JP2689877B2 - Heterojunction FET manufacturing method - Google Patents

Heterojunction FET manufacturing method

Info

Publication number
JP2689877B2
JP2689877B2 JP33033493A JP33033493A JP2689877B2 JP 2689877 B2 JP2689877 B2 JP 2689877B2 JP 33033493 A JP33033493 A JP 33033493A JP 33033493 A JP33033493 A JP 33033493A JP 2689877 B2 JP2689877 B2 JP 2689877B2
Authority
JP
Japan
Prior art keywords
layer
undoped
heterojunction
electron
electron supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33033493A
Other languages
Japanese (ja)
Other versions
JPH07193223A (en
Inventor
均 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33033493A priority Critical patent/JP2689877B2/en
Publication of JPH07193223A publication Critical patent/JPH07193223A/en
Application granted granted Critical
Publication of JP2689877B2 publication Critical patent/JP2689877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はヘテロ接合FETの製造
方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for manufacturing a heterojunction FET.

【0002】[0002]

【従来の技術】化合物半導体FETとして、バンドギャ
ップの異なる2つの半導体層間の、ヘテロ接合のバンド
ギャップの小さい方の半導体に誘起される二次元電子ガ
ス(2DEG)層を用いたFETが知られているが、こ
れについては例えば、井上、松野の「ヘテロ接合型電界
効果トランジスタ(公開特許公報(A)平1−1432
7号)に開示されている。
2. Description of the Related Art As a compound semiconductor FET, an FET using a two-dimensional electron gas (2DEG) layer induced between two semiconductor layers having different band gaps and having a heterojunction having a smaller band gap is known. Regarding this, for example, “Heterojunction type field effect transistor (Japanese Patent Laid-Open Publication No. Hei 1-1432” by Inoue and Matsuno) is described.
No. 7).

【0003】従来のヘテロFETについて図5を参照し
て説明する。図5(a)に示すように、半絶縁性GaA
s基板1上に、アンドープGaAsバッファ層2を形
成、次いで図5(b)に示すように、アンドープAl
0.2 Ga0.8 Asヘテロバッファ層3、アンドープIn
0.2 Ga0.8 Asチャネル層4を形成し、次いで図5
(c)に示すように、n型Al0.2 Ga0.8 As電子供
給層5、ゲート電極9を形成する。7,8はそれぞれn
型GaAsコンタクト層6を介して設けられたソース電
極およびドレイン電極である。このように、n型Al
0.2 Ga0.8 As電子供給層5とアンドープIn0.2
0.8 Asチャネル層4とアンドープAl0.2 Ga0.8
Asヘテロバッファ層3で作られたポテンシャル井戸に
は2DEG層(図示しない)が形成される。FETで
は、ソース電極7とドレイン電極8の間の2DEG層を
流れる電流をゲート電極9に印加される電圧によって制
御しており、デバイスの高性能化のためには(1)2D
EG層のシート電子濃度が高く、電子移動度が高いこと
(2)ピンチオフ特性が良く(漏れ電流が少ない)gm
が大きいことが重要であるが、従来はアンドープGaA
s層2にないしn型GaAsコンタクト層6を450℃
から520℃のある一定の基板温度でエピタキシャル成
長をすることによって形成していた。
A conventional hetero FET will be described with reference to FIG. As shown in FIG. 5A, semi-insulating GaA
An undoped GaAs buffer layer 2 is formed on the s substrate 1, and then, as shown in FIG.
0.2 Ga 0.8 As hetero buffer layer 3, undoped In
A 0.2 Ga 0.8 As channel layer 4 is formed, and then, as shown in FIG.
As shown in (c), an n-type Al 0.2 Ga 0.8 As electron supply layer 5 and a gate electrode 9 are formed. 7 and 8 are n
A source electrode and a drain electrode provided via the type GaAs contact layer 6. In this way, n-type Al
0.2 Ga 0.8 As Electron supply layer 5 and undoped In 0.2 G
a 0.8 As channel layer 4 and undoped Al 0.2 Ga 0.8
A 2DEG layer (not shown) is formed in the potential well made of the As heterobuffer layer 3. In the FET, the current flowing through the 2DEG layer between the source electrode 7 and the drain electrode 8 is controlled by the voltage applied to the gate electrode 9, and in order to improve the performance of the device, (1) 2D
High sheet electron concentration and high electron mobility in EG layer (2) Good pinch-off characteristics (leak current is small) gm
Is important, but conventionally undoped GaA
s layer 2 or n-type GaAs contact layer 6 at 450 ° C.
From 520 ° C. to 520 ° C. at a constant substrate temperature.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、エピタ
キシャル成長の最適温度が上述した全ての物質について
同一であるとは必ずしもいえないのはむしろ当然であ
り、前述した電子移動度やgmの改善の余地があるとい
えよう。
However, it is not always true that the optimum temperature for epitaxial growth is the same for all the above-mentioned substances, and there is room for improvement of the electron mobility and gm described above. I can say.

【0005】本発明の目的は一層改善された電気的特性
のヘテロ接合FETを実現できる製造方法を提供するこ
とにある。
An object of the present invention is to provide a manufacturing method capable of realizing a heterojunction FET having further improved electric characteristics.

【0006】[0006]

【課題を解決するための手段】本発明のヘテロ接合FE
Tの製造方法は、半絶縁性GaAs基板表面にGaAs
バッファ層、Alx Ga1-x Asヘテロバッファ層(0
<x<1)、前記Alx Ga1-x Asヘテロバッファ層
よりバンドギャップの小さいIny Ga1-y Asチャネ
ル層(0<y<1)および前記Iny Ga1-y Asチャ
ネル層よりバンドギャップの大きいAlz Ga1-z As
電子供給層(0<z<1)を順次エピタキシャル成長し
てヘテロ接合構造体を形成する工程を含むヘテロ接合F
ETの製造方法において、前記Alz Ga1-z As電子
供給層および前記GaAsバッファ層をそれぞれ基板温
度600℃以上700℃以下で成長し、Iny Ga1-y
Asチャネル層およびAlx Ga1-x Asヘテロバッフ
ァ層をそれぞれ400℃以上500℃以下で成長すると
いうものである。
SUMMARY OF THE INVENTION A heterojunction FE of the present invention is provided.
The manufacturing method of T is that GaAs is formed on the surface of a semi-insulating GaAs substrate.
Buffer layer, Al x Ga 1-x As heterobuffer layer (0
<X <1), the In y Ga 1-y As channel layer (0 <y <1) having a smaller bandgap than the Al x Ga 1-x As heterobuffer layer and the In y Ga 1-y As channel layer Large bandgap Al z Ga 1-z As
Heterojunction F including a step of sequentially epitaxially growing an electron supply layer (0 <z <1) to form a heterojunction structure
In the manufacturing method of ET, the Al z Ga 1-z As electron supply layer and the GaAs buffer layer are grown at a substrate temperature of 600 ° C. or higher and 700 ° C. or lower, respectively, and In y Ga 1-y
The As channel layer and the Al x Ga 1-x As heterobuffer layer are grown at 400 ° C. or higher and 500 ° C. or lower, respectively.

【0007】[0007]

【実施例】本発明の一実施例について図1を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG.

【0008】はじめに、図1(a)に示すように、半絶
縁性GaAs基板1をMBE装置の成長室内において熱
クリーニングした後、成長温度600℃〜700℃、例
えば600℃でMBEによりアンドープGaAsバッフ
ァ層2A(厚さ約1μm)を成長させる。次に成長温度
を400℃〜500℃、(例えば500℃)に下げた
後、図1(b)に示すように、アンドープAl0.2 Ga
0.8 Asヘテロバッファ層3を厚さ約100nm、アン
ドープIn0.2 Ga0.8 Asチャネル層4を厚さ約15
nm順次成長させ、その後、成長温度を再び600℃〜
700℃、例えば600℃に上げて、図1(c)に示す
ように、n型Al0.2 Ga0.8 As電子供給層5Aを厚
さ約400nm、次にn型GaAsコンタクト層6Aを
成長させた。ここで、n型Al0.2 Ga0.8 As電子供
給層5Aには、n型不純物としてSiがNd=2x10
18cm-3の濃度でドーピングされている。次いで、n型
GaAsコンタクト層6を形成し、パターニングし、ゲ
ート電極9等を形成する。
First, as shown in FIG. 1A, after the semi-insulating GaAs substrate 1 is thermally cleaned in the growth chamber of the MBE apparatus, the undoped GaAs buffer is grown by MBE at a growth temperature of 600 ° C. to 700 ° C., for example 600 ° C. A layer 2A (about 1 μm thick) is grown. Next, after lowering the growth temperature to 400 ° C. to 500 ° C. (for example, 500 ° C.), as shown in FIG. 1B, undoped Al 0.2 Ga
The 0.8 As heterobuffer layer 3 has a thickness of about 100 nm, and the undoped In 0.2 Ga 0.8 As channel layer 4 has a thickness of about 15 nm.
nm, and then the growth temperature is set to 600 ° C. again.
The temperature was raised to 700 ° C., for example 600 ° C., and as shown in FIG. 1C, an n-type Al 0.2 Ga 0.8 As electron supply layer 5A was grown to a thickness of about 400 nm, and then an n-type GaAs contact layer 6A was grown. Here, in the n-type Al 0.2 Ga 0.8 As electron supply layer 5A, Si as an n-type impurity is Nd = 2 × 10.
Doped at a concentration of 18 cm -3 . Next, the n-type GaAs contact layer 6 is formed and patterned to form the gate electrode 9 and the like.

【0009】図2にヘテロ接合FETの77Kでの2D
EG層の電子移動度μとシート電子濃度nsのn型Al
0.2 Ga0.8 As電子供給層の成長温度依存性を示す。
但し、アンドープGaAsバッファ層2Aの成長温度は
n型Al0.2 Ga0.8 As電子供給層5Aと同じであ
り、アンドープAl0.2 Ga0.8 Asヘテロバッファ層
3およびアンドープIn0.2 Ga0.8 Asチャネル層4
の成長温度は500℃である。Iny Ga1-y As層の
成長は、550℃以上では困難であるので、従来から4
50℃〜520℃の温度で成長していた。
2D at 77K of a heterojunction FET
N-type Al with electron mobility μ of EG layer and sheet electron concentration ns
The growth temperature dependence of the 0.2 Ga 0.8 As electron supply layer is shown.
However, the growth temperature of the undoped GaAs buffer layer 2A is the same as that of the n-type Al 0.2 Ga 0.8 As electron supply layer 5A, and the undoped Al 0.2 Ga 0.8 As heterobuffer layer 3 and the undoped In 0.2 Ga 0.8 As channel layer 4 are formed.
Has a growth temperature of 500 ° C. Since it is difficult to grow an In y Ga 1-y As layer at 550 ° C. or higher, it has been conventionally required to grow 4
It had grown at a temperature of 50 ° C to 520 ° C.

【0010】これより、n型Al0.2 Ga0.8 As電子
供給層5AおよびアンドープGaAsバッファ層2Aを
600℃〜700℃の高温で成長することによって、2
DEG層の電子移動度μとシート電子濃度nsを大幅に
増加させることができることが判る。これは、その一つ
の原因として成長温度が最適化されて、不純物の活性化
率が向上し2DEG層に十分な電子が供給されるためと
考えられる。n型Al0.2 Ga0.8 As供給層を600
℃〜700℃の高温で成長した場合、電子移動度μとシ
ート電子濃度nsは、それぞれμ=2.5x104 cm
2 /v・s,ns=2.4x1012cm-2となり従来例
によるものよりそれぞれ25%増加した。
From this, by growing the n-type Al 0.2 Ga 0.8 As electron supply layer 5A and the undoped GaAs buffer layer 2A at a high temperature of 600 ° C. to 700 ° C., 2
It can be seen that the electron mobility μ of the DEG layer and the sheet electron concentration ns can be greatly increased. This is probably because, as one of the causes, the growth temperature is optimized, the activation rate of impurities is improved, and sufficient electrons are supplied to the 2DEG layer. n-type Al 0.2 Ga 0.8 As supply layer 600
When grown at a high temperature of ℃ to 700 ℃, electron mobility μ and sheet electron concentration ns are μ = 2.5 × 10 4 cm, respectively.
2 / v · s, ns = 2.4 × 10 12 cm −2 , which is 25% higher than that of the conventional example.

【0011】また、図3にアンドープAl0.2 Ga0.8
Asヘテロバッファ層の漏れ電流の長温度依存性を示
す。但し、アンドープIn0.2 Ga0.8 Asチャネル層
4の成長温度は500℃、アンドープGaAsバッファ
層2、n型Al0.2 Ga0.8 As電子供給層5およびn
型コンタクト層6の成長温度は600℃である。
Further, in FIG. 3, undoped Al 0.2 Ga 0.8
The long temperature dependence of the leakage current of an As heterobuffer layer is shown. However, the growth temperature of the undoped In 0.2 Ga 0.8 As channel layer 4 is 500 ° C., the undoped GaAs buffer layer 2, the n-type Al 0.2 Ga 0.8 As electron supply layer 5 and the n-type Al 0.2 Ga 0.8 As electron supply layer 5.
The growth temperature of the mold contact layer 6 is 600 ° C.

【0012】成長温度を600℃より100度低くする
と急激に漏れ電流が少なく(ピンチオフ特性がよく)な
り高抵抗化していることが判る。これより、Al0.2
0.8 Asヘテロバッファ層では400℃〜500℃の
低温で成長することによって漏れ電流を1000分の1
に抑えることが出来る。なお、400℃未満の成長温度
では多結晶化の傾向が表われ結晶性が悪くなるので好ま
しくない。その後、このエピタキシャル結晶に周知のフ
ォトリソグラフィ法によりゲート電極9、ソース電極7
およびドレイン電極8を形成して、ヘテロ接合FETが
製造される。
It can be seen that when the growth temperature is lowered by 100 degrees from 600 ° C., the leakage current sharply decreases (the pinch-off characteristic is improved) and the resistance is increased. From this, Al 0.2 G
In the a 0.8 As heterobuffer layer, the leakage current is reduced to 1/1000 by growing at a low temperature of 400 ° C to 500 ° C.
Can be suppressed. A growth temperature of less than 400 ° C. is not preferable because it tends to polycrystallize and the crystallinity deteriorates. Then, a gate electrode 9 and a source electrode 7 are formed on the epitaxial crystal by a well-known photolithography method.
The heterojunction FET is manufactured by forming the drain electrode 8 and the drain electrode 8.

【0013】ソース電極7とドレイン電極8の間の2D
EG層を流れる電流はゲート電極9に印加される電圧に
よって制御され、アンドープAl0.2 Ga0.8 Asヘテ
ロバッファ層3を低温で成長していることからピンチオ
フ特性は良く、さらにn型Al0.2 Ga0.8 As電子供
給層を高温で成長しているので、電子移動度μとシート
電子濃度nsが増加して、FETの相互コンダクタンス
gmは従来構造に比べて25%増加した。
2D between source electrode 7 and drain electrode 8
The current flowing through the EG layer is controlled by the voltage applied to the gate electrode 9, and the pinch-off characteristic is good because the undoped Al 0.2 Ga 0.8 As heterobuffer layer 3 is grown at a low temperature. In addition, n-type Al 0.2 Ga 0.8 As Since the electron supply layer is grown at a high temperature, the electron mobility μ and the sheet electron concentration ns are increased, and the transconductance gm of the FET is increased by 25% as compared with the conventional structure.

【0014】図4は一実施例の変形について説明するた
めの断面図である。
FIG. 4 is a sectional view for explaining a modification of the embodiment.

【0015】アンドープIn0.2 Ga0.8 Asチャネル
層4を形成するまでは一実施例と同様である。
The process up to the formation of the undoped In 0.2 Ga 0.8 As channel layer 4 is the same as in the first embodiment.

【0016】次に、成長温度を600℃〜700℃、例
えば600℃に上昇させてMBE法により厚さ3nmの
アンドープAl0.2 Ga0.8 As層5−1Aを形成す
る。そのままの温度でGaビームの供給を停止し、Si
ビームをあててδドープ層5−2A(Siのシート濃度
5×1012cm-2)を形成し、SiビームをとめてGa
ビームの供給を再び行ない厚さ30nmのアンドープA
0.2 Ga0.8 As層5−3Aを形成する。こうしてδ
ドープ構造の電子供給層を形成する。
Next, the growth temperature is raised to 600 ° C. to 700 ° C., for example 600 ° C., and an undoped Al 0.2 Ga 0.8 As layer 5-1A having a thickness of 3 nm is formed by the MBE method. The Ga beam supply is stopped at the same temperature, and Si
A δ-doped layer 5-2A (Si sheet concentration 5 × 10 12 cm −2 ) is formed by applying a beam, and the Si beam is stopped to form Ga.
The beam is re-supplied and the undoped A with a thickness of 30 nm
l 0.2 Ga 0.8 As layer 5-3A is formed. Thus δ
An electron supply layer having a doped structure is formed.

【0017】こうして、図5を参照して説明した従来例
によるものに比較して、77Kにおける2DEG層の電
子移動度μとシート電子濃度nsは約30%増加してμ
=2.6×104 cm2 /V・S,ns=2.5×10
12c-2となった。また相互コンダクタンスgmは30
%増加した。一実施例によるものより、これらの数値が
よいのは、電子供給層がδドープ構造をもっているため
である。
Thus, the electron mobility μ and the sheet electron concentration ns of the 2DEG layer at 77K are increased by about 30%, compared with the conventional example described with reference to FIG.
= 2.6 × 10 4 cm 2 / V · S, ns = 2.5 × 10
It became 12 cm -2 . The mutual conductance gm is 30.
% Increased. These numbers are better than those according to one embodiment because the electron supply layer has a δ-doped structure.

【0018】[0018]

【発明の効果】以上説明したように、本発明は、Alz
Ga1-z As電子供給層とGaAsバッファ層を基板温
度600℃〜700℃で成長し、Iny Ga1-y Asチ
ャネル層とAlx Ga1-x Asヘテロバッファ層を40
0℃〜500℃のそれぞれ最適化された成長温度で成長
することによって、Alz Ga1-z As電子供給層の活
性化率が上がり、2DEG層のシート電子濃度と電子移
動度を著しく高くすることができ、またピンチオフ特性
が非常に良くなった。したがって相互コンダクタンスg
mが従来例と比べて25〜30%増加したヘテロ接合F
ETを製造することが可能となった。
As described above, according to the present invention, Al z
A Ga 1-z As electron supply layer and a GaAs buffer layer are grown at a substrate temperature of 600 ° C. to 700 ° C., and an Iny Ga 1-y As channel layer and an Al x Ga 1-x As hetero buffer layer are grown.
By growing at each optimized growth temperature of 0 ° C. to 500 ° C., the activation rate of the Alz Ga1-z As electron supply layer is increased, and the sheet electron concentration and electron mobility of the 2DEG layer can be significantly increased. It was possible, and the pinch-off characteristic was very good. Therefore, mutual conductance g
Heterojunction F in which m is increased by 25 to 30% as compared with the conventional example
It has become possible to manufacture ET.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の説明のため(a)〜(c)
に分図して示す工程順断面図である。
FIG. 1 (a) to (c) for explaining an embodiment of the present invention.
FIG.

【図2】2DEG層の電子移動度μとシート電子濃度n
sのn型Al0.2 Ga0.8 As電子供給層の成長温度依
存性を示すグラフである。
FIG. 2 shows electron mobility μ and sheet electron concentration n of 2DEG layer.
3 is a graph showing the growth temperature dependence of an n-type Al 0.2 Ga 0.8 As electron supply layer of s.

【図3】アンドープAl0.2 Ga0.8 Asヘテロバッフ
ァ層の漏れ電流の成長温度依存性を示すグラフである。
FIG. 3 is a graph showing the growth temperature dependence of the leakage current of an undoped Al 0.2 Ga 0.8 As heterobuffer layer.

【図4】一実施例の変形の説明のため断面図である。FIG. 4 is a sectional view for explaining a modification of the embodiment.

【図5】従来例の説明のため(a)〜(c)に分図して
示す工程順断面雨である。
FIG. 5 is a process sequence cross-sectional rain which is divided into (a) to (c) for explanation of a conventional example.

【符号の説明】[Explanation of symbols]

1 半絶縁性GaAs層 2,2A アンドープGaAsバッファ層 3 アンドープAl0.2 Ga0.8 Asヘテロバッファ
層 4 アンドープIn0.2 Ga0.8 Asチャネル層 5,5A n型Al0.2 Ga0.8 As電子供給層 5−1A,5−2A,5−3A δドープ構造を有す
る電子供給層 6,6A n型GaAsコンタクト層 7 ソース電極 8 ドレイン電極 9 ゲート電極
1 semi-insulating GaAs layer 2,2A undoped GaAs buffer layer 3 of undoped Al 0.2 Ga 0.8 As hetero buffer layer 4 of undoped In 0.2 Ga 0.8 As channel layer 5, 5A n-type Al 0.2 Ga 0.8 As electron supply layer 5-1A, 5 -2A, 5-3A Electron supply layer having δ-doped structure 6, 6A n-type GaAs contact layer 7 Source electrode 8 Drain electrode 9 Gate electrode

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半絶縁性GaAs基板表面にGaAsバ
ッファ層、Alx Ga1-x Asヘテロバッファ層(0<
x<1)、前記Alx Ga1-x Asヘテロバッファ層よ
りバンドギャップの小さいIny Ga1-y Asチャネル
層(0<y<1)および前記Iny Ga1-y Asチャネ
ル層よりバンドギャップの大きいAlz Ga1-z As電
子供給層(0<z<1)を順次エピタキシャル成長して
ヘテロ接合構造体を形成する工程を含むヘテロ接合FE
Tの製造方法において、前記Alz Ga1-z As電子供
給層および前記GaAsバッファ層をそれぞれ基板温度
600℃以上700℃以下で成長し、Iny Ga1-y
sチャネル層およびAlx Ga1-x Asヘテロバッファ
層をそれぞれ400℃以上500℃以下で成長すること
を特徴とするヘテロ接合FETの製造方法。
1. A GaAs buffer layer and an Al x Ga 1-x As hetero buffer layer (0 <
x <1), the Al x Ga 1-x As hetero buffer layer than a band smaller In y Ga 1-y As channel layer gaps (0 <y <1) and said In y Ga 1-y As band than the channel layer Heterojunction FE including a step of sequentially epitaxially growing Al z Ga 1-z As electron supply layers (0 <z <1) having a large gap to form a heterojunction structure
In the manufacturing method of T, the Al z Ga 1-z As electron supply layer and the GaAs buffer layer are grown at a substrate temperature of 600 ° C. or higher and 700 ° C. or lower, respectively, and In y Ga 1-y A
A method of manufacturing a heterojunction FET, comprising growing an s channel layer and an Al x Ga 1-x As heterobuffer layer at 400 ° C. or higher and 500 ° C. or lower, respectively.
【請求項2】 x=y=z=0.2である請求項1記載
のヘテロ接合FETの製造方法。
2. The method for manufacturing a heterojunction FET according to claim 1, wherein x = y = z = 0.2.
JP33033493A 1993-12-27 1993-12-27 Heterojunction FET manufacturing method Expired - Fee Related JP2689877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33033493A JP2689877B2 (en) 1993-12-27 1993-12-27 Heterojunction FET manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33033493A JP2689877B2 (en) 1993-12-27 1993-12-27 Heterojunction FET manufacturing method

Publications (2)

Publication Number Publication Date
JPH07193223A JPH07193223A (en) 1995-07-28
JP2689877B2 true JP2689877B2 (en) 1997-12-10

Family

ID=18231468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33033493A Expired - Fee Related JP2689877B2 (en) 1993-12-27 1993-12-27 Heterojunction FET manufacturing method

Country Status (1)

Country Link
JP (1) JP2689877B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632314B1 (en) 2009-09-11 2016-06-22 삼성전자주식회사 Field Effect Semiconductor Device and Manufacturing Method of the Same
CN102280476B (en) * 2011-08-08 2012-12-19 中国电子科技集团公司第五十五研究所 Pseudomorphic high electron mobility transistor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07193223A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
JP3372470B2 (en) Nitride III-V compound semiconductor device
JPH07335867A (en) Field-effect transistor
US4732870A (en) Method of making complementary field effect transistors
JP2689057B2 (en) Static induction semiconductor device
JPH07183494A (en) Heterojunction fet
JP2689877B2 (en) Heterojunction FET manufacturing method
JP3447438B2 (en) Field effect transistor
US5466955A (en) Field effect transistor having an improved transistor characteristic
US5321278A (en) High electron mobility transistor
JP2755076B2 (en) Compound semiconductor heterojunction field-effect transistor
JPS6012773A (en) Manufacture of semiconductor element
JP2708492B2 (en) Method for manufacturing semiconductor device
JP2715868B2 (en) Field effect transistor
JP2687937B2 (en) Field effect transistor
JP2728121B2 (en) Field effect transistor and method of manufacturing the same
JP3121671B2 (en) Method for manufacturing semiconductor device
KR100205068B1 (en) Metal-semiconductor field effect transistor
JPH025439A (en) Semiconductor substrate
JP2616032B2 (en) Method for manufacturing field effect transistor
JPH03165576A (en) Quantum fine line semiconductor device and manufacture thereof
JPH09172165A (en) Field-effect transistor and its fabrication
JP2701567B2 (en) Field effect transistor
JP2890885B2 (en) Semiconductor device and manufacturing method thereof
JP2674560B2 (en) FET manufacturing method
JP2680812B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970729

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees