JP2770396B2 - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JP2770396B2
JP2770396B2 JP1092405A JP9240589A JP2770396B2 JP 2770396 B2 JP2770396 B2 JP 2770396B2 JP 1092405 A JP1092405 A JP 1092405A JP 9240589 A JP9240589 A JP 9240589A JP 2770396 B2 JP2770396 B2 JP 2770396B2
Authority
JP
Japan
Prior art keywords
zinc
anticorrosive
negative electrode
active material
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1092405A
Other languages
Japanese (ja)
Other versions
JPH02273464A (en
Inventor
寛治 ▲高▼田
晃 三浦
佐知子 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1092405A priority Critical patent/JP2770396B2/en
Publication of JPH02273464A publication Critical patent/JPH02273464A/en
Application granted granted Critical
Publication of JP2770396B2 publication Critical patent/JP2770396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛,電解液としてアル
カリ水溶液,正極活物質として二酸化マンガン,酸化
銀,酸化水銀,酸素,水酸化ニッケル等を用いる亜鉛ア
ルカリ電池の亜鉛負極の汞化に用いる水銀量の低減に有
効な手段を提供するものである。
The present invention relates to zinc using zinc as a negative electrode active material, an aqueous alkaline solution as an electrolytic solution, and manganese dioxide, silver oxide, mercury oxide, oxygen, nickel hydroxide and the like as a positive electrode active material. An object of the present invention is to provide an effective means for reducing the amount of mercury used for converting a zinc negative electrode of an alkaline battery into a mercury.

従来の技術 亜鉛負極の電解液の腐食を抑制するため、従来から、
7〜10重量%程度の水銀を亜鉛に添加する方法が工業的
に採られて来た。しかし、近年、低公害化のため、水銀
含有量の低減化の社会的ニーズが高まり、少量の水銀の
使用で十分な耐食性を確保するため、種々の耐食性亜鉛
合金が開発、又は提案されている。例えば、亜鉛中にイ
ンジウム,鉛,ガリウム,アルミニウム,などを添加し
た耐食性亜鉛合金粉末が有力なものとされ、インジウム
と鉛を添加した亜鉛合金がすでに実用化され、さらに耐
食性を向上させたインジウム,鉛に加えて、アルミニウ
ム、必要に応じてガリウムを添加した亜鉛合金も実用化
されている。これらの耐食性亜鉛合金を用いた場合、汞
化率(負極亜鉛中の水銀の重量百分率)を減少させても
耐食性が確保でき、インジウムと鉛を添加した亜鉛合金
の場合で汞化率3%、さらにこれを改良した上記のイン
ジウム,鉛に加えてアルミニウム、必要に応じてガリウ
ムを添加した亜鉛合金では汞化率1.5%程度でも純亜鉛
の場合の汞化率7〜10%に相当する耐食性が得られる。
汞化率を低減させる方法として耐食性亜鉛合金を用いる
ことが有効なことは上述の例に見られる通りであるが、
他の有効な方法として、防食剤の添加が考えられ、電池
内の水銀含有量を極限にまで減少させる技術として耐食
性亜鉛合金と防食剤の併用は不可欠と考えられる。
2. Description of the Related Art Conventionally, in order to suppress corrosion of an electrolytic solution of a zinc anode,
A method of adding about 7 to 10% by weight of mercury to zinc has been industrially adopted. However, in recent years, social needs for reduction of mercury content have increased due to low pollution, and various corrosion-resistant zinc alloys have been developed or proposed in order to secure sufficient corrosion resistance by using a small amount of mercury. . For example, a corrosion-resistant zinc alloy powder in which indium, lead, gallium, aluminum, etc. is added to zinc is considered to be effective, and a zinc alloy in which indium and lead are added has already been put into practical use, and indium, which has further improved corrosion resistance, Zinc alloys to which aluminum and, if necessary, gallium are added in addition to lead have also been put to practical use. When these corrosion-resistant zinc alloys are used, corrosion resistance can be ensured even when the rate of calorification (the percentage by weight of mercury in the negative electrode zinc) is reduced. In the case of a zinc alloy to which indium and lead are added, the rate of calorification is 3%, In addition, a zinc alloy containing aluminum and, if necessary, gallium in addition to the above-mentioned indium and lead, which has improved corrosion resistance, has a corrosion resistance equivalent to that of pure zinc, which is equivalent to 7 to 10% even in the case of pure zinc. can get.
Although it is effective to use a corrosion-resistant zinc alloy as a method of reducing the rate of calcining, as seen in the above example,
Another effective method is to add an anticorrosive, and it is considered that the use of a corrosion-resistant zinc alloy and an anticorrosive is indispensable as a technique for reducing the mercury content in the battery to the utmost.

従来、アルカリ性水溶液の電解液中での亜鉛負極の防
食のため、エチレングリコール等のグリコール類,メル
カプトカルボン酸,アミノナフタリンスルホン酸,アゾ
ナフタリン類,カルバゾールシアンヒドリン,2−メルト
カプトベンゾチアゾール等のチアゾール誘導体など枚挙
にいとまのない種々の防食剤の適用が提案されている。
これらの防食剤は電解液中に少量を添加するのが一般的
な適用法である。然し、何れの防食剤も顕著な防食効果
が認められず、汞化率を低減させるための有効な手段に
なっていないのが現状である。
Conventionally, in order to prevent corrosion of a zinc negative electrode in an alkaline aqueous solution, glycols such as ethylene glycol, mercaptocarboxylic acid, aminonaphthalenesulfonic acid, azonaphthalenes, carbazole cyanohydrin, 2-mercaptobenzothiazole, etc. Various anticorrosive agents, such as thiazole derivatives, have been proposed.
It is a general application method to add a small amount of these anticorrosives to the electrolyte. However, at present, none of the anticorrosive agents has a remarkable anticorrosive effect, and is not an effective means for reducing the rate of calcining.

発明が解決しようとする課題 亜鉛負極の防食が不十分な場合は電池の貯蔵中に亜鉛
の消耗とともに水素ガスが発生し、電池内圧が上昇して
電解液の漏出、電池の変形の原因となり、著しい場合は
電池の破裂の原因となる。しかも、亜鉛の腐食は電池の
容量低下など貯蔵後の電池性能の劣化をもたらす原因と
もなる。本発明は上記の諸問題の発生を防止するに十分
な亜鉛負極の耐食性を汞化率を極力減化した状態で確保
することを目的とする。その方法として、従来から提案
されている前述の各種防食剤以上に防食効果が大きく、
耐アルカリ性で、しかも放電性能にも悪影響のない防食
剤を新たに探索して低汞化率の亜鉛負極を備えた電池に
適用し、実用的な電池の諸特性を損うことなく、水銀含
有率の小さい低公害の亜鉛アルカリ電池を提供するもの
である。
Problems to be Solved by the Invention If the corrosion prevention of the zinc negative electrode is insufficient, hydrogen gas is generated with the consumption of zinc during storage of the battery, the internal pressure of the battery increases, the electrolyte leaks, and the battery is deformed, If it is significant, the battery may burst. In addition, the corrosion of zinc causes deterioration of battery performance after storage, such as a decrease in battery capacity. An object of the present invention is to ensure the corrosion resistance of a zinc negative electrode sufficient to prevent the above-mentioned problems from occurring, while keeping the rate of calcining as low as possible. As a method, the anticorrosion effect is greater than the above-mentioned various anticorrosion agents conventionally proposed,
A new anticorrosion agent that is alkali-resistant and has no adverse effect on discharge performance has been newly searched for and applied to batteries equipped with a zinc anode with a low rate of mercury, and contains mercury without impairing the characteristics of practical batteries. The present invention provides a low-pollution, low-pollution zinc-alkali battery.

課題を解決するための手段 本発明は電解液に水酸化カリウム、水酸化ナトリウム
などを主成分とするアルカリ水溶液,負極活物質に亜
鉛、又は亜鉛合金,正極活物質に二酸化マンガン,酸化
銀,酸素,オキシ水酸化ニッケル,酸化水銀などを用い
るいわゆる亜鉛アルカリ電池の負極の腐食を抑制する防
食剤として、パーフルオロリン酸エステル を用いるものである。
Means for Solving the Problems The present invention provides an alkaline solution containing potassium hydroxide, sodium hydroxide or the like as a main component in an electrolytic solution, zinc or a zinc alloy in a negative electrode active material, manganese dioxide, silver oxide, oxygen in a positive electrode active material. Perfluorophosphate ester as an anticorrosive that suppresses the corrosion of the negative electrode of so-called zinc-alkaline batteries using nickel, nickel oxyhydroxide, mercury oxide, etc. Is used.

これらの防食剤の適用方法は、電解液中への添加,セ
パレータ,保液材の双方又は一方への含浸,負極活物質
表面への付着ゲルアルカリ電解液への混合などの方法を
採ることができる。また、上記防食剤はフッ化炭素基の
炭素数が2〜18のものが好ましい。また、負極活物質に
は純亜鉛,又は亜鉛合金を用いるが、特に大幅な汞化率
の低減を実現するには耐食性亜鉛合金と上記防食剤を併
用するのが効果的である。例えば、インジウム,鉛を添
加した亜鉛合金、或いはこれにガリウムを添加した亜鉛
合金と併用すると0.2%の汞化率でも負極の耐食性が十
分な電池が得られ、さらに上記の亜鉛合金の添加元素に
加え、アルミニウム,ストロンチウム,カルシウム,マ
グネシウム,バリウム,ニッケルのうち少くとも一種を
含有する亜鉛合金を併用すると0.05%の汞化率でも負極
の耐食性が確保できる。
These anticorrosives can be applied by adding them to the electrolyte, impregnating one or both of the separator and the liquid retaining material, adhering to the surface of the negative electrode active material, and mixing them with the alkaline electrolyte. it can. The anticorrosive preferably has a fluorocarbon group having 2 to 18 carbon atoms. In addition, although pure zinc or a zinc alloy is used as the negative electrode active material, it is effective to use a corrosion-resistant zinc alloy in combination with the above-mentioned anticorrosive agent in order to achieve a particularly large reduction in the rate of calcining. For example, when used in combination with a zinc alloy to which indium and lead are added, or a zinc alloy to which gallium is added, a battery having sufficient corrosion resistance of the negative electrode can be obtained even with a 0.2% mercurization ratio. In addition, when a zinc alloy containing at least one of aluminum, strontium, calcium, magnesium, barium, and nickel is used in combination, the corrosion resistance of the negative electrode can be ensured even at a 0.05% mercurization ratio.

作用 本発明で用いる防食剤の作用機構は不明確であるが、
下記のように推察される。
The mechanism of action of the anticorrosive used in the present invention is unclear,
It is inferred as follows.

本発明の防食剤はほぼ直線形の分子構造で、一方の端
に極性基としてリン酸基を、逆の端に疎水基を有してお
り、電解液中に添加すると溶液又は分散して極性基が負
極の亜鉛又は亜鉛合金表面に吸着するものと考えられ
る。亜鉛のアルカリ電解液中での腐食反応は次式で示さ
れるが、防食剤が負極表面に吸着し被膜を形成すると、 アノード反応 Zn+40H-→▲Zn(OH)2- 4▼+2e- カソード反応 2H2O+2e-→20H-+H2 アノード反応の原因となる水酸イオンの亜鉛負極への
接近が妨害され、またカソード反応に必要な水分子が亜
鉛負極表面近傍に存在できなくなり亜鉛の腐食が抑えら
れる。防食剤が少量で亜鉛負極表面を完全に覆っていな
い状態でも、添加した防食剤の亜鉛負極表面の吸着部分
での亜鉛の腐食反応が抑制され、亜鉛負極の総腐食量が
減少する。また防食剤はセパレータおよび/または保液
材への含浸、負極活物質表面への付着、ゲルアルカリ電
解液への混合などの方法で添加しても、電池構成後に防
食剤が電解液中に溶解あるいは分散し、上記と同様に亜
鉛負極表面に吸着し、亜鉛の腐食が抑制される。以上の
如く本発明に用いる防食剤は亜鉛の腐食反応に関する表
面を覆うため防食効果が得られたものと考えられる。ま
た、特開昭58-18266で開示されたインジウムと鉛を含有
する亜鉛合金、あるいは特開昭60-175368,特開昭61-772
67,特開昭61-181068,特開昭61-203563,特願昭61-150307
等で発明者等が開示したインジウムと鉛を含有し、さら
にガリウム,アルミニウム,ストロンチウム,カルシウ
ム,マグネシウム,バリウム,ニッケル ビスマスの群
より選ばれた一種以上を含有する亜鉛合金はいずれも耐
食性が優れているが汞化率を0.2%程度まで低下させる
と充分な耐食性が確保できない。しかしながら上記防食
剤を併用すると両者の防食作用が併合され、場合によっ
ては0.05%の汞化率でも負極の耐食性が確保される。
The anticorrosive agent of the present invention has a substantially linear molecular structure, having a phosphate group as a polar group at one end and a hydrophobic group at the other end. It is considered that the group is adsorbed on the zinc or zinc alloy surface of the negative electrode. When the corrosion reaction in the alkaline electrolyte of zinc is represented by the following formula, anticorrosive agent forms adsorbed film on the surface of the negative electrode, the anode reaction Zn + 40H - → ▲ Zn ( OH) 2- 4 ▼ + 2e - cathodic reaction 2H 2 O + 2e - → 20H - + H 2 causes the anode reaction proximity to hydroxyl ions of zinc negative electrode is disturbed, also corrosion of zinc can no longer exist in the water molecules near zinc anode surface required in the cathode reaction Is suppressed. Even when the amount of the anticorrosive is small and does not completely cover the surface of the zinc negative electrode, the corrosion reaction of zinc at the adsorbed portion of the surface of the zinc negative electrode by the added anticorrosive is suppressed, and the total amount of corrosion of the zinc negative electrode is reduced. Even when the anticorrosive is added by impregnating the separator and / or the liquid retaining material, attaching to the negative electrode active material surface, or mixing with the gel alkaline electrolyte, the anticorrosive dissolves in the electrolyte after the battery is formed. Alternatively, they are dispersed and adsorbed on the surface of the zinc negative electrode in the same manner as described above, whereby the corrosion of zinc is suppressed. As described above, it is considered that the anticorrosive used in the present invention covered the surface related to the corrosion reaction of zinc, and thus had an anticorrosive effect. Further, a zinc alloy containing indium and lead disclosed in JP-A-58-18266, or JP-A-60-175368, JP-A-61-772
67, JP-A-61-181068, JP-A-61-203563, Japanese Patent Application No. 61-150307
Zinc alloys containing indium and lead disclosed by the present inventors and containing at least one selected from the group consisting of gallium, aluminum, strontium, calcium, magnesium, barium and nickel bismuth all have excellent corrosion resistance. However, if the rate of calcining is reduced to about 0.2%, sufficient corrosion resistance cannot be secured. However, when the above anticorrosives are used in combination, the anticorrosive actions of both are combined, and in some cases, the corrosion resistance of the negative electrode is ensured even with a 0.05% calcining rate.

上記の如く本発明は亜鉛負極の耐食性向上に有効な防
食剤、さらに耐食性亜鉛合金との併用を実験的に検討
し、低汞化率で実用性の高い亜鉛アルカリ電池を完成し
たものである。
As described above, the present invention has experimentally studied the use of an anticorrosive agent effective for improving the corrosion resistance of a zinc negative electrode and a corrosion-resistant zinc alloy, and has completed a highly alkaline zinc-alkaline battery with a reduced rate of mercury.

以下実施例により詳述に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

実施例 実施例1 まず、本発明の防食剤のアルカリ溶液中での亜鉛に対
する腐食抑制効果を調べた。実験方法は40重量%の水酸
化カリウム水溶液に酸化亜鉛を溶解した電解液に本発明
の防食剤、又は従来例の防食剤をほぼ飽和量まで溶解さ
せて5mlを採り、その液中に汞化亜鉛粉を10g投入し、45
℃の温度下で20日間で発生した水素ガス量を測定した。
汞化亜鉛粉の汞化率は10%で、粒径は35〜150メッシュ
とした。得られた測定結果を第1表に示した。
EXAMPLES Example 1 First, the effect of the corrosion inhibitor of the present invention on corrosion of zinc in an alkaline solution was examined. The experiment was conducted by dissolving the anticorrosive agent of the present invention or the conventional anticorrosive agent to an almost saturated amount in an electrolyte solution obtained by dissolving zinc oxide in a 40% by weight aqueous solution of potassium hydroxide, and taking 5 ml of the solution. 10g of zinc powder, 45
The amount of hydrogen gas generated over 20 days at a temperature of ° C was measured.
The mercurization ratio of the mercurized zinc powder was 10%, and the particle size was 35 to 150 mesh. Table 1 shows the obtained measurement results.

第1表から明白なように、本発明の防食剤を用いたN
O.1〜8の群は、従来から提案されている防食剤を用い
たNO.9〜11の群や、防食剤を添加していないNO.12より
水素ガスの発生量が少く、本発明の防食剤の効果が大き
いことが判る。また本発明の防食剤はフッ化炭素基の炭
素数が2〜18の範囲でいずれも防食効果が大きい。
As is clear from Table 1, N using the anticorrosive of the present invention
The O.1 to 8 groups produced less hydrogen gas than the NO.9 to 11 groups using the conventionally proposed anticorrosive and the NO.12 without the anticorrosive added. It can be seen that the effect of the anticorrosive is great. Further, the anticorrosive of the present invention has a large anticorrosive effect in any case where the carbon number of the fluorocarbon group is in the range of 2 to 18.

実施例2 次に、実施例1で得られた結果に基づき、代表的な防
食剤を選び、負極活物質である亜鉛又は亜鉛合金の汞化
率低減に対する効果を第1図に示すボタン形酸化銀電池
を試作して比較検討した。第1図において、1はステン
レス鋼製の封口板で、その内面に銅メッキが施されてい
る。2は水酸化カリウムの40重量%水溶液に酸化亜鉛を
飽和させた電解液(防食剤を添加する場合は第2表に示
した防食剤を飽和量溶解させた電解液)をカルボキシメ
チルセルロースによりゲル化し、このゲル中に汞化亜鉛
又は汞化亜鉛合金の50〜150メッシュの粉末を分散させ
た亜鉛負極である。3はセルロース系の保液材、4は多
孔性ポリプロピレン製のセパレータ、5は酸化銀に黒鉛
を混合して加圧成形した正極、6は鉄にニッケルメッキ
を施した正極リング、7はニッケルメッキを施したステ
ンレス鋼製の正極缶である。8はポリプロピレン製のガ
スケットで、正極缶7の折り曲げにより正極缶7と封口
板1との間に圧縮されている。試作した電池は直径11.6
mm,総高5.4mmである。試作した電池の60℃で1カ月貯蔵
した後の放電性能と電池総高の変化、及び目視判定で漏
液が観察された電池の個数を第2表に示す。放電性能
は、20℃において510Ωで0.9Vを終止電圧として放電し
た時の放電持続時間で表わした。
Example 2 Next, based on the results obtained in Example 1, a representative anticorrosive was selected, and the effect of reducing zinc oxide or zinc alloy as a negative electrode active material on the rate of calorification was shown in FIG. A silver battery was prototyped and compared. In FIG. 1, reference numeral 1 denotes a stainless steel sealing plate, whose inner surface is plated with copper. No. 2 shows that a 40 wt% aqueous solution of potassium hydroxide saturated with zinc oxide and an electrolytic solution in which a corrosion inhibitor shown in Table 2 is dissolved in a saturated amount when an anticorrosive is added is gelled with carboxymethyl cellulose. This is a zinc negative electrode in which powder of 50 to 150 mesh of calcined zinc or a calcined zinc alloy is dispersed in the gel. 3 is a cellulosic liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode formed by mixing graphite with silver oxide and pressurized, 6 is a positive electrode ring made of nickel plated iron, 7 is nickel plated. This is a stainless steel positive electrode can that has been subjected to the above. Reference numeral 8 denotes a polypropylene gasket, which is compressed between the positive electrode can 7 and the sealing plate 1 by bending the positive electrode can 7. The prototype battery has a diameter of 11.6.
mm, total height 5.4mm. Table 2 shows the change in the discharge performance and the total battery height of the prototype batteries after storage at 60 ° C. for one month, and the number of batteries in which liquid leakage was observed by visual judgment. The discharge performance was represented by a discharge duration time when the battery was discharged at 510 Ω at 20 ° C. with a final voltage of 0.9 V.

なお、実施例2で用いた本発明の防食剤は、いずれも で表わされるものを用いた。In addition, all of the anticorrosives of the present invention used in Example 2 were used. Was used.

正常なボタン電池では通常、電池を封口後、各電池構
成要素間の応力の関係が安定化するまでは経時的に電池
総高が若干減少するが、負極亜鉛の腐食に伴う水素ガス
の発生が多い電池では電池内圧の上昇により電池総高が
増大する傾向が強くなる。従って、貯蔵期間中の電池総
高の増減により負極亜鉛の耐食性が評価できる。耐食性
が不十分な電池では電池総高が増大するほか、電池内圧
の上昇により漏液し易く、また、腐食による負極亜鉛の
消耗、表面の酸化により放電性能も劣化する。このよう
な観点で、第2表の試作実験結果は次のように評価され
る。先ず、NO.1〜3は負極活物質として耐食性が極めて
すぐれ、通常、汞化率1.5%以上なら、防食剤の助けな
し 実用電池の負極として使用することが有望視されて
いる亜鉛合金(Pb,In,Alを含有する亜鉛合金)を0.05%
という極めて低汞化率で電池を構成して防食剤の効果を
比較したものである。
In normal button batteries, the total battery height usually decreases slightly with time after the battery is sealed until the stress relationship between the battery components stabilizes, but the generation of hydrogen gas due to the corrosion of the negative electrode zinc occurs. In many batteries, the tendency of the total battery height to increase due to an increase in the battery internal pressure increases. Therefore, the corrosion resistance of the negative electrode zinc can be evaluated based on the change in the total battery height during the storage period. Batteries with insufficient corrosion resistance increase the total battery height, easily leak due to an increase in the internal pressure of the battery, and also deteriorate the discharge performance due to consumption of the negative electrode zinc due to corrosion and oxidation of the surface. From such a viewpoint, the results of the trial production experiment in Table 2 are evaluated as follows. First, NO.1 to 3 are extremely excellent in corrosion resistance as a negative electrode active material. Normally, a zinc alloy (Pb Alloy containing 0.05%, In, Al)
This is a comparison of the effect of the anticorrosive agent by forming a battery with an extremely low calomelization rate.

本発明の防食剤を添加したNO.1はNO.2の従来例の防食
剤の添加、又はNO.3の無添加の場合より極めて良好であ
ることを示し、上記の耐食性亜鉛合金と本発明の防食剤
を併用することにより0.05%以上の汞化率で負極の耐食
性を十分に確保でき、極めて低汞化率の亜鉛アルカリ電
池が構成できることを示している。また、NO.4〜6は現
在、普及材料としてすでに3%の汞化率で実用化されて
いる亜鉛合金(Pb,Inを含有する亜鉛合金)の汞化率を
0.2%まで減少させて、本発明の防食剤の効果を検討し
たものである。この場合にも、NO.4の実施例はNO.5の従
来例又は無添加の場合とで、明白に電池性能に差異が見
られ、上記亜鉛合金と本発明の防食剤を併用すれば0.2
%以上の汞化率で負極の耐食性が十分で実用性能にすぐ
れた低汞化率の亜鉛アルカリ電池が構成できることを示
している。さらに、NO.7〜9は通常7〜10%程度の汞化
率を必要とする純亜鉛粉を負極活物質に用いた場合に本
発明を適用して3%まで汞化率を低減しても十分な実用
性のある電池を構成できることを示している。また、N
O.10〜12は防食剤の助けなしでもほぼ負極の耐食性が確
保できる1.5〜3%の汞化率の亜鉛合金を負極に用いた
場合に本発明の効果を念のため確認したものであり、N
O.10及びNO.13の実施例の場合は、NO.11〜12、及びNO.1
4〜15の従来例又は無添加の場合よりさらに特性が向上
しており、高度の耐食性が確保されたことにより品質が
安定化したことを示している。
No. 1 to which the anticorrosive of the present invention was added showed that the addition of the anticorrosive of the conventional example of No. 2 or the case of no addition of NO. This shows that the use of the anticorrosive agent in combination can sufficiently secure the corrosion resistance of the negative electrode with a calorification ratio of 0.05% or more, and can constitute a zinc-alkali battery with an extremely low calorification ratio. In addition, NO.4 to No.6 show the melting rate of zinc alloy (zinc alloy containing Pb and In), which is already in practical use at a 3% melting rate as a popular material.
The effect of the anticorrosive agent of the present invention was examined by reducing it to 0.2%. Also in this case, the embodiment of NO.4 clearly shows a difference in battery performance between the conventional example of NO.5 or the case of no addition, and 0.2% when the zinc alloy and the anticorrosive of the present invention are used in combination.
The results show that a zinc-alkali battery having a low rate of calorization with sufficient corrosion resistance of the negative electrode and excellent practical performance can be formed at a rate of calorification of not less than 10%. Further, in the case of NOs. 7 to 9, the present invention is applied to a case where pure zinc powder requiring a calorification rate of about 7 to 10% is used as a negative electrode active material, and the calorification rate is reduced to 3%. This shows that a battery having sufficient practicality can be constructed. Also, N
O.10 to 12 were confirmed to make sure the effect of the present invention when a zinc alloy having a calorification rate of 1.5 to 3%, in which the corrosion resistance of the negative electrode can be substantially secured without the use of an anticorrosive agent, was used for the negative electrode. , N
In the case of the embodiment of O.10 and NO.13, NO.11-12 and NO.1
The characteristics are further improved as compared with the conventional examples of Nos. 4 to 15 or the case of no addition, indicating that the quality was stabilized by securing a high degree of corrosion resistance.

NO.16,17はPbとInを含有する亜鉛合金とほぼ同等の腐
食性を有する、Pb,In,Gaを含有する亜鉛合金を汞化率0.
2%として本発明の効果を調べたもので、NO.16の実施例
の場合はNO.4のPb,Inを含有した亜鉛合金での実施例と
同様0.2%の汞化率が実現できることを示している。
NO.16 and 17 have almost the same corrosiveness as zinc alloys containing Pb and In.
The effect of the present invention was examined at 2%. In the case of the embodiment of No. 16, it was found that the same as the embodiment with the zinc alloy containing Pb and In of NO. Is shown.

NO.18〜19は、Pb,In,Alを含有する耐食性の改良され
た亜鉛合金とほぼ同等の耐食性を有する亜鉛合金とし
て、期待されるPb,In,Al,Niを含有するものについて、
汞化率0.05%で本発明の効果を調べたもので、0.05%と
いう低汞化率でも、Pb,In,Alを含有する亜鉛合金でのN
O.1の実施例と同様に、すぐれた電池性能を示してい
る。以上の場合はいずれも電解液中に防食剤を溶解させ
て本発明の効果を検討した結果であるが、NO.20〜23は
防食剤を電解液中に添加する方法以外の本発明の実施例
を示したもので、予め、汞化亜鉛合金に防食剤を付着さ
せたNO.20、予めセパレータもしくは保液材に防食剤を
含浸せたNO.21,22CMCでゲル化したゲル電解液中に混合
したNO.23の何れもが電解液に防食剤を溶解させた場合
とほぼ等しい効果が認められた。これらの場合、いずれ
も電池構成後に序々に防食剤が電解液中に溶解して防食
効果を発揮するもので、特に、セパレータもしくは保液
材に防食剤を含浸させた場合には、電解液の浸透が速く
なるので電池構成が容易になり、生産性を高める効果も
ある。
NO.18 to 19 are Pb, In, Al-containing zinc alloys that have almost the same corrosion resistance as corrosion-resistant zinc alloys, and those containing expected Pb, In, Al, and Ni.
The effect of the present invention was examined at a mercurization rate of 0.05%. Even at a low calorification rate of 0.05%, the Nb content in a zinc alloy containing Pb, In, and Al was reduced.
As in the example of O.1, it shows excellent battery performance. All of the above cases are the results of examining the effects of the present invention by dissolving the anticorrosive in the electrolytic solution, but NO. 20 to 23 are implementations of the present invention other than the method of adding the anticorrosive to the electrolytic solution. In the example shown, the gel electrolyte solution was gelled with NO.20 in which an anticorrosive agent was previously attached to a zinc-alloyed zinc alloy, and NO.21 and 22CMC in which a corrosion inhibitor was previously impregnated in a separator or a liquid retaining material. No. 23 mixed with each other had almost the same effect as when the anticorrosive was dissolved in the electrolytic solution. In each of these cases, the anticorrosive is gradually dissolved in the electrolytic solution after the battery is formed to exhibit the anticorrosive effect.Especially, when the anticorrosive is impregnated in the separator or the liquid retaining material, the electrolytic solution is Since the permeation becomes faster, the battery configuration becomes easier, and there is also an effect of increasing productivity.

また、本発明の防食剤は、汞化処理のない亜鉛,亜鉛
合金及びそれらの粉末にも効果があり使用期間の短かい
亜鉛アルカリ電池,空気亜鉛電池等の開放型亜鉛アルカ
リ電池においては水銀を全く使用しないものも可能であ
る。
In addition, the anticorrosive of the present invention is effective for zinc and zinc alloys and powders thereof which are not subjected to the treatment of mercurization, and reduces mercury in open-type zinc-alkaline batteries such as zinc-alkaline batteries and air-zinc batteries which have a short usage period. Some that are not used at all are possible.

また、実施例には示していないが、In,Pbを含有し、
さらにストロンチウム,カルシウム,マグネシウム,ビ
スマスを含有する亜鉛合金でも上記と同様の効果が得ら
れることを確認している。さらに本発明の防食剤は中性
塩の電解液を使用するマンガン乾電池でも、ほぼ同様の
効果が得られることも確認している。
Also, although not shown in the examples, contains In, Pb,
Furthermore, it has been confirmed that a zinc alloy containing strontium, calcium, magnesium, and bismuth can achieve the same effect as described above. Furthermore, it has been confirmed that the anticorrosive agent of the present invention can obtain substantially the same effect even in a manganese dry battery using a neutral salt electrolyte.

発明の効果 以上のとおり、本発明は新規に探索した防食剤の効果
により亜鉛アルカリ電池の負極の汞化率を大幅に低減す
ることを可能にしたものである。
Effects of the Invention As described above, the present invention has made it possible to significantly reduce the rate of calcining of the negative electrode of a zinc-alkaline battery by the effect of a newly found anticorrosive agent.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に用いたボタン形酸化銀電池の
一部を断面にした側面図である。 2……亜鉛負極、4……セパレータ、5……酸化銀正
極。
FIG. 1 is a cross-sectional side view of a part of a button-type silver oxide battery used in an embodiment of the present invention. 2 ... a zinc negative electrode, 4 ... a separator, 5 ... a silver oxide positive electrode.

フロントページの続き (56)参考文献 特開 昭61−27063(JP,A) 米国特許4195120(US,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/62 H01M 4/42Continuation of the front page (56) References JP-A-61-27063 (JP, A) US Patent 4,195,120 (US, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/62 H01M 4 / 42

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極活物質の防食剤として、 パーフルオロリン酸エステル を用いた亜鉛アルカリ電池。1. A perfluorophosphate ester as an anticorrosive for a negative electrode active material. Zinc alkaline battery using. 【請求項2】防食剤のフッ化炭素基の炭素数が2〜18で
ある特許請求の範囲第1項記載の亜鉛アルカリ電池。
2. The zinc alkaline battery according to claim 1, wherein the anticorrosive has a fluorocarbon group having 2 to 18 carbon atoms.
【請求項3】防食剤を電解液中に溶解させた特許請求の
範囲第1項又は第2項記載の亜鉛アルカリ電池。
3. The zinc alkaline battery according to claim 1, wherein the anticorrosive is dissolved in the electrolytic solution.
【請求項4】防食剤を予めセパレータ、電解液保持材の
双方又は一方に含浸させた特許請求の範囲第1項又は第
2項記載の亜鉛アルカリ電池。
4. The zinc alkaline battery according to claim 1, wherein both or one of the separator and the electrolyte holding material is impregnated with an anticorrosive in advance.
【請求項5】防食剤を予め負極活物質の表面に付着させ
た特許請求の範囲第1項又は第2項記載の亜鉛アルカリ
電池。
5. A zinc alkaline battery according to claim 1, wherein an anticorrosive is previously attached to the surface of the negative electrode active material.
【請求項6】防食剤を水溶性高分子でゲル化させたゲル
状アルカリ電解液に混合させた特許請求の範囲第1項又
は第2項記載の亜鉛アルカリ電池。
6. The zinc alkaline battery according to claim 1, wherein the anticorrosive is mixed with a gel alkaline electrolyte gelled with a water-soluble polymer.
【請求項7】必須添加元素としてインジウム,鉛を、任
意の添加元素としてガリウムを含有する亜鉛合金を負極
活物質に用い、負極活物質の汞化率が3〜0.2%である
特許請求の範囲第1項から第6項のいずれかに記載の亜
鉛アルカリ電池。
7. A negative electrode active material comprising a zinc alloy containing indium and lead as essential additive elements and gallium as an optional additive element, wherein the negative electrode active material has a rate of mercurization of 3 to 0.2%. Item 7. A zinc alkaline battery according to any one of items 1 to 6.
【請求項8】必須添加元素としてインジウム,鉛を含有
し、さらにアルミニウム,ストロンチウム,カルシウ
ム,マグネシウム,バリウム,ニッケル,ビスマスの群
より選ばれた一種以上を含有する亜鉛合金を負極活物質
に用い、負極活物質の汞化率が1.5〜0.05%である特許
請求の範囲第1項から第6項のいずれかに記載の亜鉛ア
ルカリ電池。
8. A negative electrode active material comprising a zinc alloy containing indium and lead as essential addition elements and further containing at least one selected from the group consisting of aluminum, strontium, calcium, magnesium, barium, nickel and bismuth. The zinc-alkali battery according to any one of claims 1 to 6, wherein the negative electrode active material has a calorization ratio of 1.5 to 0.05%.
JP1092405A 1989-04-12 1989-04-12 Zinc alkaline battery Expired - Lifetime JP2770396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092405A JP2770396B2 (en) 1989-04-12 1989-04-12 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092405A JP2770396B2 (en) 1989-04-12 1989-04-12 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPH02273464A JPH02273464A (en) 1990-11-07
JP2770396B2 true JP2770396B2 (en) 1998-07-02

Family

ID=14053505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092405A Expired - Lifetime JP2770396B2 (en) 1989-04-12 1989-04-12 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JP2770396B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537698B2 (en) * 2001-03-21 2003-03-25 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture
US8722235B2 (en) 2004-04-21 2014-05-13 Blue Spark Technologies, Inc. Thin printable flexible electrochemical cell and method of making the same
US8029927B2 (en) 2005-03-22 2011-10-04 Blue Spark Technologies, Inc. Thin printable electrochemical cell utilizing a “picture frame” and methods of making the same
EP2176814A4 (en) 2007-07-18 2012-06-13 Blue Spark Technologies Inc Integrated electronic device and methods of making the same
US8574754B2 (en) 2007-12-19 2013-11-05 Blue Spark Technologies, Inc. High current thin electrochemical cell and methods of making the same
WO2013044224A2 (en) 2011-09-22 2013-03-28 Blue Spark Technologies, Inc. Cell attachment method
CN104936513B (en) 2012-11-01 2018-01-12 蓝色火花科技有限公司 Temperature recording paster
US9444078B2 (en) 2012-11-27 2016-09-13 Blue Spark Technologies, Inc. Battery cell construction
US9693689B2 (en) 2014-12-31 2017-07-04 Blue Spark Technologies, Inc. Body temperature logging patch
US10849501B2 (en) 2017-08-09 2020-12-01 Blue Spark Technologies, Inc. Body temperature logging patch

Also Published As

Publication number Publication date
JPH02273464A (en) 1990-11-07

Similar Documents

Publication Publication Date Title
EP0185497B1 (en) Zinc-alkaline battery
EP0172255B1 (en) Zinc alkaline battery
EP0510239A1 (en) Zinc-alkaline batteries
JP2770396B2 (en) Zinc alkaline battery
JP2737233B2 (en) Zinc alkaline battery
JP2737230B2 (en) Zinc alkaline battery
JP2737232B2 (en) Zinc alkaline battery
JP2737231B2 (en) Zinc alkaline battery
JPH0760685B2 (en) Zinc alkaline battery
JPH0750612B2 (en) Zinc alkaline battery
JPH08222194A (en) Button type alkaline battery
JP2754865B2 (en) Manufacturing method of zinc alkaline battery
JPH0777131B2 (en) Zinc alkaline battery
JPH0750611B2 (en) Zinc alkaline battery
JPS63250063A (en) Zinc-alkaline battery
JPS63248064A (en) Zinc alkaline battery
JP3178160B2 (en) Method for producing negative electrode for button-type alkaline battery and button-type alkaline battery
KR890004989B1 (en) Zinc-alkaline battery
JPS63248065A (en) Zinc alkaline battery
JPS63248070A (en) Zinc alkaline battery
JPS63248062A (en) Zinc alkaline battery
JPS63276871A (en) Zinc alkali cell
JP2935855B2 (en) Alkaline battery
JPS63250061A (en) Zinc-alkaline battery
JPS63248063A (en) Zinc alkaline battery