longest at the center of each permanent magnet, and becomes shorter toward the end. Thus, the shape of the permanent magnet may be determined, that is, the longitudinal cross-sectional shape may be defined by a part of two parallel hyperbolas, and the protrusion may be formed so as to match the inner surface of the permanent magnet. In other words, the permeance distribution should be the highest at the center of the magnetic pole, the lowest at the magnetic pole switching point, and the spatial harmonics should be minimized in correlation with the air gap length of the motor.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明は、長手方向断面形状
が平行な2つの円弧・楕円弧または双曲線の一部で画定
されている永久磁石を用い、この永久磁石の内周面を界
磁鉄心に設けた突部に整合させているので、空隙のパー
ミアンス分布を永久磁石の磁極中心で最も高く、磁極切
り換わり点で最も低くなるようにでき、界磁磁束の空間
分布を正弦波を近付けることができる。この結果、発生
推力を一定にすることができ、特性の優れたリニアサー
ボモータを提供できる。
As described above, the present invention uses a permanent magnet whose longitudinal cross-sectional shape is defined by two parallel arcs / elliptical arcs or a part of a hyperbola, and provides the inner peripheral surface of the permanent magnet in a field core. Since the gap is aligned with the protrusion, the permeance distribution of the air gap can be set to be the highest at the center of the magnetic pole of the permanent magnet and the lowest at the magnetic pole switching point, and the spatial distribution of the field magnetic flux can be made closer to a sine wave . As a result, the generated thrust can be made constant, and a linear servomotor having excellent characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の第1の実施例の構成を示す断面図、
第2図は同実施例の界磁鉄心及び永久磁石の構造を示す
斜視図、第3図は同実施例の永久磁石が発生する界磁磁
束を示す磁束密度曲線図、第4図は同発明の第2の実施
例の構成を示す断面図、第5図は従来のリニアサーボモ
ータの断面図、第6図は同リニアサーボモータの界磁鉄
心の上面図である。 3……電機子鉄心、10……界磁鉄心、 11……突部、13……永久磁石。
FIG. 1 is a sectional view showing the structure of a first embodiment of the present invention,
FIG. 2 is a perspective view showing the structure of the field core and the permanent magnet of the embodiment, FIG. 3 is a magnetic flux density curve diagram showing the field magnetic flux generated by the permanent magnet of the embodiment, and FIG. FIG. 5 is a sectional view of a conventional linear servomotor, and FIG. 6 is a top view of a field core of the linear servomotor. 3 ... armature iron core, 10 ... field iron core, 11 ... protrusion, 13 ... permanent magnet.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】界磁鉄心の一面に配置された複数の永久磁
石によって界磁磁束を発生し、電機子鉄心に巻き回され
たコイルによって前記界磁磁束に相互作用をする磁束を
発生し、当該電機子鉄心を直線移動させるリニアサーボ
モータにおいて、前記永久磁石の長手方向断面形状が2
つの平行な円弧、2つの平行な楕円弧又は2つの平行な
双曲線の一部で画定され、前記界磁鉄心の前記電機子鉄
心と対向する面に前記永久磁石の内周面が整合できる突
部が長手方向に等間隔に設けられ、この突部と前記永久
磁石の内周面が整合されていることを特徴とするリニア
サーボモータ。
1. A field magnetic flux is generated by a plurality of permanent magnets disposed on one surface of a field iron core, and a magnetic flux interacting with the field magnetic flux is generated by a coil wound around an armature iron core. In the linear servomotor for linearly moving the armature core, the permanent magnet has a longitudinal sectional shape of 2 mm.
A protrusion that is defined by two parallel arcs, two parallel elliptical arcs or two parallel hyperbolas, and that allows the inner peripheral surface of the permanent magnet to be aligned with the surface of the field core facing the armature core. A linear servomotor, which is provided at equal intervals in the longitudinal direction, and wherein the protrusion and the inner peripheral surface of the permanent magnet are aligned.
JP60090A 1990-01-08 1990-01-08 Linear servo motor Expired - Fee Related JP2785406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60090A JP2785406B2 (en) 1990-01-08 1990-01-08 Linear servo motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090A JP2785406B2 (en) 1990-01-08 1990-01-08 Linear servo motor

Publications (2)

Publication Number Publication Date
JPH03207256A JPH03207256A (en) 1991-09-10
JP2785406B2 true JP2785406B2 (en) 1998-08-13

Family

ID=11478227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090A Expired - Fee Related JP2785406B2 (en) 1990-01-08 1990-01-08 Linear servo motor

Country Status (1)

Country Link
JP (1) JP2785406B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829052C1 (en) * 1998-06-29 1999-12-30 Siemens Ag Synchronous linear motor for linear motor setting
JP3513467B2 (en) * 2000-06-16 2004-03-31 ファナック株式会社 Synchronous motor rotor
JP3848596B2 (en) 2002-06-11 2006-11-22 ファナック株式会社 Linear motor
JP4259978B2 (en) * 2003-03-25 2009-04-30 Thk株式会社 Linear motor actuator
WO2009057442A1 (en) * 2007-10-31 2009-05-07 Thk Co., Ltd. Linear motor, and linear motor system
JP5188357B2 (en) * 2008-10-23 2013-04-24 三菱電機株式会社 Linear motor
CN101789677B (en) * 2010-03-15 2011-11-09 哈尔滨工业大学 Secondary structure of low-thrust waved sine wave permanent magnet liner synchronous motor

Also Published As

Publication number Publication date
JPH03207256A (en) 1991-09-10

Similar Documents

Publication Publication Date Title
JP3791082B2 (en) Linear motor
US7230355B2 (en) Linear hybrid brushless servo motor
US6753627B2 (en) Linear motor
JP2002209371A (en) Linear motor
JP2002238241A (en) Linear motor
JP2785406B2 (en) Linear servo motor
JPH08205514A (en) Linear synchronous motor
JP2000333437A (en) Linear motor
KR101798548B1 (en) Linear motor
JP2002186244A (en) Permanent magnet linear motor
JPH11178310A (en) Linear motor
JP2001119919A (en) Linear motor
JP2002101636A (en) Linear motor
JP2001008432A (en) Linear motor
JP2782830B2 (en) Linear servo motor
JPS6111542B2 (en)
JP3357541B2 (en) Moving magnet type linear motor
JPH02246762A (en) Linear motor
JP7124981B1 (en) Field device, linear motor
JPH05111229A (en) Converter for electric energy and mechanical energy
JPS6192158A (en) Linear motor
US20240006973A1 (en) Permanent field magnet and linear motor
JPS626865Y2 (en)
JP4352439B2 (en) Linear motor
JP3700883B2 (en) Linear motor stator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees