JP2719978B2 - Amorphous alloy for high frequency magnetic core - Google Patents

Amorphous alloy for high frequency magnetic core

Info

Publication number
JP2719978B2
JP2719978B2 JP2151190A JP15119090A JP2719978B2 JP 2719978 B2 JP2719978 B2 JP 2719978B2 JP 2151190 A JP2151190 A JP 2151190A JP 15119090 A JP15119090 A JP 15119090A JP 2719978 B2 JP2719978 B2 JP 2719978B2
Authority
JP
Japan
Prior art keywords
alloy
magnetic
amorphous alloy
present
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2151190A
Other languages
Japanese (ja)
Other versions
JPH0442508A (en
Inventor
駿 佐藤
健一 馬場
利男 山田
智 山下
英夫 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2151190A priority Critical patent/JP2719978B2/en
Publication of JPH0442508A publication Critical patent/JPH0442508A/en
Application granted granted Critical
Publication of JP2719978B2 publication Critical patent/JP2719978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスイッチング電源のマグアンプ(磁気増幅
器)やインダクタンス素子など高周波帯域で用いる非晶
質軟質磁性合金に関するものである。
Description: TECHNICAL FIELD The present invention relates to an amorphous soft magnetic alloy used in a high frequency band such as a mag amplifier (magnetic amplifier) or an inductance element of a switching power supply.

(従来の技術) 電子計算機やその周辺機器、通信機器などの電源に対
する小型化の要請は年々高まっている。電源の小型化に
は用いられる部品の小型化、高効率化が必要である。磁
性部分を小型化するためには周波数を高める、動作磁束
密度を高めるなどの手段をとればよい。しかし周波数や
動作磁束密度を上げると損失が大きくなり、結果として
磁心の発熱による問題が大きくなる。このため高周波で
損失の少ない磁性材料が求められる。
(Prior Art) Demands for miniaturization of power supplies for electronic computers, their peripheral devices, communication devices, etc. are increasing year by year. In order to reduce the size of the power supply, it is necessary to reduce the size of components used and increase the efficiency. In order to reduce the size of the magnetic portion, measures such as increasing the frequency and increasing the operating magnetic flux density may be taken. However, when the frequency and the operating magnetic flux density are increased, the loss increases, and as a result, the problem due to heat generation of the magnetic core increases. For this reason, a magnetic material with low loss at high frequency is required.

高周波における損失の少ない軟磁気特性材料として注
目されているのは非晶質合金である。非晶質合金は従来
の軟磁性金属に比べて電気抵抗が大きく、板厚の薄い材
料が容易に製造できる。すなわち高周波になるほど非晶
質合金は有利になるのである。なかでも磁歪がほとんど
ゼロのCo基非晶質合金は保磁力Hcも小さいためマグアン
プやコモンモードチョークのコアとして今日すでに実用
化されている。
An amorphous alloy has attracted attention as a soft magnetic characteristic material with low loss at high frequencies. Amorphous alloys have higher electrical resistance than conventional soft magnetic metals, and can be easily manufactured from thin materials. That is, the higher the frequency, the more advantageous the amorphous alloy is. Above all, a Co-based amorphous alloy having almost zero magnetostriction has a small coercive force Hc and is already in practical use today as a core of a mag amplifier or a common mode choke.

今日、知られているゼロ磁歪Co基非晶質合金はいずれ
も菊地らの鉄案したCoFeSiB合金をベースに各種の補助
元素を含むものである。特開昭58−31053号公報に記載
の合金、特公昭63−28483号公報に記載の合金がその代
表である。前者はCoFeSiBにTi,V,Cr,Mn,Ni,Zr,Nb,Mo,R
u,Hf,Ta,W,Reを添加することにより熱的安定性を改良す
るものであり、後者は非晶質CoXSiB合金薄帯のトロイダ
ルコアの周方向に平行な磁場中でアニールした角型比の
高いコアを製造する方法である。ただし、XはTi,V,Cr,
Mn,Ni,Zr,Nb,Mo,Ru,Hf,Ta,W,Re,Fe,Y,Ce,Pr,Nd,Sm,Eu,G
d,Tb,Dyの1種または2種以上である。実用成分として
はこの他さまざまな特性要求がある。例えばロットによ
る組成変動の影響を受けにくいこと、アニール条件の範
囲が広いこと、コア加工工程における劣化の小さいこ
と、耐食性がすぐれていることなどが要求される。しか
しこれらの付加的要因をすべて考慮した場合、今日呈示
されている合金では不満足な点が多い。
All known zero magnetostrictive Co-based amorphous alloys are based on CoFeSiB alloy proposed by Kikuchi et al. And contain various auxiliary elements. The alloys described in JP-A-58-31053 and the alloys described in JP-B-63-28483 are typical examples. The former is CoFeSiB with Ti, V, Cr, Mn, Ni, Zr, Nb, Mo, R
The thermal stability is improved by adding u, Hf, Ta, W, and Re. The latter is a square type annealed amorphous toroidal core of amorphous CoXSiB alloy in a magnetic field parallel to the circumferential direction. This is a method of manufacturing a core having a high ratio. Where X is Ti, V, Cr,
Mn, Ni, Zr, Nb, Mo, Ru, Hf, Ta, W, Re, Fe, Y, Ce, Pr, Nd, Sm, Eu, G
One or more of d, Tb, and Dy. Practical components have various other property requirements. For example, it is required that the composition be hardly affected by the composition variation depending on the lot, that the range of annealing conditions is wide, that the deterioration in the core processing step is small, that the corrosion resistance be excellent, and the like. However, considering all of these additional factors, the alloys presented today are often unsatisfactory.

(発明が解決しようとする課題) 本発明は磁気特性を満足するだけでなく、実用成分に
対して要求される諸特性をバランスよく保持する新規な
Co基非晶質合金及び高周波磁心を提供することを目的と
するものである。
(Problems to be Solved by the Invention) The present invention not only satisfies the magnetic properties but also maintains a good balance of various properties required for practical components.
It is an object to provide a Co-based amorphous alloy and a high-frequency magnetic core.

(課題を解決するための手段・作用) 本発明の要旨とするところは、組成がCoaFebMocSndSi
eBfからなる100kHz以上の高周波における軟磁気特性が
優れた高周波磁心用非晶質合金にある。ここで、a=67
〜71(原子%、以下同じ)、b=3〜6、c=1〜3、
d=0.05〜1.0、e=5〜19、f=7〜16、かつ、a+
b+c+d+e+f=100である。
(Means / Actions for Solving the Problems) The gist of the present invention is that the composition is Co a Fe b Mo c Sn d Si
soft magnetic properties at 100kHz or more high-frequency consisting of e B f is in the excellent high-frequency magnetic core amorphous alloy. Where a = 67
-71 (atomic%, the same applies hereinafter), b = 3-6, c = 1-3,
d = 0.05 to 1.0, e = 5 to 19, f = 7 to 16, and a +
b + c + d + e + f = 100.

本発明の合金は従来から知られているCoFeSiB合金を
ベースにMoとSnを複合添加したことが特徴である。Moと
Snの複合添加により本発明が目的とする軟磁気特性の向
上とともに新たな効果が付加される。すなわち、高周波
における損失あるいは保磁力が従来の組成に比べて低減
できるだけでなく、従来の合金においては不十分であっ
た実用特性の改善がなされる。たとえば、アニール条
件裕度の拡大、歪み劣化の低減、耐食性の向上、
組成自由度の拡大が達成される。
The alloy of the present invention is characterized in that Mo and Sn are added in combination based on a conventionally known CoFeSiB alloy. Mo and
By adding Sn in combination, a new effect is added together with the improvement of the soft magnetic properties aimed at by the present invention. That is, not only can the loss or coercive force at high frequency be reduced as compared with the conventional composition, but also the practical characteristics which are insufficient with the conventional alloy can be improved. For example, expansion of annealing condition tolerance, reduction of distortion deterioration, improvement of corrosion resistance,
An increase in compositional freedom is achieved.

第1図はSnを添加しないCo基非晶質合金(b)とSnを
添加した本発明のCo基非晶質合金(a)の磁気特性のア
ニール温度依存性を比較したものである。図のようにSn
を添加しない合金では樹脂コーティング前(アニール
後)の角型比はアニール温度に依存して敏感に変化する
とともに、樹脂コーティング後(歪みが加わる)の特性
劣化が大きい。これに対して本発明の合金は樹脂コーテ
ィング前の角型比が広いアニール温度範囲ですぐれた特
性を示すとともに樹脂コーティング後も特性劣化が小さ
い。このようにMoの添加だけでは不十分であった実用特
性がSnの添加により一層の特性向上と製造安定性の改善
が達成される。
FIG. 1 compares the annealing temperature dependence of the magnetic properties of the Co-based amorphous alloy (b) to which Sn is not added and the Co-based amorphous alloy (a) of the present invention to which Sn is added. Sn as shown
In an alloy without addition of, the squareness ratio before resin coating (after annealing) changes sensitively depending on the annealing temperature, and the characteristic deterioration after resin coating (strain is added) is large. On the other hand, the alloy of the present invention exhibits excellent characteristics in a wide annealing temperature range with a wide squareness ratio before resin coating, and has little characteristic deterioration even after resin coating. As described above, the practical characteristics, which were not sufficient only by the addition of Mo, are further improved by the addition of Sn, and the production stability is further improved.

Snの添加がもたらす効果は主にSnの表面改質作用のた
めと考えられる。その根拠として、第2図に示すように
Sn添加非晶質合金薄帯の表面層にSiが異常に濃縮される
という本発明者自身が見出した現象がある。すなわち、
高周波損失の低減はSiの異常な表面偏析が薄帯表面の絶
縁抵抗を高め、層間渦電流損の増大を抑制するためと考
えられる。耐食性の向上も同様にして説明できる。アニ
ール裕度および組成の自由度については明らかではない
が、やはり表面層が関与しているものと推定される。
It is considered that the effect of the addition of Sn is mainly due to the surface modification of Sn. As the basis, as shown in Fig.
There is a phenomenon found by the present inventor himself that Si is abnormally concentrated in the surface layer of the Sn-added amorphous alloy ribbon. That is,
It is considered that the high-frequency loss is reduced because the abnormal surface segregation of Si increases the insulation resistance of the ribbon surface and suppresses the increase in interlayer eddy current loss. The improvement of the corrosion resistance can be similarly explained. Although the annealing latitude and the composition freedom are not clear, it is also assumed that the surface layer is involved.

以上説明したように本発明はSnの異常な挙動と特性の
関係を追究する過程を経て完成するに至ったのである。
As described above, the present invention has been completed through the process of investigating the relationship between the abnormal behavior and characteristics of Sn.

次に、本発明の合金組成を限定する理由について述べ
る。
Next, the reason for limiting the alloy composition of the present invention will be described.

Snは本発明の目的とするすぐれた実用特性を付与する
ための必須元素で0.05〜1.0%(原子%、以下おなじ)
の範囲に規定した。その理由は0.05%未満では本発明が
目的とするSnの効果が顕著に発現せず、また1.0%を超
えて添加しても著しい効果は認められないからである。
Sn is an essential element for imparting excellent practical characteristics aimed at by the present invention, and is 0.05 to 1.0% (atomic%, the same applies hereinafter).
Specified in the range. The reason is that if it is less than 0.05%, the effect of Sn intended by the present invention is not remarkably exhibited, and if it exceeds 1.0%, no remarkable effect is observed.

Moは非晶質合金の熱的安定性、非晶質形成能を高める
とともにSnと共存することにより高周波における磁気特
性を改善する効果をもつ元素で、その範囲を1〜3%に
限定した。1%を下回ると添加の効果が不十分なため下
限を1%とし、3%を超えると飽和磁束密度が低下する
ので上限を3%とした。
Mo is an element that enhances the thermal stability and amorphous forming ability of an amorphous alloy and has the effect of improving magnetic characteristics at high frequencies by coexisting with Sn. The range of Mo is limited to 1 to 3%. If it is less than 1%, the effect of addition is insufficient, so that the lower limit is 1%. If it exceeds 3%, the saturation magnetic flux density is reduced, so the upper limit is 3%.

Co,Fe,Si,B4元素の組成範囲は添加するSnとMoの量を
考慮して次の条件を満足するよに決められた。第1の条
件は磁歪が10-6以下、第2の条件は飽和磁束密度が0.5T
以上、第3の条件はコアの周方向に印加した磁場中アニ
ール後の100kHzにおける交流磁気特性が、少なくとも角
型比Br/Bm>0.90、保磁力Hc<300mOe、好ましくはBr/Bm
>0.95、保磁力Hc<200mOeである(Br=残留磁束密度、
Bm=印加最大磁場における磁束密度)。また、直角方向
に印加した磁界中アニール後の100kHzにおける透磁率が
少なくとも20,000である。これらの条件を満足する組成
条件として、本発明においてはCoを67〜71%、Fe3〜6
%、Si5〜19%、B7〜16%に規定する。Co、Feは規定し
た範囲をはずれると磁歪および飽和磁束密度に対する条
件を満足しなくなる。また、SiとBが規定した範囲を外
れると非晶質合金の形成が困難になるとともに所定の交
流磁気特性を満足しなくなる。
The composition ranges of Co, Fe, Si, and B4 elements were determined so as to satisfy the following conditions in consideration of the amounts of Sn and Mo added. The first condition is that the magnetostriction is 10 -6 or less, and the second condition is that the saturation magnetic flux density is 0.5T.
As described above, the third condition is that the AC magnetic characteristics at 100 kHz after annealing in a magnetic field applied in the circumferential direction of the core have a squareness ratio Br / Bm> 0.90 and a coercive force Hc <300 mOe, preferably Br / Bm
> 0.95, coercive force Hc <200 mOe (Br = residual magnetic flux density,
Bm = magnetic flux density at the maximum applied magnetic field). The magnetic permeability at 100 kHz after annealing in a magnetic field applied in the perpendicular direction is at least 20,000. As composition conditions satisfying these conditions, in the present invention, Co is 67 to 71%, Fe3 to 6%.
%, Si 5 to 19%, and B 7 to 16%. If Co and Fe deviate from the specified ranges, the conditions for magnetostriction and saturation magnetic flux density will not be satisfied. On the other hand, if Si and B are out of the specified range, it becomes difficult to form an amorphous alloy and the predetermined AC magnetic characteristics cannot be satisfied.

次に本発明の実施態様について述べる。まず上述の組
成範囲となるように配合した原料あるいは母合金を溶解
し、通常の液体急冷法で非晶質の連続薄帯とする。この
とき使用するノズルは単一スリットノズルまたは多重ス
リットノズル、あるいはラップした多孔ノズルを用いる
ことができる。鋳造する雰囲気は大気中、不活性ガス
中、真空中のいずれでもよい。以上説明した非晶質薄帯
の製造法はとくに限定するものではなく、他の方法を採
用することもできる。
Next, embodiments of the present invention will be described. First, a raw material or a mother alloy blended so as to be in the above-described composition range is melted, and an amorphous continuous ribbon is formed by a usual liquid quenching method. The nozzle used at this time can be a single slit nozzle, a multi-slit nozzle, or a wrapped multi-hole nozzle. The atmosphere for casting may be any of air, inert gas, and vacuum. The manufacturing method of the amorphous ribbon described above is not particularly limited, and other methods can be adopted.

非晶質合金薄帯は所定の寸法の巻コアに成形された後
アニールされる。通常、コアに成形する前に非晶質薄帯
は層間絶縁のため何らかのコーティングを施される。し
かし本発明の合金では急冷状態ですでに高い抵抗の表面
皮膜が形成されているので絶縁コーティング不要であ
る。アニールは、高角型比が要求される場合はコアの周
方向に平行な磁界中で行われる。磁界の強さは合金の保
磁力の10倍あれば十分である。アニール温度は合金の結
晶化開始温度をTxとするとき、Tx−120℃からTx−20℃
の範囲、時間は30〜120分が適当である。また、高透磁
率が要求される場合は磁界をコアの周方向に直角に印加
する。アニール温度と時間は高角型比の場合とほとんど
同じでよい。また、高透磁率を達成するためにキュリー
温度以上の温度でアニールしたのち水冷する方法を採用
することもできる。
The amorphous alloy ribbon is annealed after being formed into a wound core having a predetermined size. Usually, before being formed into a core, the amorphous ribbon is subjected to some coating for interlayer insulation. However, in the alloy of the present invention, a high-resistance surface film is already formed in the quenched state, so that an insulating coating is unnecessary. Annealing is performed in a magnetic field parallel to the circumferential direction of the core when a high squareness ratio is required. A magnetic field strength of 10 times the coercive force of the alloy is sufficient. Annealing temperature is Tx-120 ° C to Tx-20 ° C, where Tx is the crystallization start temperature of the alloy.
The range and time are suitably from 30 to 120 minutes. When a high magnetic permeability is required, a magnetic field is applied at right angles to the circumferential direction of the core. The annealing temperature and time may be almost the same as in the case of the high squareness ratio. Further, in order to achieve high magnetic permeability, a method of annealing at a temperature equal to or higher than the Curie temperature and then cooling with water may be employed.

(実施例) 以下、実施例に基づいて説明する。(Example) Hereinafter, an example will be described.

実施例1 化学組成(Co68.5FE3.5Si18B8Mo2100-xSnx合金(x
=0.1,0.2,0.5,1.0)の薄帯を単ロール急冷法を用いて
作製した。薄帯の幅は5mm、板厚は15〜20μmである。
作製した薄帯はX線回折法により非晶質であることが確
認された。
Example 1 Chemical composition (Co 68.5 FE 3.5 Si 18 B 8 Mo 2 ) 100-x Sn x alloy (x
= 0.1,0.2,0.5,1.0) were produced by a single roll quenching method. The width of the ribbon is 5 mm and the thickness is 15 to 20 μm.
The produced ribbon was confirmed to be amorphous by X-ray diffraction.

この薄帯をそれぞれ内径14mm、外径21mmのトロイダル
コアに成形した後、約10eの直流磁界をかけながらN2
流中でアニールした。アニール条件は、保定時間を1時
間に固定し、温度はパラメーターとして400〜480℃の範
囲で変化させた。アニールしたコアの実用特性を評価す
るために樹脂コーティングの前後で磁気特性を測定し
た。すなわち、アニール後のコアをそのまま樹脂のケー
スに入れて巻き線したものと、コアを樹脂コーティング
したのち巻き線したものそれぞれについて磁気特性を測
定した。
The ribbons each inner diameter 14 mm, was molded into a toroidal core having an outer diameter of 21 mm, and annealed in an N 2 stream while applying a DC magnetic field of about 10e. The annealing conditions were such that the retention time was fixed at 1 hour, and the temperature was varied as a parameter in the range of 400 to 480 ° C. Magnetic properties were measured before and after resin coating to evaluate the practical properties of the annealed core. That is, the magnetic properties were measured for each of the core after the annealing, which was directly wound in a resin case, and the core which was wound after the core was coated with the resin.

第1表に本発明の合金の最適アニール条件における磁
気特性を示した。また、比較のために本発明に属しない
Snを所定量含まない合金の特性も第1表に示した。第1
表から明らかなように本発明の合金は樹脂コーティング
前にすぐれた磁気特性(角型比>0.95、保磁力>200mO
e)を示すとともに樹脂コーティング後も特性の劣化は
ほとんどないことが分かる。これに対してSnを添加しな
い組成、およびSnが本発明の規定する範囲にない組成は
樹脂コーティング前の特性が不十分か、コーティング前
の特性がよくても樹脂コーティング後の劣化が大きいた
め(角型比<0.90、あるいは保磁力>300mOe)目標特性
を達成できないことが分かる。
Table 1 shows the magnetic properties of the alloy of the present invention under the optimum annealing conditions. Also, it does not belong to the present invention for comparison
Table 1 also shows the characteristics of the alloy containing no predetermined amount of Sn. First
As is clear from the table, the alloy of the present invention has excellent magnetic properties (square ratio> 0.95, coercive force> 200 mO) before resin coating.
As shown in e), it can be seen that there is almost no deterioration of the characteristics even after the resin coating. On the other hand, the composition without addition of Sn and the composition in which Sn is not in the range specified in the present invention have insufficient properties before resin coating or have a large deterioration after resin coating even if the properties before coating are good ( Squareness ratio <0.90 or coercive force> 300 mOe) It can be seen that the target characteristics cannot be achieved.

また、本発明の合金は広いアニール温度の範囲で特性
が安定でかつ樹脂コーティング後の特性もアニール条件
の自由度(裕度)が高いことが分かる。
In addition, it can be seen that the alloy of the present invention has stable characteristics over a wide range of annealing temperatures, and also has high degree of freedom (margin) of annealing conditions in characteristics after resin coating.

実施例2 実施例1と同じ組成の非晶質薄帯を成形したトロイダ
ルコアの周方向に直角な磁界を印加しながらアニールし
た。樹脂コーティング前の透磁率および樹脂コーティン
グ後の透磁率を第2表に記載した。第2表から明らかな
ように本発明の合金は樹脂コーティング前の透磁率がす
ぐれているだけでなく、樹脂コーティング後の特性劣化
が比較合金に比べて小さいことが分かる。
Example 2 Annealing was performed while applying a magnetic field perpendicular to the circumferential direction of a toroidal core formed from an amorphous ribbon having the same composition as in Example 1. The magnetic permeability before resin coating and the magnetic permeability after resin coating are shown in Table 2. As is evident from Table 2, the alloy of the present invention not only has excellent magnetic permeability before resin coating, but also has smaller property deterioration after resin coating than the comparative alloy.

