JP2673829B2 - Manufacturing method of copper-coated iron powder - Google Patents

Manufacturing method of copper-coated iron powder

Info

Publication number
JP2673829B2
JP2673829B2 JP13162789A JP13162789A JP2673829B2 JP 2673829 B2 JP2673829 B2 JP 2673829B2 JP 13162789 A JP13162789 A JP 13162789A JP 13162789 A JP13162789 A JP 13162789A JP 2673829 B2 JP2673829 B2 JP 2673829B2
Authority
JP
Japan
Prior art keywords
copper
iron powder
plating
powder
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13162789A
Other languages
Japanese (ja)
Other versions
JPH032393A (en
Inventor
清 高津
孝浩 藤井
義昭 渡辺
鋭機 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP13162789A priority Critical patent/JP2673829B2/en
Publication of JPH032393A publication Critical patent/JPH032393A/en
Application granted granted Critical
Publication of JP2673829B2 publication Critical patent/JP2673829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,鉄粉に銅をコーテイングした複合粉末の製
造方法に関し,回転容器中で鉄粉に銅の電気めっきを行
なうことによって鉄粉表面に均一かつ適当な厚さの銅め
っき層を形成する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a composite powder in which iron powder is coated with copper. The iron powder surface is formed by electroplating copper on the iron powder in a rotary container. And a method for forming a copper plating layer having a uniform and appropriate thickness.

〔従来の技術と問題点〕[Conventional technology and problems]

粉末へのめっき,無電解めっき(例えば特開昭61−25
8868号公報)によって行われることが多い。例えば「実
務表面技術」1980年9月号8〜12頁には,無機物への無
電解めっきが解説されている。しかしながら,無電解め
っきでは反応が不安定になり易い,めっき厚のコントロ
ールが難しい,めっき液の寿命が短く,多量の廃液が発
生し,公害防止のための廃液処理費用がコストに大きく
影響する,といった問題があり,しかも,粉末の一粒一
粒にむらなくコーティングすることが困難である。
Plating on powder, electroless plating (for example, Japanese Patent Laid-Open No. 61-25
8868 gazette). For example, "Practical Surface Technology", September 1980, pages 8-12, describes electroless plating on inorganic materials. However, in electroless plating, the reaction tends to be unstable, it is difficult to control the plating thickness, the life of the plating solution is short, a large amount of waste liquid is generated, and the cost of waste liquid treatment to prevent pollution greatly affects the cost. However, it is difficult to uniformly coat each powder.

塩化銅溶液からイオン化傾向を利用して銅を置換析出
させる方法(例えば特開昭61−79706号公報や特開昭61
−79707号公報)の場合も,析出により浴組成が著しく
変化するため,目的とするめっき厚さにコントロールす
ることが著しく困難であるばかりでなく,浴の劣化に伴
い生じる廃液の量も膨大なものとなる。
A method of substituting and depositing copper from a copper chloride solution by utilizing the ionization tendency (for example, JP-A-61-79706 and JP-A-61).
In the case of Japanese Patent Publication No. 79707) as well, since the bath composition changes remarkably due to precipitation, not only is it extremely difficult to control the target plating thickness, but the amount of waste liquid that accompanies deterioration of the bath is enormous. Will be things.

小ネジや小形の座金などのように,数ミリ以上の比較
的小径の部品に対しては,外部陽極式水平バレルを用い
て電気めっきすることが行われているが,これより小さ
い数ミリ未満の粉末の場合に対してはこの従来技術でめ
っきすることはできなかった。例えばバレルの隙間から
粉末が落下してしまい,この隙間を小さくすると粉末の
落下はある程度防止できるものの,めっき液の循環が悪
くなってめっき液組成がくずれ,良好なめっきが出来な
くなる。バレルの底面に数カ所の陰極を配置した内部陽
極式傾斜バレルでも,粉末に対しては効率よくめっきす
ることが出来ない。すなわち,そのままでは,めっき速
度が遅くて効率が著しく悪いばかりでなく,めっき膜厚
のむらも大きくなり,陰極に粉末が付着してコブ状にな
ったり粉末が内壁に沿って滑るだけで良好に流動しない
といった構造上の問題もある。
For parts with a relatively small diameter of several millimeters or more, such as machine screws and small washers, electroplating is performed using an external anode horizontal barrel, but less than a few millimeters. This prior art could not be plated for the powders of. For example, the powder falls from the gap of the barrel, and if the gap is made small, the fall of the powder can be prevented to some extent, but the circulation of the plating solution deteriorates and the composition of the plating solution collapses, which makes good plating impossible. Even an internal anode tilted barrel with several cathodes on the bottom of the barrel cannot efficiently plate powder. That is, as it is, not only the plating speed is slow and the efficiency is not so bad, but also the unevenness of the plating film thickness becomes large, and the powder adheres to the cathode to form a bump or the powder slides along the inner wall and flows well. There is also a structural problem such as not doing it.

特公昭61−40319号公報は,粉末をインペラーで撹拌
しながら電気めっきする方法を開示しているが,粉末の
凝集や陰極への堆積といった問題がつきまとう。
Japanese Examined Patent Publication No. 61-40319 discloses a method of electroplating powder while stirring with an impeller, but there are problems such as agglomeration of powder and deposition on the cathode.

特開昭63−18096号公報には粒径が100オングストロー
ム〜1μmの微粉末に対して懸濁状態で金属を被覆する
方法が開示されているが,10μm以上の粉末には適さな
い。
Japanese Unexamined Patent Publication (Kokai) No. 63-18096 discloses a method of coating a fine powder having a particle size of 100 Å to 1 μm with a metal in a suspended state, but it is not suitable for powder having a particle size of 10 μm or more.

〔発明の目的〕[Object of the invention]

本発明の目的は,前述のような問題を解決し,鉄粉の
一粒一粒にむらなく銅を所定の厚さにコーティングする
ことができる安価な銅被覆鉄粉の製造法を提供するにあ
る。
An object of the present invention is to solve the above-mentioned problems and provide an inexpensive copper-coated iron powder manufacturing method capable of uniformly coating each iron powder with a predetermined thickness of copper. is there.

〔発明の構成〕[Configuration of the invention]

本発明による銅被覆鉄粉の製造法は,底面に陰極板を
配し且つ内周壁に邪魔板を配した筒状容器内に,ピロリ
ン酸銅を溶解した銅めっき液と粒径が10μmから1mmの
範囲の鉄粉を装填し,この筒状容器をその中心軸を傾斜
させて軸回りに回転させ,この回転によって該陰極板の
実質状全面積に対して該めっき浴中の鉄粉が繰返し衝突
する流動状態を浴下方に形成されると共に鉄粉の流動が
実質上到達しない非流動域を浴上方に形成させながら,
この非流動域に陽極を配して該陰極板との間で通電する
ことを特徴とする。そのさい,陰極板は筒状容器の底面
部の全面積若しくは大部分の面積を占めるような大きさ
のものを使用し,周速が2〜30m/minとなるように筒状
容器の回転速度を制御するのがよく,また本発明による
銅被覆処理に供する鉄粉は,その表面に無電解ニッケル
めっき処理よってニッケル薄膜を形成しておくのがよ
い。
The method for producing copper-coated iron powder according to the present invention includes a copper plating solution in which copper pyrophosphate is dissolved and a particle size of 10 μm to 1 mm in a cylindrical container having a cathode plate on the bottom surface and a baffle plate on the inner peripheral wall. The iron powder in the plating bath is repeatedly loaded on the substantially entire area of the cathode plate by loading the iron powder in the range of ## EQU1 ## and rotating the cylindrical container around its axis with the central axis inclined. While forming a colliding flow state below the bath and forming a non-fluid region above the bath where iron powder flow does not substantially reach,
It is characterized in that an anode is arranged in this non-flowing region and electricity is conducted between the anode and the cathode plate. At that time, use a cathode plate of such a size that it occupies the entire area or most of the bottom surface of the cylindrical container, and the rotational speed of the cylindrical container is set so that the peripheral speed is 2 to 30 m / min. The iron powder to be subjected to the copper coating treatment according to the present invention preferably has a nickel thin film formed on its surface by electroless nickel plating treatment.

〔作用〕[Action]

本発明によれば,傾斜した筒状容器の軸回りの回転に
よって,その底部の陰極板に対して浴中の鉄粉が高密度
で且つ均等に衝突する流動状態が形成されるので,陰極
板にめっき液中の銅イオンが還元析出するといった現象
が防止されながら,陰極板に衝突した各鉄粉粒子が陰極
板から放電を受けて負に帯電し,その結果,めっき液中
の銅イオンが鉄粉表面に電気めっきされる。また,粒径
が10μmから1mmの範囲と云った比較的粒径が大きい鉄
粉を対象とするので,各鉄粉はその自重でめっき液中に
下降する作用が働き,筒状容器の回転速度を適切にする
ことによって,鉄粉の流動域の上方には鉄粉が舞い上が
らないめっき液だけの非流動域が形成される。この上方
のめっき液だけの帯域に陽極を浸漬することによって,
陽極には鉄粉が触れる事態が避けられ,この結果,鉄粉
や銅被膜が溶解するような現象も防止され,鉄粉の一粒
一粒の表面に均等に銅めっきが施される。まためっきさ
れる銅の膜厚のコントロールも通電量や処理時間によっ
て任意に且つ正確に行うことができるし,陰極板に衝突
する鉄粉の適正な流動状態は筒状容器の内周面に設けた
邪魔板によって一層良好に助成される。さらに,筒状容
器の傾斜角度と回転数を任意に調整できる装置に構成す
ることによって,該流動状態を一層適正且つ簡易に制御
ができる。
According to the present invention, the rotation of the inclined cylindrical container about the axis forms a flow state in which the iron powder in the bath collides with the cathode plate at the bottom of the container in high density and uniformly. While the phenomenon that copper ions in the plating solution are reduced and precipitated is prevented, each iron powder particle colliding with the cathode plate is negatively charged by being discharged from the cathode plate, and as a result, the copper ions in the plating solution are Electroplated on iron powder surface. In addition, since iron powder with a relatively large particle size in the range of 10 μm to 1 mm is targeted, each iron powder has a function of descending into the plating solution due to its own weight, and the rotation speed of the cylindrical container By appropriately adjusting the above, a non-fluid region of only the plating solution in which the iron powder does not rise is formed above the iron powder flowing region. By immersing the anode in the zone containing only the plating solution above this,
The iron powder is prevented from coming into contact with the anode, and as a result, the phenomenon that the iron powder and the copper coating are dissolved is prevented, and the surface of each iron powder is evenly plated with copper. In addition, the thickness of the plated copper can be controlled arbitrarily and accurately by adjusting the amount of electricity and the processing time, and the proper flow state of the iron powder that collides with the cathode plate is provided on the inner peripheral surface of the cylindrical container. It is further supported by the baffle. Further, by configuring the device capable of arbitrarily adjusting the inclination angle and the rotation speed of the cylindrical container, the flow state can be controlled more appropriately and easily.

この銅の電気めっきに供する鉄粉は,前処理として,
無電解ニッケルめっきを行ったものを使用すると,めっ
き液中の銅イオンが鉄粉によって還元されるのを良好に
防止できる。すなわち,銅イオンが共存するめっき液中
に鉄粉を投入するとイオン化傾向の差によって鉄粉が液
に溶解し銅が析出する置換析出反応が起こるが,無電解
ニッケルめっきによってニッケルの薄膜を鉄粉の表面に
形成させておくと,この鉄粉の溶解を防止することがで
きる。無電解ニッケルめっきの代わりに無電解銅めっき
を行っても,粉末からの鉄分の溶出とこれに伴う銅の析
出という置換反応を防ぎきれないため,皮膜がポーラス
となり良好な電気めっきが出来ない。無電解銅めっきで
多量に銅をコーテイングすれば電気めっきできるように
なるが,無電解めっきの廃液が多量に発生するために,
電気めっきによるメリットがなくなってしまう。
The iron powder used for this copper electroplating was
By using electroless nickel plating, it is possible to prevent copper ions in the plating solution from being reduced by iron powder. That is, when iron powder is added to a plating solution in which copper ions coexist, a substitution precipitation reaction occurs in which the iron powder dissolves in the solution and copper is deposited due to the difference in ionization tendency. If it is formed on the surface of, the dissolution of this iron powder can be prevented. Even if electroless copper plating is performed instead of electroless nickel plating, the substitution reaction of elution of iron from the powder and the accompanying precipitation of copper cannot be prevented, so the film becomes porous and good electroplating cannot be performed. If a large amount of copper is coated by electroless copper plating, electroplating can be performed, but since a large amount of electroless plating waste liquid is generated,
The benefits of electroplating are gone.

電気めっきのめっき浴としては,ピロリン酸銅浴がよ
い。硫酸銅浴や硼ふっ化銅浴では前処理した鉄粉でも溶
解することがあるので良好なめっきが出来ない。ピロリ
ン酸銅浴では前記のように無電解ニッケルめっきした鉄
粉は溶解することはない。
A copper pyrophosphate bath is a good plating bath for electroplating. In a copper sulfate bath or a copper borofluoride bath, even pretreated iron powder may dissolve, so good plating cannot be performed. In the copper pyrophosphate bath, the electroless nickel-plated iron powder as described above does not dissolve.

〔発明の具体的開示〕[Specific disclosure of the invention]

本発明においては,ピロリン酸銅を溶解した銅めっき
液中に鉄粉が所定の懸濁濃度をもって懸濁した粉末懸濁
流を傾斜回転容器中において強制的に形成させ,この粉
末懸濁流を陽極には実質上接触させないで所定の速度成
分をもって容器底部の陰極板の実質上全面積に対して循
環衝突させるのであり,具体的には,底面に陰極板を配
した筒状容器内に該めっき浴と粉末を装填し,この筒状
容器をその中心軸を傾斜させて軸回りに回転させること
によってめっき浴中の粉末が陰極板に繰返し衝突する流
動状態を浴下方に形成させると共に粉末の流動が実質上
到達しない非流動域を浴上方に形成させ,この非流動域
に陽極を配して鉄粉表面に銅の電気めっきを行うのであ
る。そのさい,電気めっき液中の下方に形成される粉末
の流動域の懸濁濃度が30vol.%から55vol.%の範囲とな
るようにするのが望ましく,また,この流動域は陽極板
には接触しないように形成させることが必要である。そ
して,この流動域の粉末懸濁流が陰極板に対して2m/min
〜30m/minの流速をもって衝突するようにするのよく,
これは,回転容器の周速を2m/min〜30m/minの範囲とな
るように制御すればよい。これによって,電気めっき液
中の銅イオンの濃度には実質上無関係に鉄粉の一粒づつ
に均一にかつ高収率(90%以上の高収率)で銅が電気め
っきできる。また陰極板の全面積が粉末の流動流の投射
を連続的に受けている状態を維持することによって陰極
には液中のCuイオンが電析することが防止されると共
に,粉末の流動域が陽極に接触しない状態を維持するこ
とによって,鉄粉およびその表面に電析した銅が溶解す
ることも防止される。
In the present invention, a powder suspension flow in which iron powder is suspended at a predetermined suspension concentration in a copper plating solution in which copper pyrophosphate is dissolved is forcibly formed in an inclined rotary container, and this powder suspension flow is used as an anode. Does not come into contact with each other, but circulates and collides with substantially the entire area of the cathode plate at the bottom of the container with a predetermined velocity component. Specifically, the plating bath is placed in a cylindrical container having a cathode plate on the bottom surface. Then, the cylindrical container is tilted about its central axis and rotated about its axis to form a flow state in which the powder in the plating bath repeatedly collides with the cathode plate under the bath and the powder flows. A non-fluid zone that does not substantially reach is formed above the bath, and an anode is placed in this non-fluid zone to electroplate copper on the iron powder surface. At that time, it is desirable that the suspension concentration of the powder formed below in the electroplating solution is in the range of 30 vol.% To 55 vol.%. It is necessary to form so as not to contact. The powder suspension flow in this flow region is 2m / min with respect to the cathode plate.
It is better to collide with a flow velocity of ~ 30m / min,
This can be controlled so that the peripheral speed of the rotating container is in the range of 2 m / min to 30 m / min. As a result, copper can be electroplated uniformly and with high yield (high yield of 90% or more) on each iron powder particle, substantially independently of the concentration of copper ions in the electroplating solution. Also, by keeping the whole area of the cathode plate continuously receiving the flow of powder, it is possible to prevent Cu ions in the liquid from being electrodeposited on the cathode and Maintaining the state of not contacting the anode also prevents the iron powder and the copper deposited on the surface thereof from melting.

なお,本発明で対象とする鉄粉は粒径が10μm以上の
ものが適する。これにより細かいとめっき浴中に舞い上
がって浮遊するような現象が生じ,めっきされなかった
り,陽極に接触して溶解してしまう等の問題が生じるか
らである。回転を遅くすれば舞い上がらなくなるもの
の,今度は凝集,陰極への析出といった問題が生じる。
また,陰極の全面積にわたって密な衝突状態を維持させ
るには粒径があまり大きくなってもよくない。このため
粒径が1mm以下のものが本発明法には適する。容器を回
転させるさいの周速については,既述の理由から2〜30
m/minが適当であるが,他方の理由としてこれより速す
ぎると粉末が遠心力で容器内壁に押さえつけられて均一
な撹拌ができなかったり,粉末が舞い上がって陽極と接
触して溶解してしまったりするし,これより遅すぎる場
合も,撹拌不足のために凝集や陰極への析出といった問
題が生じるので,この範囲の周速が適切となる。なお,
処理対象とする鉄粉の粒径が前記範囲内において小さい
か比重が軽い場合は周速を小さくし,鉄粉粉末の粒径が
大きいか比重が重い場合は周速を大きくすると良い。い
ずれにせよ鉄粉の特性により,周速と傾斜角度を制御し
て,常に容器底面の陰極板回りに安定した流動層を形成
することが重要である。
The iron powder targeted by the present invention preferably has a particle size of 10 μm or more. This is because if it is fine, a phenomenon such that it floats up and floats in the plating bath occurs, and problems such as non-plating and contact with the anode and melting occur. If the rotation is slowed down, it will not rise, but this time there will be problems such as aggregation and deposition on the cathode.
Also, the particle size may not be too large to maintain a dense collision state over the entire area of the cathode. Therefore, those having a particle size of 1 mm or less are suitable for the method of the present invention. The peripheral speed when rotating the container is 2 to 30 for the reasons described above.
m / min is suitable, but for the other reason, if it is too fast, the powder will be pressed against the inner wall of the container by centrifugal force and uniform stirring will not be possible, or the powder will rise and come into contact with the anode to dissolve. If it is too slow or slower than this, problems such as agglomeration and deposition on the cathode may occur due to insufficient stirring, so the peripheral speed in this range is appropriate. In addition,
When the particle size of the iron powder to be treated is small or has a low specific gravity within the above range, the peripheral speed may be decreased, and when the particle size of the iron powder is large or the specific gravity is large, the peripheral speed may be increased. In any case, it is important to control the peripheral speed and the inclination angle to form a stable fluidized bed around the cathode plate on the bottom of the container, depending on the characteristics of iron powder.

第1図は,本発明の電気めっき法を実施する装置の要
部を示したものであり,処理鉄粉およびめっき液を収容
するための円筒形の筒状容器1と,この筒状容器1の底
部において容器軸と直交する方向に配置された陰極板2
と,筒状容器1内のめっき液の液面近くに配した陽極3
と,陰極板2と陽極3との間に所定の電位を付与する電
源装置4と,からなっており,筒状容器1はその中心軸
が鉛直よりも傾斜して(図示の例では垂直に対して45゜
の傾きをもって)中心軸回りに回転可能に設置されてい
る。すなわち,容器1の底部のその中心で回転軸5によ
って外側から支持し,これによって容器1を中心軸回り
に回転可能とし,この回転軸5に回転動力を付与するモ
ータ6を基台7に固定する。そして,この基台7の水平
に対する傾きを調整自在とすることによって,容器1の
傾き角を調整する。また,容器1が傾いたさいの荷重を
受けるために,容器1の外周に接して回動する遊転ロー
ラ8が設けられ,この遊転ローラ8の荷重点も基台7に
一体的に接続されている。モータ6は変速モータであ
り,容器1の軸回りの回転速度を自在に調整できるもの
である。一方,容器1の内周面には処理粉末の流動を促
進させる邪魔板9が設けてある。この邪魔板9は,図示
の例では,容器1の内壁から半径方向に内側に若干突き
出した板を,その長手方向が容器の軸方向に沿うように
して,該内壁に取付けたものであり,第2図に示すよう
に,90゜間隔で四枚取付けてある。
FIG. 1 shows an essential part of an apparatus for carrying out the electroplating method of the present invention, which is a cylindrical container 1 for containing treated iron powder and a plating solution, and this cylindrical container 1 Cathode plate 2 arranged in the direction orthogonal to the vessel axis at the bottom of the
And the anode 3 placed near the surface of the plating solution in the cylindrical container 1.
And a power supply device 4 for applying a predetermined potential between the cathode plate 2 and the anode 3, and the central axis of the cylindrical container 1 is inclined with respect to the vertical (in the illustrated example, the vertical It is installed so that it can rotate around the central axis (with an inclination of 45 °). That is, the container 1 is supported from the outside by the rotating shaft 5 at the center of the bottom of the container 1, thereby enabling the container 1 to rotate about the central axis, and fixing the motor 6 for imparting rotational power to the rotating shaft 5 to the base 7. To do. The tilt angle of the container 1 is adjusted by making the tilt of the base 7 adjustable with respect to the horizontal. Further, in order to receive the load when the container 1 is tilted, an idler roller 8 is provided which rotates in contact with the outer periphery of the container 1. The load point of the idler roller 8 is also integrally connected to the base 7. Has been done. The motor 6 is a variable speed motor and can freely adjust the rotation speed of the container 1 about its axis. On the other hand, a baffle plate 9 for promoting the flow of the treated powder is provided on the inner peripheral surface of the container 1. In the illustrated example, the baffle plate 9 is a plate that slightly protrudes inward in the radial direction from the inner wall of the container 1, and is attached to the inner wall so that its longitudinal direction is along the axial direction of the container. As shown in Fig. 2, four pieces are attached at 90 ° intervals.

このように構成された電気めっき装置に,銅めっき液
と鉄粉を入れ,その装填量並びに量比に応じて容器1の
傾き角とモータ6の回転速度を適切に調整することによ
って,比重差によってめっき液中を下降する粉末の集合
体がめっき液下方において適正な流動域10を形成するよ
うに制御することができる。すなわち,粉末の流動域10
が容器1の自転と邪魔板2による掻き混ぜ効果によって
旋回流動しながら陰極板2の全面席を覆うように常に衝
突を繰返し,且つめっき液の上方域11には粉末が舞い上
がることがなく,液だけの旋回流が形成するような定常
状態が維持できる。この定常状態が形成されたなら,液
だけの旋回流が形成されているめっき液の上方液11に陽
極3を配置し,通電を開始し,所定の時間電気めっき処
理を行ったあと,通電を止め,めっき品を回収する。こ
の回収は,基台7を回動することによって,容器1をさ
らに傾斜させて内容物を別の容器に移し換えて行えばよ
い。
A copper plating solution and iron powder are put into the electroplating apparatus configured as described above, and the inclination angle of the container 1 and the rotation speed of the motor 6 are appropriately adjusted in accordance with the loading amount and the volume ratio, so that the specific gravity difference is increased. By this, it is possible to control so that the aggregate of powders descending in the plating solution forms an appropriate flow region 10 below the plating solution. That is, powder flow region 10
While rotating by the rotation of the container 1 and the stirrer effect by the baffle plate 2, the collision constantly repeats so as to cover the entire surface of the cathode plate 2 while swirling and flowing, and the powder does not rise in the upper area 11 of the plating solution. A steady state in which only a swirling flow is formed can be maintained. If this steady state is formed, the anode 3 is placed in the upper solution 11 of the plating solution in which a swirling flow of only the solution is formed, the energization is started, the electroplating process is performed for a predetermined time, and then the energization is performed. Stop and collect the plated product. This recovery may be performed by rotating the base 7 to further tilt the container 1 and transfer the contents to another container.

以下に,この装置を用いて本発明法を実施した代表例
を挙げる。
Typical examples of carrying out the method of the present invention using this apparatus will be given below.

〔実施例1〕 第1表に示す川崎製鉄(株)製のKIP300Aの鉄粉を用
いて銅めっきを施す。まず,前処理として,該鉄粉1kg
を2のトールビーカーに入れ,東京理化器械(株)製
DCスターラー(DC−2RT型)を用いて,テフロン製のプ
ロペラで撹拌しながら塩酸60mlを少しずつ加えて酸洗す
る。次に,水洗を3回行ったのち,DCスターラー(DC−2
RT型)を用いて560rpmにて撹拌しながら,奥野製薬工業
(株)製のアルカリ性無電解ニッケルめっき液「TMP化
学ニッケル」にて無電解めっきを行う。次に,水洗を3
回行う。
[Example 1] Copper plating is performed using the iron powder of KIP300A manufactured by Kawasaki Steel Co., Ltd. shown in Table 1. First, as a pretreatment, 1 kg of the iron powder
Put it in the 2 tall beaker and make it by Tokyo Rika Kikai Co., Ltd.
Using a DC stirrer (DC-2RT type), add 60 ml of hydrochloric acid little by little while stirring with a Teflon propeller and perform pickling. Next, after washing with water three times, a DC stirrer (DC-2
RT type) and stirring at 560 rpm while performing electroless plating with the alkaline electroless nickel plating solution "TMP chemical nickel" manufactured by Okuno Chemical Industries Co., Ltd. Next, wash with water 3
Do it twice.

一方,めっき液として,次に示す液組成のピロリン酸
銅浴1.5を調整する。
On the other hand, as the plating solution, prepare a copper pyrophosphate bath 1.5 having the following composition.

めっき液組成 ピロリン酸銅(Cu2P2O7・3H2O) 29g/ ピロリン酸カリウム(K4P2O7) 254g/ クエン酸カリウム(KH2C6H5O7) 23g/ このめっき浴と前記の前処理した鉄粉を既述の図示の
容器1に装填し,容器1の傾斜角度を45゜としてモータ
ー6(シンポ工業(株)製リンゴコーンRXM−40−G5M
型)にて容器1を周速9.1m/minで回転させてめっき処理
を行った。そのさい,陽極3はピロリン酸銅めっき浴用
銅板(住友金属鉱山(株)製UP−C銅アノード)を用
い,陰極2には直径110mmのステンレス(SUS304)を用
いた。容器の内径は直径120mmである。各邪魔板9は高
さ5mm長さ120mmの板を容器1の内壁に90゜間隔で設けた
ものである。直流電源4には,(株)三社電機製作所製
SANRXDC AUTO 1530D型を用いた。通電量を260AHとして
めっきを行った。
Plating solution composition Copper pyrophosphate (Cu 2 P 2 O 7 / 3H 2 O) 29g / Potassium pyrophosphate (K 4 P 2 O 7 ) 254g / Potassium citrate (KH 2 C 6 H 5 O 7 ) 23g / This plating The bath and the above-mentioned pretreated iron powder were loaded into the container 1 shown above and the inclination angle of the container 1 was 45 °, and the motor 6 (Apple Corn RXM-40-G5M manufactured by Shinpo Industry Co., Ltd.) was used.
The container 1 was rotated at a peripheral speed of 9.1 m / min to perform plating treatment. At that time, a copper plate for copper pyrophosphate plating bath (UP-C copper anode manufactured by Sumitomo Metal Mining Co., Ltd.) was used for the anode 3, and stainless steel (SUS304) having a diameter of 110 mm was used for the cathode 2. The inner diameter of the container is 120 mm. Each baffle plate 9 is a plate having a height of 5 mm and a length of 120 mm provided on the inner wall of the container 1 at 90 ° intervals. The DC power supply 4 is manufactured by Sansha Electric Co., Ltd.
SANRXDC AUTO 1530D type was used. Plating was performed with the amount of electricity applied to 260 AH.

めっきが終了したのち,水洗し,ブフナーロートにて
減圧濾過した後,エタノールで洗浄し,室温の真空乾燥
機にて,エジエクター付きの水封ポンプで一昼夜,真空
引きを続けて乾燥させた。乾燥後の粉末は1302gであっ
た。この粉末を分析すると23.2wt.%CUであった。電流
効率は98%と高い値を示した。またこの粉末を篩にかけ
たところ+80meshが0.73%であった。これは原料の鉄板
に比較して僅か0.33%の増加であり,したがって殆んど
凝集が認められなかった。
After the plating was completed, the plate was washed with water, filtered under reduced pressure with a Buchner funnel, washed with ethanol, and dried in a vacuum dryer at room temperature with a water-sealed pump equipped with an radiator for 24 hours. The powder after drying was 1302 g. The powder was analyzed and found to be 23.2 wt.% CU. The current efficiency was as high as 98%. When this powder was sieved, +80 mesh was 0.73%. This was an increase of only 0.33% compared to the raw iron plate, so almost no agglomeration was observed.

第3図に,得られためっき粉末の断面写真を示した。 Fig. 3 shows a cross-sectional photograph of the obtained plating powder.

〔実施例2〕 粒径20μmの鉄粉300gを脱脂し,実施例1と同様に無
電解銅ニッケルめっきを施した後,直流電源に(株)高
砂製作所TMO18−3型を用い,既述のめっき装置で周速2
m/minで銅めっきした。無酸素銅を陽極とし,銅めっき
液には次のものを用いて257AHめっきを行った。
Example 2 300 g of iron powder having a particle size of 20 μm was degreased, electroless copper nickel plating was applied in the same manner as in Example 1, and then a DC power supply of Takasago Seisakusho TMO18-3 type was used. Peripheral speed 2 with plating equipment
Copper was plated at m / min. Oxygen-free copper was used as the anode, and 257AH plating was performed using the following copper plating solution.

めっき液組成 ピロリン酸銅(Cu2P2O7・3H2O) 80g/ ピロリン酸カリウム(K4P2O7) 255g/ アンモニア水 4ml/ 硫酸カリウム(KNO3) 12g/ 以下,実施例1と同様に処理した結果,乾燥後の粉末
は601gであった。この粉末を分析すると,50.1wt.%Cuで
あった。電流効率は99%と高い値を示した。
Plating solution composition Copper pyrophosphate (Cu 2 P 2 O 7 / 3H 2 O) 80 g / Potassium pyrophosphate (K 4 P 2 O 7 ) 255 g / Ammonia water 4 ml / Potassium sulfate (KNO 3 ) 12 g / Below, Example 1 As a result of the same treatment as above, the powder after drying was 601 g. The powder was analyzed and found to be 50.1 wt.% Cu. The current efficiency was as high as 99%.

〔実施例3〕 粒径0.7mmの鉄粉300gを実施例2と同様に前処理した
後,既述の装置で周速30m/minとした他は実施例2と同
様にして14AH銅めっきを施した。
[Example 3] 14 AH copper plating was performed in the same manner as in Example 2 except that 300 g of iron powder having a particle size of 0.7 mm was pretreated in the same manner as in Example 2 and then the peripheral speed was set to 30 m / min in the previously described apparatus. gave.

以下,実施例1と同様に処理した結果,乾燥後の粉末
は316gであった。この粉末を分析すると,5.1wt.%Cuで
あった。電流効率は99%と高い値を示した。
After that, the same treatment as in Example 1 was performed, and as a result, the amount of powder after drying was 316 g. The powder was analyzed and found to be 5.1 wt.% Cu. The current efficiency was as high as 99%.

〔比較例1〕 次に比較のため,特公昭61−40319号公報に記載の方
法に準じてめっきを行った結果を示す。既述の第1表に
示す鉄粉500gを1のトールビーカーに入れ,実施例1
と同様に酸洗を行い,無電解ニッケルめっきを行った
後,めっき槽底面に陰極を備えためっき槽に入れ,実施
例1と同一組成のめっき液を入れて,東京理化器械
(株)製DCスターラー(DC−2RT型)を用いて,テフロ
ン製のプロペラで粉末を撹拌しながら,直流電源に
(株)高砂製作所製TMO18−3型を用いて,128.6AHめっ
きを行った。ところが,底面の陰極に粉末が付着,堆積
して徐々に厚くなって行き,堆積した粉末と撹拌プロペ
ラが接触してゴシゴシ音がしていた。めっき終了後,粉
末は445g,陰極への堆積物は184gあった。すなむち収率
は71%と著しく悪く,しかも粉末の中には,摩耗したプ
ロペラから発生したプラスチックの粉が混入しており,
使用できるものではなかった。
[Comparative Example 1] Next, for comparison, the result of plating according to the method described in Japanese Patent Publication No. 61-40319 is shown. Example 1 was prepared by adding 500 g of the iron powder shown in Table 1 to a tall beaker.
After performing pickling and electroless nickel plating in the same manner as in, place in a plating tank having a cathode on the bottom of the plating tank, add a plating solution having the same composition as in Example 1, and make by Tokyo Rika Kikai Co., Ltd. Using a DC stirrer (DC-2RT type), while stirring the powder with a Teflon propeller, 128.6 AH plating was performed using Takasago Seisakusho TMO18-3 type as a DC power source. However, the powder adhered to and accumulated on the cathode on the bottom surface and gradually became thicker, and the deposited powder and the stirring propeller contacted each other, and there was a rattling noise. After plating, the powder was 445 g and the deposit on the cathode was 184 g. In other words, the yield of the whip is 71%, which is extremely poor, and the powder of plastic generated from the worn propeller is mixed in the powder.
It was not usable.

〔比較例2〕 第1表に示す鉄粉を酸洗し,無電解ニッケルを施すこ
となく実施例1と同様にして,直流電源に(株)高砂製
作所TMO18−3型を用いて銅めっきしようとしたとこ
ろ,鉄粉が溶解し始め,めっき液が急に濁りはじめ,分
解してしまった。
[Comparative Example 2] Iron powder shown in Table 1 was pickled, and copper plating was performed using Takasago Seisakusho TMO18-3 type as a DC power supply in the same manner as in Example 1 without applying electroless nickel. As a result, the iron powder began to dissolve, the plating solution suddenly began to become cloudy, and it decomposed.

〔比較例3〕 第1表に示す鉄粉を実施例1と同様に酸洗を行ったう
え,奥野製薬工業(株)製の高速無電解銅めっき液「OP
Cカッパー」にて無電解めっきを施した後,直流電源に
(株)高砂製作所TMO18−3型を用いて実施例1と同様
にして銅めっきしようとしたところ,めっき液が急に濁
りはじめ,分解してしまった。
[Comparative Example 3] The iron powder shown in Table 1 was pickled in the same manner as in Example 1, and the high-speed electroless copper plating solution "OP" manufactured by Okuno Chemical Industries Co., Ltd.
After performing electroless plating with "C copper", when using a Takasago Seisakusho TMO18-3 type as a DC power source in the same manner as in Example 1, copper plating suddenly began to become cloudy. It has been disassembled.

〔比較例4〕 第1表に示す鉄粉を,めっき浴だけ硫酸銅浴に変えた
以外は実施例1と同様にして電気めっきしようとしたと
ころ,粉末からの鉄分の溶出とこれに伴う銅の析出とい
う置換反応が著しく,電気めっきを継続することが出来
なかった。
[Comparative Example 4] Electroplating was carried out in the same manner as in Example 1 except that the iron powder shown in Table 1 was replaced with a copper sulfate bath. The electroplating could not be continued because the substitution reaction of the precipitation of was remarkable.

〔比較例5〕 第1表に示す鉄粉を,めっき浴だけ硼ふっ化銅浴に変
えた以外は実施例1と同様にして電気めっきしようとし
たところ,粉末からの鉄分の溶出とこれに伴う銅の析出
という置換反応が著しく,電気めっきを継続することが
出来なかった。
[Comparative Example 5] Electroplating was carried out in the same manner as in Example 1 except that the iron powder shown in Table 1 was changed to a copper borofluoride bath only in the plating bath. As a result, the substitution reaction of copper precipitation was significant, and electroplating could not be continued.

〔効果〕〔effect〕

本発明法によれば,無電解めっきや置換析出の場合の
ようなめっき浴の劣化の問題がなく,浴寿命も長いた
め,廃液の発生が著しく少なく,ひいては安価に鉄粉に
コーティングができる。さらに,電流効率が良く,安定
しためっきが可能であるから,めっきの膜厚,めっき量
を通電量によって容易にコントロールすることができ
る。また良好且つ安定した粉末の流動状態が陰極板の全
面積にわたって維持できるので粉末の凝集や陰極への堆
積といった問題がなく,鉄粉の溶解といったこともない
ので,粉末の一粒一粒にむらなく銅被膜を形成できる。
さらに容器底面の面積に対して相当大きな円形の陰極を
配置することにより粉末が陰極に付着することがなくな
り,効率よく銅被膜が形成される。
According to the method of the present invention, there is no problem of deterioration of the plating bath as in the case of electroless plating or substitutional deposition, and since the bath life is long, the generation of waste liquid is remarkably small, and thus iron powder can be coated inexpensively. Furthermore, since current efficiency is good and stable plating is possible, the thickness of the plating and the plating amount can be easily controlled by the amount of electricity supplied. In addition, since a good and stable powder flow state can be maintained over the entire area of the cathode plate, there is no problem of powder agglomeration or deposition on the cathode, and there is no dissolution of iron powder. A copper film can be formed without using it.
Further, by arranging a circular cathode having a size considerably larger than the area of the bottom surface of the container, the powder is prevented from adhering to the cathode, and the copper coating is efficiently formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のめっき装置例の要部を示す略断面図,
第2図は第1図のII−II′線矢視断面図,第3図は実施
例1で得られた銅被覆鉄粉の金属組織を示す断面写真で
ある。 1……筒状容器,2……陰極,3……陽極, 4……電源装置,5……回転軸,6……モータ, 7……基台,9……邪魔板,10……粉末の流動域。
FIG. 1 is a schematic sectional view showing a main part of an example of a plating apparatus of the present invention,
FIG. 2 is a sectional view taken along the line II-II ′ of FIG. 1, and FIG. 3 is a sectional photograph showing the metallographic structure of the copper-coated iron powder obtained in Example 1. 1 ... cylindrical container, 2 ... cathode, 3 ... anode, 4 ... power supply device, 5 ... rotating shaft, 6 ... motor, 7 ... base, 9 ... baffle plate, 10 ... powder Flow region.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹島 鋭機 千葉県市川市高谷新町7番地の1 日新 製鋼株式会社新材料研究所内 (56)参考文献 特開 平1−247594(JP,A) 実開 昭59−133670(JP,U) 特公 昭61−40319(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshima Koki, 1 at 7 Shintachi, Takaya Shinmachi, Ichikawa City, Chiba, Nisshin Steel Co., Ltd. (56) Reference JP-A-1-247594 (JP, A) Actual Development Sho 59-133670 (JP, U) Japanese Patent Sho 61-40319 (JP, B2)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】底面に陰極板を配し且つ内周壁に邪魔板を
配した筒状容器内に,ピロリン酸銅を溶解した銅めっき
液と粒径が10μmから1mmの範囲のニッケル被膜付き鉄
粉を装填し,この筒状容器をその中心軸を傾斜させて軸
回りに回転させ,この回転によって該陰極板の実質上全
面積に対して該めっき浴中の鉄粉が繰返し衝突する流動
状態を浴下方に形成させると共に鉄粉の流動が実質上到
達しない非流動域を浴上方に形成させながら,この非流
動域に陽極を配して該陰極板との間で通電することを特
徴とする銅被覆鉄粉の製造法。
1. A copper container in which a cathode plate is arranged on the bottom surface and a baffle plate is arranged on the inner peripheral wall, and a copper plating solution in which copper pyrophosphate is dissolved and a nickel-coated iron having a particle size in the range of 10 μm to 1 mm. Powder state is loaded, and the cylindrical container is rotated about its axis with its central axis tilted, and this rotation causes the iron powder in the plating bath to repeatedly collide with substantially the entire area of the cathode plate. Is formed below the bath and a non-fluid region where the flow of iron powder does not substantially reach is formed above the bath, and an anode is arranged in this non-fluid region to conduct current between the cathode plate and the non-fluid region. Method for producing copper-coated iron powder.
【請求項2】ニッケル被膜付き鉄粉は,その表面に無電
解ニッケルめっき処理によってニッケル薄膜が形成され
たものである請求項1に記載の銅被覆鉄粉の製造法。
2. The method for producing copper-coated iron powder according to claim 1, wherein the nickel-coated iron powder has a nickel thin film formed on its surface by electroless nickel plating.
【請求項3】筒状容器の回転は,周速が2〜30m/minと
なるように制御される請求項1または2に記載の銅被覆
鉄粉の製造法。
3. The method for producing copper-coated iron powder according to claim 1, wherein the rotation of the cylindrical container is controlled so that the peripheral speed is 2 to 30 m / min.
JP13162789A 1989-05-26 1989-05-26 Manufacturing method of copper-coated iron powder Expired - Lifetime JP2673829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13162789A JP2673829B2 (en) 1989-05-26 1989-05-26 Manufacturing method of copper-coated iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13162789A JP2673829B2 (en) 1989-05-26 1989-05-26 Manufacturing method of copper-coated iron powder

Publications (2)

Publication Number Publication Date
JPH032393A JPH032393A (en) 1991-01-08
JP2673829B2 true JP2673829B2 (en) 1997-11-05

Family

ID=15062472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13162789A Expired - Lifetime JP2673829B2 (en) 1989-05-26 1989-05-26 Manufacturing method of copper-coated iron powder

Country Status (1)

Country Link
JP (1) JP2673829B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827834B2 (en) * 2002-03-12 2004-12-07 Ronald Stewart Non-cyanide copper plating process for zinc and zinc alloys
US7693325B2 (en) 2004-01-14 2010-04-06 Hexagon Metrology, Inc. Transprojection of geometry data

Also Published As

Publication number Publication date
JPH032393A (en) 1991-01-08

Similar Documents

Publication Publication Date Title
JP3874911B2 (en) Plating method for micro plastic balls
US4305792A (en) Processes for the electrodeposition of composite coatings
JP3342697B2 (en) Electroplating method for metal coating on particles at high coating speed using high current density
EP0248118A1 (en) Metallurgical structure control of electrodeposits using ultrasonic agitation
US4097342A (en) Electroplating aluminum stock
JP2628184B2 (en) Method of electroplating metal on fine powder
US3654098A (en) Electrochemical process of coating using a fluidized bed
US3853094A (en) Electroless plating apparatus
JP2006519931A (en) Method of electroplating processed products having high aspect ratio holes
JP2673829B2 (en) Manufacturing method of copper-coated iron powder
US3779873A (en) Process for metal coating diamonds
JP2002069689A (en) Method for electroplating on powder
JPH0671544B2 (en) Method and apparatus for stirring liquid in liquid tank
EP0141528A2 (en) Conducting or catalysing a chemical reation on a surface especially electroless metal deposition and catalyst systems used therein
US4645580A (en) Process for galvanic deposition of a dispersion coating, application of said process and device for performing said process
JPH032392A (en) Method and device for coating powder
US3940512A (en) Method and apparatus for concomitant particulate deposition in electroless plating, and the product thereof
CN114293232B (en) Method for preparing tungsten dispersion strengthened copper composite material by electroforming
JPS6318096A (en) Method for coating metal to hyperfine powder
JPH0544083A (en) Elctroplating method for powder
JPS6146583B2 (en)
JPS6213440B2 (en)
US20030188974A1 (en) Homogeneous copper-tin alloy plating for enhancement of electro-migration resistance in interconnects
JP2005537393A (en) Corrosion-resistant component, method for manufacturing the component, and apparatus for carrying out the method
JPH07258859A (en) Bath for pretreatment of light metal, process therefor, and produced article