(発明の効果) 本発明のSn添加Co基ゼロ磁歪非晶質合金はすぐれた軟
磁気特性を示すとともに樹脂コーティング後においても
特性の劣化がきわめて小さい。またアニール条件の自由
度が広い。このようにSnとMoが共存するCo基非晶質合金
は従来Co基非晶質合金に比べて著しく実用特性が改善さ
れる。
(Effect of the Invention) The Sn-added Co-based zero magnetostrictive amorphous alloy of the present invention exhibits excellent soft magnetic properties and has extremely small deterioration in properties even after resin coating. Also, the degree of freedom of the annealing conditions is wide. As described above, the Co-based amorphous alloy in which Sn and Mo coexist has significantly improved practical characteristics as compared with the conventional Co-based amorphous alloy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のSn添加非晶質合金(a)と従来のSn添
加なし非晶質合金(b)の磁気特性(角型比)のアニー
ル温度依存性を比較する図である。第2図はグロー放電
発光分光法(GDS)で分析した表面深さ方向の元素濃度
を比較する図(ただし、(a)は本発明のSnを含有する
非晶質合金、(b)はSnを含まない合金)である。
FIG. 1 is a diagram comparing the annealing temperature dependence of the magnetic properties (square ratio) of the Sn-added amorphous alloy (a) of the present invention and the conventional Sn-free amorphous alloy (b). FIG. 2 is a diagram comparing element concentrations in the surface depth direction analyzed by glow discharge emission spectroscopy (GDS) (where (a) is an amorphous alloy containing Sn of the present invention, and (b) is a Sn alloy). Alloy containing no).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 利男 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式會社第1技術研究所内 (72)発明者 山下 智 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式會社第1技術研究所内 (72)発明者 萩原 英夫 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式會社第1技術研究所内 (56)参考文献 特開 昭63−232383(JP,A) 特開 昭51−65395(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshio Yamada 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture New Nippon Steel Corporation 1st Technical Research Institute (72) Inventor Satoshi Yamashita 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Nippon Steel Corporation 1st Technical Research Institute (72) Inventor Hideo Hagiwara 1618 Ida Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Nippon Steel Corporation 1st Technical Research Institute (56) References JP-A-63-232383 JP, A) JP-A-51-65395 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成がCoaFebMocSndSieBfからなる100kHz
以上の高周波における軟磁気特性が優れた高周波磁心用
非晶質合金。ここで、a=67〜71(原子%、以下同
じ)、b=3〜6、c=1〜3、d=0.05〜1.0、e=
5〜19、f=7〜16、かつ、a+b+c+d+e+f=
100である。
100kHz to 1. A composition consisting of Co a Fe b Mo c Sn d Si e B f
An amorphous alloy for a high-frequency magnetic core having excellent soft magnetic properties at the above high frequencies. Here, a = 67-71 (atomic%, the same applies hereinafter), b = 3-6, c = 1-3, d = 0.05-1.0, e =
5-19, f = 7-16, and a + b + c + d + e + f =
It is 100.
JP2151190A 1990-06-08 1990-06-08 Amorphous alloy for high frequency magnetic core Expired - Fee Related JP2719978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2151190A JP2719978B2 (en) 1990-06-08 1990-06-08 Amorphous alloy for high frequency magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2151190A JP2719978B2 (en) 1990-06-08 1990-06-08 Amorphous alloy for high frequency magnetic core

Publications (2)

Publication Number Publication Date
JPH0442508A JPH0442508A (en) 1992-02-13
JP2719978B2 true JP2719978B2 (en) 1998-02-25

Family

ID=15513244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2151190A Expired - Fee Related JP2719978B2 (en) 1990-06-08 1990-06-08 Amorphous alloy for high frequency magnetic core

Country Status (1)

Country Link
JP (1) JP2719978B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7511398L (en) * 1974-10-21 1976-04-22 Western Electric Co MAGNETIC DEVICE
JP2624672B2 (en) * 1986-10-30 1997-06-25 株式会社東芝 Torque detector

Also Published As

Publication number Publication date
JPH0442508A (en) 1992-02-13

Similar Documents

Publication Publication Date Title
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
US6648990B2 (en) Co-based magnetic alloy and magnetic members made of the same
KR910003977B1 (en) Fe-base soft magnetic alloy and method of producing same
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JP2008231534A5 (en)
JPH07278764A (en) Nano-crystal alloy and its production and magnetic core using the same
JPH0617204A (en) Soft magnetic alloy and its manufacture and magnetic core
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP2719978B2 (en) Amorphous alloy for high frequency magnetic core
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH08153614A (en) Magnetic core
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JP2561573B2 (en) Amorphous ribbon saturable core
JPH0747800B2 (en) Amorphous alloy for high frequency magnetic core
JPH0754108A (en) Magnetic alloy having iso-permeability, production thereof and magnetic core using the same
JP3638291B2 (en) Low loss core
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JPH05117821A (en) Amorphous alloy for high-frequency magnetic core and core
JPH0645128A (en) Magnetic core comprising ultra-fine crystalline alloy excellent in dc-superimposed characteristic and manufacturing method thereof, and choke coil and transformer using the core
JPH0257683B2 (en)
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JP2791173B2 (en) Magnetic core

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees