JP2672545B2 - Method for manufacturing silicon carbide honeycomb filter - Google Patents

Method for manufacturing silicon carbide honeycomb filter

Info

Publication number
JP2672545B2
JP2672545B2 JP1465188A JP1465188A JP2672545B2 JP 2672545 B2 JP2672545 B2 JP 2672545B2 JP 1465188 A JP1465188 A JP 1465188A JP 1465188 A JP1465188 A JP 1465188A JP 2672545 B2 JP2672545 B2 JP 2672545B2
Authority
JP
Japan
Prior art keywords
silicon carbide
honeycomb
weight
molded body
plug material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1465188A
Other languages
Japanese (ja)
Other versions
JPH01194916A (en
Inventor
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP1465188A priority Critical patent/JP2672545B2/en
Publication of JPH01194916A publication Critical patent/JPH01194916A/en
Application granted granted Critical
Publication of JP2672545B2 publication Critical patent/JP2672545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は炭化ケイ素質ハニカム状フィルターの製造方
法に関し、更に詳しくは、微粒子の捕集効率が極めて高
く、耐熱性・耐酸化性にも優れた炭化ケイ素質ハニカム
状フィルターの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a method for manufacturing a silicon carbide honeycomb filter, and more specifically, it has extremely high efficiency of collecting fine particles, heat resistance and acid resistance. The present invention relates to a method for manufacturing a silicon carbide honeycomb filter which is also excellent in chemical conversion property.

(従来の技術) 薄い隔壁を介して蜂の巣状に連なる無数の貫通孔を有
するハニカム状成形体の一方の端面を例えば縦横一つお
きに栓材を充填して封止し、この封止した貫通孔に隣接
している貫通孔の他端面に栓材を充填して封止した多孔
質隔壁からなるセラミック質のハニカム状フィルター
は、自動車のディーゼルエンジンを初めとして各種燃焼
機器の排ガス中に含まれる微粒子を捕集して浄化する排
ガス浄化装置として知られている。
(Prior Art) One end face of a honeycomb-shaped molded body having innumerable through-holes connected in a honeycomb shape through thin partition walls is filled with a plug material, for example, every other length and width, and sealed. Ceramic honeycomb filters consisting of porous partition walls filled with plug material on the other end surface of the through hole adjacent to the hole are contained in exhaust gas of various combustion equipment including automobile diesel engine. It is known as an exhaust gas purifying apparatus that collects and purifies fine particles.

かかるハニカム状フィルターは、従来は一般にコージ
ェライト,アルミナ,シリカ,ムライトといったセラミ
ック材により製造されていたが、これらの酸化物は融点
が1300〜1600℃と比較的低いため、これらの物質よりな
るハニカム状フィルターは、1000℃以上の高温条件下で
使用されると変形を生じたり、あるいは、ディーゼルエ
ンジンの排ガス中に含まれる炭素微粒子がフィルター内
で燃焼された場合に、熱伝導率が低い上記物質よりなる
ハニカム状フィルターは、フィルター内に局部的に蓄熱
が生じその部分が溶損してしまうという欠点がある。そ
こで、近時は、2300℃以上の高融点を有し熱的安定性に
極めて優れた炭化ケイ素を主成分として製造したハニカ
ム状フィルターが開発されている。
Conventionally, such a honeycomb filter is generally manufactured from a ceramic material such as cordierite, alumina, silica, or mullite. However, since the oxides of these oxides have a relatively low melting point of 1300 to 1600 ° C, a honeycomb formed of these materials is used. The filter is deformed when used under high temperature conditions of 1000 ° C or higher, or when the carbon fine particles contained in the exhaust gas of a diesel engine are combusted in the filter, the above-mentioned substances having low thermal conductivity The honeycomb filter having the above-mentioned structure has a drawback that heat is locally stored in the filter and the portion is melted and damaged. Therefore, recently, a honeycomb filter manufactured using silicon carbide as a main component, which has a high melting point of 2300 ° C. or more and has extremely excellent thermal stability, has been developed.

ところで、ハニカム状フィルターは、通常、いずれの
場合であってもハニカム状成形体の貫通孔の端部隔壁に
栓材が密着して目封止されていなければ、隔壁を通過し
ない排ガスがそのまま外部に流出してしまうことになる
フィルターとしての機能を損なうことになる。また、フ
ィルター内は、上記したように極めて高温であるため、
ハニカム状成形体のみでなく、当然、栓材も優れた耐熱
性が要求される。
By the way, in any case, the honeycomb filter is usually an exhaust gas that does not pass through the partition wall as it is unless the plug material is closely attached to the partition wall at the end of the through hole of the honeycomb molded body and plugged. It will impair the function as a filter that will be leaked to. Also, because the temperature inside the filter is extremely high as described above,
Not only the honeycomb-shaped molded body but also the plug material is naturally required to have excellent heat resistance.

従来、炭化ケイ素を主成分としたハニカム状成形体の
所定の貫通孔の端部に栓材を密着させる方法としては次
のような方法がある。
2. Description of the Related Art Conventionally, as a method for bringing a plug material into close contact with an end portion of a predetermined through-hole of a honeycomb formed body containing silicon carbide as a main component, there is the following method.

まず、第1の方法として、両者をガラスフリットのよ
うな低融点物質あるいは金属シリコン等を結合剤として
用いて密着させる方法、第2の方法としては、栓材を粗
大粒の炭化ケイ素粉末と微細な炭化ケイ素粉末とを混合
して成形した後、2000℃以上の高温で焼成して製造する
方法、あるいは、第3の方法として、特開昭48−39515
号公報で開示されている「炭化珪素粉に炭素粉を加え又
は加えずに炭素質バインダーを加えると共にこの炭素粉
及び焼成時に生成されるバインダーからの遊離炭素と反
応する理論量の珪素質粉を添加して形成し、しかる後こ
の成形体の炭素粉中で1900〜2400℃に加熱して成形体中
の炭素分を珪素化することを特徴とする均質多孔性再結
晶炭化珪素体の製造方法。」等が知られている。
First, as a first method, a low melting point substance such as glass frit or metallic silicon or the like is used as a binder to make them adhere to each other. As a second method, a plug material is made of coarse silicon carbide powder and fine particles. After mixing with another silicon carbide powder and molding the mixture, it is fired at a high temperature of 2000 ° C. or higher, or as a third method, it is disclosed in Japanese Patent Application Laid-Open No. 48-39515.
"A theoretical amount of silicon-based powder that reacts with free carbon from the carbon powder and the binder produced during firing is added with a carbon-based binder with or without addition of carbon powder to the silicon carbide powder. A method for producing a homogeneous porous recrystallized silicon carbide body, which comprises adding and forming, and then heating to 1900 to 2400 ° C. in the carbon powder of this molded body to siliconize the carbon content in the molded body. , Etc. are known.

(発明が解決しようとする課題) しかしながら、第1の方法の場合には、ガラスフリッ
トや金属シリコンは融点が1400℃程度と低いため、フィ
ルター内がそれより高温になると溶融してしまい、栓材
と隔壁との密着性が損なわれ、その結果フィルター全体
としての耐熱性が劣ると共に、微粒子捕集効率が低下し
てしまうという問題がある。
(Problems to be Solved by the Invention) However, in the case of the first method, since the melting point of glass frit and metallic silicon is as low as about 1400 ° C., they melt when the temperature inside the filter becomes higher than that, and the plug material is melted. There is a problem that the adhesion between the filter and the partition walls is impaired, and as a result, the heat resistance of the entire filter is deteriorated and the efficiency of collecting fine particles is reduced.

第2の方法の場合には、粗大粒子を使っているため、
焼成時のハニカム状成形体の収縮量よりも栓材の収縮量
の方が大きくなり、貫通孔を構成している隔壁との間に
隙間を生じ微粒子の捕集効率が劣ってしまうという問題
がある。
In the case of the second method, since coarse particles are used,
The amount of shrinkage of the plug material is larger than the amount of shrinkage of the honeycomb formed body during firing, which causes a gap between the plug and the partition wall constituting the through-hole, and the efficiency of collecting fine particles is deteriorated. is there.

第3の方法の場合には、多孔性の再結晶炭化珪素体を
成形体の栓材として使用しているので、珪素化の際に隔
壁の一部が珪素化されてしまい多孔性が損なわれ、その
結果フィルターとしての機能が低下してしまうという問
題がある。
In the case of the third method, since a porous recrystallized silicon carbide body is used as a plug for the molded body, a part of the partition walls is siliconized during the siliconization, and the porosity is impaired. As a result, there is a problem that the function as a filter is reduced.

本発明は、上記した問題点を解消し、ハニカム状成形
体の貫通孔の端部隔壁に栓材を緊密に密着させることに
より微粒子の捕集効率が極めて高く、しかも耐熱性・耐
酸化性にも優れた炭化ケイ素質ハニカム状フィルターの
製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems, and by closely adhering the plug material to the end partition walls of the through holes of the honeycomb-shaped molded body, the collection efficiency of the fine particles is extremely high, and further the heat resistance and the oxidation resistance are high. Another object of the present invention is to provide an excellent method for manufacturing a silicon carbide honeycomb filter.

[発明の構成] (課題を解決するための手段) 本発明者は、上記目的を達成するため鋭意研究を重ね
た結果、ハニカム状成形体と栓材とを同時に焼結し、両
者の焼結時における膨張量あるいは収縮量に差を設ける
ことによりきわめて緊密に両者を接合することができ、
しかも耐熱性・耐酸化性に優れた炭化ケイ素質ハニカム
状フィルターを得ることができることを見出し本発明を
完成するに到った。
[Structure of the Invention] (Means for Solving the Problems) The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, simultaneously sinter the honeycomb-shaped molded body and the plug material, and sinter the both. By providing a difference in the amount of expansion or contraction at the time, it is possible to join the two extremely tightly,
Moreover, they have found that a silicon carbide honeycomb filter having excellent heat resistance and oxidation resistance can be obtained, and completed the present invention.

すなわち、本発明の炭化ケイ素質ハニカム状フィルタ
ーの製造方法は、平均粒径が1〜200μmの炭化ケイ素
粉末を主体とする出発原料を成形しハニカム状成形体を
得る第1工程;前記ハニカム状成形体の所定の貫通孔の
端部を、平均粒径が5μm以下で、かつ、粒径1μm以
下の粒子が少なくとも30重量%含まれている炭化ケイ素
粉末を主体とする出発原料からなる栓材により目封止す
る第2工程;前記目封止したハニカム状成形体を非酸化
性雰囲気中で焼結せしめる第3工程;とからなることを
特徴とする。
That is, in the method for manufacturing a silicon carbide honeycomb filter of the present invention, the first step of molding a starting material mainly composed of silicon carbide powder having an average particle size of 1 to 200 μm to obtain a honeycomb molded body; the honeycomb molding The end of the predetermined through-hole of the body is made of a plug material composed of a starting material mainly composed of silicon carbide powder having an average particle size of 5 μm or less and containing at least 30% by weight of particles having a particle size of 1 μm or less. The second step of plugging; the third step of sintering the plugged honeycomb-shaped molded body in a non-oxidizing atmosphere;

まず、第1工程におけるハニカム状成形体の出発原料
の平均粒径は1〜200μmであることが必要である。こ
れは、1μmより小さい場合には、高い強度の焼結体を
得ることができるが、焼結の際における粒成長が著し
く、フィルターの目開きを所定の値に制御することが困
難であるからであり、200μmより大きい場合には、粒
子相互の結合箇所が少なくハニカム状成形体の機械的強
度が低くなるからである。また、前記炭化ケイ素粉末に
は、平均粒径の±20%以内の粉末が60重量%以上存在す
るような粒度分布を有するものが有利である。
First, the average particle size of the starting material of the honeycomb-shaped molded body in the first step needs to be 1 to 200 μm. If it is less than 1 μm, a high-strength sintered body can be obtained, but grain growth during sintering is remarkable and it is difficult to control the aperture of the filter to a predetermined value. This is because when the particle size is larger than 200 μm, the number of bonding points between the particles is small and the mechanical strength of the honeycomb-shaped molded body becomes low. Further, it is advantageous that the above-mentioned silicon carbide powder has a particle size distribution such that 60% by weight or more of powder within ± 20% of the average particle size exists.

なお、炭化ケイ素の結晶系にはα型,β型及び非晶質
のものがあるが、そのいずれか、またはそれらの混合物
のいずれを使用してもよい。なかでも、β型のものは、
微粉末状で取得し易く、特に5μm以下のものを好適に
取得することができ、しかも比較的低温で合成される低
温安定型結晶であり、焼結に際し、その一部が4H,6Hあ
るいは15R型等の高温安定型のα型結晶に相転移して板
状結晶を形成し易く、また結晶の成長性にも優れている
から有利である。特に60重量%以上がβ型炭化ケイ素か
らなる出発原料を用いることにより本発明の目的とする
多孔質体を好適に製造することができる。なかでも、70
重量%以上のβ型炭化ケイ素を含有する出発原料を使用
することが特に有利である。
Note that there are α-type, β-type, and amorphous silicon carbide crystal systems, and any one of them or a mixture thereof may be used. Above all, β-type
It is easy to obtain in the form of a fine powder, in particular, it can be suitably obtained in a size of 5 μm or less, and is a low-temperature stable type crystal synthesized at a relatively low temperature. During sintering, a part thereof is 4H, 6H or 15R. This is advantageous because it easily undergoes a phase transition to a high-temperature stable type α-type crystal such as a type to form a plate-like crystal and has excellent crystal growth properties. In particular, by using a starting material in which 60% by weight or more of β-type silicon carbide is used, the porous body aimed at by the present invention can be suitably produced. Above all, 70
It is particularly advantageous to use a starting material containing more than 3% by weight of beta silicon carbide.

また、炭化ケイ素を主体とする出発原料に含まれる不
純物であるAl元素,B元素及びFe元素の含有率は、Al元
素,B元素及びFe元素の含有率の合計が1重量%以下で、
遊離炭素の含有率が5重量%以下であることが好まし
い。その理由は、Al,B,Feの各元素は成形体焼結時に、
炭化ケイ素中に含まれる炭素、あるいは熱分解により分
解して存在する炭素と反応すると成形体を収縮せしめる
性質を有するので、あまり多量に含まれると焼結時に成
形体が著しく収縮してしまうからである。また、Al,B,F
eの各元素は、焼結の際に炭化ケイ素結晶内に固溶され
易いので、これらの元素が多量に含まれている場合、フ
ィルターを特に高温の酸素雰囲気中で使用するとSiCがS
iC2となり、さらにこのSiO2と上記元素の酸素化合物と
が溶け合って低融点ガラスを生じ、その結果フィルター
の耐酸化性が低下するからである。
Further, the content rate of Al element, B element and Fe element which are impurities contained in the starting material mainly composed of silicon carbide is such that the total content rate of Al element, B element and Fe element is 1% by weight or less,
The free carbon content is preferably 5% by weight or less. The reason is that each element of Al, B, Fe is
Since it has the property of shrinking the molded body when it reacts with the carbon contained in silicon carbide or the carbon that is present by being decomposed by thermal decomposition, if it is contained in a too large amount, the molded body will contract significantly during sintering. is there. Also, Al, B, F
Since each element of e is easily dissolved in the silicon carbide crystal during sintering, when a large amount of these elements is contained, when the filter is used especially in a high temperature oxygen atmosphere, SiC is
This is because it becomes iC 2 , and this SiO 2 and the oxygen compound of the above elements melt to form a low-melting point glass, and as a result, the oxidation resistance of the filter decreases.

しかしながら、Al,B,Feの各元素の含有率をハニカム
状成形体よりも栓材の方が少なくなるようにすれば、上
記膨張作用と相俟ってハニカム状成形体の膨張量を栓材
の膨張量よりもより抑えることができるか、あるいは、
転じて栓材の収縮量がハニカム状成形体の収縮量よりも
小さくなるので、栓材をハニカム状成形体の貫通孔端部
に密着させることができる。
However, if the content of each element of Al, B, Fe in the plug material is made smaller than that in the honeycomb-shaped molded body, the expansion amount of the honeycomb-shaped molded body can be adjusted in combination with the expansion action. Can be suppressed more than the amount of expansion of
Since the shrinkage amount of the plug material is smaller than that of the honeycomb-shaped molded body, the plug material can be closely attached to the end portion of the through-hole of the honeycomb-shaped molded body.

したがって、ハニカム状成形体中の不純物の含有率
は、好ましくは、Alが0.8重量%以下、Bが0.3重量%以
下、Feが0.8重量%以下で、かつそれらの合計が1重量
%以下、さらに好ましくは、Alが0.5重量%以下、Bが
0.2重量%以下、Feが0.6重量%以下で、かつそれらの合
計が1重量%以下で、また、遊離炭素の含有量は5重量
%以下が好ましい。
Therefore, the content ratio of impurities in the honeycomb-shaped molded body is preferably 0.8% by weight or less for Al, 0.3% by weight or less for B, 0.8% by weight or less for Fe, and their total is 1% by weight or less, and Preferably, Al is 0.5% by weight or less, and B is
It is preferable that the content is 0.2% by weight or less, Fe is 0.6% by weight or less, the total amount thereof is 1% by weight or less, and the content of free carbon is 5% by weight or less.

そして、例えば、アルミニウム、ホウ素、鉄、炭素等
の結晶成長助剤を必要により添加した後、メチルセルロ
ース、ポリビニルアルコール、水ガラス等の成形用結合
剤を添加し、押出し成形、シート成形、プレス成形等の
方法によりハニカム状の成形体を得る。
Then, for example, after adding a crystal growth aid such as aluminum, boron, iron, and carbon as necessary, a molding binder such as methyl cellulose, polyvinyl alcohol, and water glass is added, and extrusion molding, sheet molding, press molding, and the like are performed. To obtain a honeycomb-shaped formed body.

次に第2工程において栓材を得るための出発原料とし
て用いる炭化ケイ素粉末の平均粒径は、5μm以下であ
ることが好ましい。出発原料の平均粒径はそれが小さい
ほど焼結時の粒成長を促進せしめるから、出発原料たる
炭化ケイ素粉末の平均粒径をハニカム状成形体のそれよ
りも栓材の方を小さくすれば、焼結時に、栓材の膨張量
をハニカム状成形体の膨張量よりもより大きくすること
ができ、あるいは、転じてAl,B,Feの各元素の作用と相
俟って栓材の収縮量をハニカム状成形体の収縮量よりも
小さくすることができるからである。
Next, in the second step, the average particle size of the silicon carbide powder used as a starting material for obtaining the plug material is preferably 5 μm or less. The smaller the average particle size of the starting material is, the smaller the average particle size of the starting material is, so that the particle size of the starting material silicon carbide powder is made smaller than that of the honeycomb formed body. At the time of sintering, the expansion amount of the plug material can be made larger than that of the honeycomb-shaped compact, or in turn, the contraction amount of the plug material can be combined with the action of each element of Al, B, Fe. This is because the shrinkage amount can be smaller than the shrinkage amount of the honeycomb formed body.

また、前記炭化ケイ素粉末には、1μm以下の粒子が
少なくとも30重量%以上含まれていることが好ましい。
その理由は、焼結時に成形体を膨張させるには結晶の粗
大化が不可欠であるが、結晶の粗大化は、結晶の一部の
粒子が粗大化する結晶の核となり、その周囲の微細粒子
を吸収して生じるものであるからである。したがって、
微細粒子が少ないと結晶の成長量が少なくなるので、少
なくとも30重量%以上、さらには50重量%以上含まれて
いることが好ましい。
Further, it is preferable that the silicon carbide powder contains at least 30% by weight of particles of 1 μm or less.
The reason is that the crystal coarsening is indispensable for expanding the compact during sintering, but the crystal coarsening becomes a nucleus of the crystal in which some particles of the crystal become coarse, and the fine particles around it become fine. This is because it is generated by absorbing. Therefore,
If the amount of fine particles is small, the amount of crystal growth will be small. Therefore, it is preferable that the content of the fine particles is at least 30% by weight or more, more preferably 50% by weight or more.

さらに、不純物の各組成は、Alが0.8重量%以下、B
が0.3重量%以下、Feが0.8重量%以下、かつ、それらの
含有率の合計が1重量%以下で、さらに上記ハニカム状
成形体に含有されるこれらの元素よりも少ないことが好
ましく、Alは0.3〜0.8重量%、Bは0.05〜0.3重量%、F
eは0.4〜0.8重量%の範囲の差を有していることがより
好ましい。また遊離炭素の含有率は5重量%以下である
ことが好ましい。上記した如く、このような組成とする
ことにより焼結時における栓材の膨張量をハニカム状成
形体の膨張量よりも大きくできるか、栓材の収縮量をハ
ニカム状成形体の収縮量よりも小さくすることができる
からである。
Furthermore, each composition of impurities is such that Al is 0.8% by weight or less, B
Is 0.3% by weight or less, Fe is 0.8% by weight or less, and the total content of them is 1% by weight or less, and it is preferable that the content of Fe is less than these elements contained in the honeycomb formed body. 0.3-0.8% by weight, B is 0.05-0.3% by weight, F
More preferably, e has a difference in the range 0.4 to 0.8% by weight. The content of free carbon is preferably 5% by weight or less. As described above, with such a composition, the expansion amount of the plug material at the time of sintering can be made larger than the expansion amount of the honeycomb formed body, or the contraction amount of the plug material can be made larger than the contraction amount of the honeycomb formed body. This is because it can be made smaller.

なお、この場合にβ型炭化ケイ素からなる出発原料を
用いることが好ましいことは上記ハニカム状成形体と同
様である。
In this case, it is preferable to use a starting material composed of β-type silicon carbide as in the case of the above-mentioned honeycomb formed body.

そして、この栓材を上記ハニカム状成形体の所定の貫
通孔の端部に、ハニカム状成形体の端部を前記栓材の組
成を有するスラリー中に浸漬させたり、前記栓材を可塑
剤を有するシート状に加工した後圧入するなどして埋め
込む。
And, this plug material, at the end of a predetermined through hole of the honeycomb formed body, the end of the honeycomb formed body is immersed in a slurry having the composition of the plug material, or the plug material is a plasticizer. After being processed into a sheet-like shape, it is embedded by press fitting or the like.

なお、上記したハニカム状成形体と栓材は、この段階
で炭化ケイ素成分が両者とも、少なくとも40容量%以上
占めていることが好ましい。その理由は、40容量%より
小さいと強度的に優れたハニカム状フィルターを得るこ
とが困難になるからである。ハニカム状成形体と栓材と
を十分に密着させるためにハニカム状成形体よりも栓材
の炭化ケイ素の占める割合を大きくすることが好まし
い。
In addition, it is preferable that both the silicon carbide component and the plug material occupy at least 40% by volume or more at this stage. The reason is that if it is less than 40% by volume, it becomes difficult to obtain a honeycomb-shaped filter excellent in strength. In order to sufficiently bring the honeycomb-shaped molded body and the plug material into close contact with each other, it is preferable to make the proportion of silicon carbide in the plug material larger than that of the honeycomb-shaped molded body.

次に、第3工程として、かくして栓材により目封止さ
れたハニカム状の生成形体を耐熱性の容器に入れて非酸
化性雰囲気中で焼結する。
Next, as a third step, the honeycomb formed body thus plugged with the plug is placed in a heat-resistant container and sintered in a non-oxidizing atmosphere.

耐熱性の容器に入れて非酸化性雰囲気中で焼結するの
は、炭化ケイ素粒子間における炭化ケイ素の蒸発−再凝
縮および/または表面拡散による移動を促進させること
ができ、その結果、炭化ケイ素粒子の成長が促進される
からである。
Sintering in a non-oxidizing atmosphere in a heat-resistant container can promote evaporation-recondensation and / or surface diffusion transfer of silicon carbide between silicon carbide particles, and, as a result, silicon carbide. This is because the growth of particles is promoted.

生成形体を焼結するための耐熱性容器としては、黒
鉛,炭化ケイ素,酸素ジルコニウム,炭化タングステ
ン,炭化チタン,酸化マグネシウム,炭化モリブデン,
モリブデン,炭化タンタル,タンタル,炭化ジルコニウ
ム,黒鉛−炭化ケイ素複合体の中から選ばれるいずれか
1種からなる容器を使用することができる。これらの容
器は後述する焼結温度範囲内で溶融することがなく、ま
た、炭化ケイ素粒子の蒸気および/または分解生成物の
系外への漏出を抑制できるからである。
As a heat resistant container for sintering the green body, graphite, silicon carbide, zirconium oxygen, tungsten carbide, titanium carbide, magnesium oxide, molybdenum carbide,
A container made of any one selected from molybdenum, tantalum carbide, tantalum, zirconium carbide, and a graphite-silicon carbide composite can be used. This is because these containers do not melt within the sintering temperature range described later, and can suppress the leakage of vapor and / or decomposition products of silicon carbide particles out of the system.

焼結温度は2000〜2500℃とすることが好ましい。その
理由は、2000℃未満の場合には、粒子の成長が不十分で
焼結が不完全となり、高強度の焼結体を得ることが困難
になるためである。一方、2500℃を超えると、炭化ケイ
素の結晶昇華分解が盛んになり、発達した結晶が逆にや
せ細ってしまい、高強度の焼結体を得ることが困難であ
るからである。なかでも、2050〜2300℃の範囲で焼結す
ることがより好ましい。
The sintering temperature is preferably from 2000 to 2500C. The reason is that when the temperature is lower than 2000 ° C., the growth of particles is insufficient and sintering is incomplete, and it becomes difficult to obtain a high-strength sintered body. On the other hand, when the temperature exceeds 2500 ° C., the sublimation decomposition of silicon carbide crystal becomes active, and the developed crystal becomes thinner on the contrary, and it is difficult to obtain a high-strength sintered body. Of these, sintering in the range of 2050 to 2300 ° C. is more preferable.

(実施例) 実施例1 ハニカム状成形体の出発原料として使用した炭化ケイ
素粉末は、96重量%がβ型結晶からなる炭化ケイ素であ
り、平均粒径が25μmで、かつ、平均粒径の±20%以内
の炭化ケイ素粉末が約70重量%存在しており、遊離炭素
が0.30重量%,鉄が0.03重量%,アルミニウムが0.04重
量%,ホウ素が0.01重量%含まれている。この原料100
重量部に対し、メチルセルロース10重量部、水15重量部
を配合し、ニーダー中で5時間混合した。この混合物を
適量採取し、ハニカムダイスによる押出成形法によりφ
150mm,貫通孔が1.5mm×1.5mmの正方形で、隔壁の壁厚が
0.5mmのハニカム状成形体を得た。なおこのハニカム状
成形体用の炭化ケイ素の占める割合は55容量%であっ
た。
(Example) Example 1 The silicon carbide powder used as a starting material for the honeycomb formed body was 96% by weight of silicon carbide composed of β-type crystals, had an average particle size of 25 µm, and had an average particle size of ± About 70% by weight of silicon carbide powder is contained within 20%, and 0.30% by weight of free carbon, 0.03% by weight of iron, 0.04% by weight of aluminum and 0.01% by weight of boron are contained. This raw material 100
10 parts by weight of methyl cellulose and 15 parts by weight of water were mixed with the parts by weight, and mixed in a kneader for 5 hours. An appropriate amount of this mixture is sampled and φ is obtained by extrusion molding method using a honeycomb die.
150mm, the through hole is a square of 1.5mm × 1.5mm, and the wall thickness of the partition wall is
A honeycomb-shaped molded body of 0.5 mm was obtained. The ratio of silicon carbide for the honeycomb-shaped molded body was 55% by volume.

一方、栓材は、出発原料として97重量%がβ型結晶か
らなる炭化ケイ素粉末で、平均粒径が0.25μm、1μm
以下の粒子の含有量が95重量%、遊離炭素が0.28重量
%、鉄が0.04重量%、アルミニウムが0.03重量%,ホウ
素が0.01重量%である炭化ケイ素粉末100重量部にメチ
ルセルロース5重量部,水20重量部を配合し、ニーダー
で25時間混合した。この混合物を、1mm×150mmの押出ダ
イスにより平板を得て、これを前記ハニカム状成形体の
端面の所定の場所に埋め込んで、貫通孔の一端を封止し
た。なおこの栓材用の成形体の炭化ケイ素の占める割合
は56容量%であった。
On the other hand, the plug material is silicon carbide powder consisting of 97% by weight of β-type crystals as a starting material, and has an average particle size of 0.25 μm and 1 μm.
Content of the following particles is 95% by weight, free carbon 0.28% by weight, iron 0.04% by weight, aluminum 0.03% by weight, boron 0.01% by weight 100 parts by weight of silicon carbide powder to 5 parts by weight of methyl cellulose, water 20 parts by weight were blended and mixed in a kneader for 25 hours. The mixture was used to obtain a flat plate with a 1 mm × 150 mm extrusion die, which was buried in a predetermined location on the end face of the honeycomb formed body, and one end of the through hole was sealed. The proportion of silicon carbide in the molded body for the plug material was 56% by volume.

この生成形体を黒鉛製ルツボに装入し、タンマン型焼
成炉を使用して、1気圧の主としてアルゴンガス雰囲気
中で焼成した。
This green compact was placed in a graphite crucible and fired in a Tamman-type firing furnace at 1 atm mainly in an argon gas atmosphere.

昇温過程は、昇温速度400℃/時間で1700℃まで昇温
し、次いで昇温速度30℃/時間で最高温度2250℃まで昇
温し最高温度で4時間保持した。
In the heating process, the temperature was raised to 1700 ° C. at a heating rate of 400 ° C./hour, then to a maximum temperature of 2250 ° C. at a heating rate of 30 ° C./hour, and maintained at the maximum temperature for 4 hours.

得られたハニカム状フィルターには、アルミニウムが
0.03重量%、鉄が0.03重量%、ホウ素が0.001重量%以
下含有されており、また遊離炭素は0.40重量%であっ
た。
The resulting honeycomb filter contains aluminum
It contained 0.03% by weight, 0.03% by weight of iron, 0.001% by weight or less of boron, and 0.40% by weight of free carbon.

このハニカム状フィルターを1400℃、空気量5/min
の酸化炉で加熱したところ、その100時間後の酸化増量
は4.0%であり、外観に変化はなく、すぐれた耐酸化性
を有していた。
This honeycomb filter is 1400 ℃, air flow 5 / min
When heated in the oxidation furnace of No. 3, the increase in oxidation after 100 hours was 4.0%, the appearance was not changed, and the product had excellent oxidation resistance.

また、前記封止された端面を水中にて空気で加圧した
ところ、ハニカム状成形体の隔壁の通気が0.3気圧より
起るのに対し、隔壁と栓材との接合部からのリークは0.
50気圧から生じ、すぐれた気密性を有していた。
Further, when the sealed end surface was pressurized with air in water, ventilation of the partition wall of the honeycomb-shaped molded body occurred at 0.3 atm, whereas leakage from the joint between the partition wall and the plug material was 0. .
It originated from 50 atm and had excellent airtightness.

実施例2 ハニカム状成形体の出発原料として、94重量%がβ型
結晶からなる炭化ケイ素であり、平均粒径が8.5μm
で、かつ、平均粒径の±20%以内の炭化ケイ素粉末が約
70重量%存在しており、遊離炭素が0.29重量%,鉄が0.
04重量%,アルミニウムが0.03重量%,ホウ素が痕跡量
含まてている炭化ケイ素粉末を実施例1と同様にハニカ
ムダイスによって押出し、実施例1と同様の形状を有す
るハニカム状成形体を得た。なおこのハニカム状成形体
用の炭化ケイ素の占める割合は56容量%であった。
Example 2 As a starting material for a honeycomb formed body, 94% by weight was silicon carbide composed of β-type crystals and had an average particle size of 8.5 μm.
And silicon carbide powder within ± 20% of the average particle size
70% by weight is present, 0.29% by weight of free carbon and 0.
A silicon carbide powder containing 04% by weight, 0.03% by weight of aluminum and a trace amount of boron was extruded by a honeycomb die in the same manner as in Example 1 to obtain a honeycomb-shaped molded body having the same shape as in Example 1. The proportion of silicon carbide for the honeycomb formed body was 56% by volume.

一方、栓材は、出発原料として96重量%がβ型結晶か
らなる炭化ケイ素であり、平均粒径0.25μm、1μm以
下の粒子の含有量が95重量%、遊離炭素が0.28重量%,
鉄が0.04重量%,アルミニウムが0.03重量%,ホウ素が
0.01重量%である炭化ケイ素粉末100重量部にメチルセ
ルロース5重量部,水20重量部を配合し、ニーダーで25
時間混合した。この混合物を、1mm×150mmの押出ダイス
により平板を得て、これを前記ハニカム状の生成形体の
端面の所定の場所に埋め込んで、貫通孔の一端を封止し
た。なおこの栓材用の成形体の炭化ケイ素の占める割合
は56容量%であった。
On the other hand, the plug material is silicon carbide of which 96% by weight is a β-type crystal as a starting material, the content of particles having an average particle size of 0.25 μm, 1 μm or less is 95% by weight, free carbon is 0.28% by weight,
0.04 wt% iron, 0.03 wt% aluminum, boron
100 parts by weight of silicon carbide powder of 0.01% by weight is mixed with 5 parts by weight of methylcellulose and 20 parts by weight of water.
Mix for hours. A flat plate of this mixture was obtained with an extrusion die of 1 mm × 150 mm, and the flat plate was embedded in a predetermined place on the end face of the honeycomb-shaped green molded body to seal one end of the through hole. The proportion of silicon carbide in the molded body for the plug material was 56% by volume.

しかる後、これを黒鉛製ルツボに装入し、タンマン型
焼成炉を使用して1気圧の主としてアルゴンガス雰囲気
中で焼成した。
Thereafter, this was charged into a graphite crucible and fired in a argon atmosphere at 1 atm using a tanman firing furnace.

昇温過程は、昇温速度400℃/時間で1700℃まで昇温
し、次いで昇温速度30℃/時間で最高温度2250℃まで昇
温し最高温度で4時間保持した。
In the heating process, the temperature was raised to 1700 ° C. at a heating rate of 400 ° C./hour, then to a maximum temperature of 2250 ° C. at a heating rate of 30 ° C./hour, and maintained at the maximum temperature for 4 hours.

実施例1と同様にこのハニカム状フィルターを評価し
たところ、耐酸化性は4.2%で、隔壁の通気が0.35気圧
に対し接合部のリークは0.60気圧であった。
When this honeycomb filter was evaluated in the same manner as in Example 1, the oxidation resistance was 4.2%, the ventilation of the partition walls was 0.35 atm, and the leak at the joint was 0.60 atm.

実施例3〜5,比較例1〜5 実施例2と同様であるが、栓材の出発原料として平均
粒径が0.32μmで、1μm以下の粒子の含有量を60重量
%とし、さらに栓材の炭化ケイ素含有率が57容量%で、
アルミニウム,鉄,ホウ素が表に示した如き含有率であ
る炭化ケイ素粉末を使用した場合(実施例3)、ハニカ
ム状成形体の出発原料として平均粒径8.6μmのものを
使用し、成形体の炭化ケイ素含有率を46容量%とした場
合(実施例4)、ハニカム状成形体および栓材の出発原
料として、アルミニウム,鉄,ホウ素が表に示した如き
含有率である炭化ケイ素粉末を使用した場合(実施例
5)、実施例2と同様であるが、栓材の出発原料として
平均粒径が4.3μmで、1μm以下の粒子の含有量が12
重量%、炭化ケイ素含有率、アルミニウム,鉄,ホウ
素,遊離炭素の含有率がそれぞれ表に示した如くの値で
ある炭化ケイ素粉末を使用した場合(比較例1)、ハニ
カム状成形体の出発原料として、成形体の炭化ケイ素含
有率を更に少なくした場合(比較例2)、焼結温度を18
00℃とした場合(比較例3)、焼結温度を2550℃とした
場合(比較例4)、実施例5のハニカム状成形体および
栓材の出発原料を、ハニカム状成形体に使用した原料を
栓材の出発原料として、栓材に使用した原料をハニカム
状成形体の出発原料として取り替えて使用した場合(比
較例5)のハニカム状フィルターの特性を表にまとめて
示した。
Examples 3-5, Comparative Examples 1-5 The same as Example 2, except that the starting material of the plug material has an average particle size of 0.32 μm and the content of particles of 1 μm or less is 60% by weight. Has a silicon carbide content of 57% by volume,
When a silicon carbide powder having the contents of aluminum, iron and boron shown in the table is used (Example 3), a honeycomb-shaped molded body having a mean particle size of 8.6 μm is used as a starting material, and When the silicon carbide content was 46% by volume (Example 4), a silicon carbide powder having a content of aluminum, iron, and boron as shown in the table was used as a starting material for the honeycomb formed body and the plug material. In the case (Example 5), the same as in Example 2, except that the starting material of the plug material has an average particle size of 4.3 μm and a content of particles of 1 μm or less is 12
When using silicon carbide powder having a weight%, a silicon carbide content, and the contents of aluminum, iron, boron, and free carbon as shown in the table (Comparative Example 1), a starting material for a honeycomb-shaped molded body As a result, when the silicon carbide content of the compact was further reduced (Comparative Example 2), the sintering temperature was 18
When the temperature was set to 00 ° C. (Comparative Example 3) and the sintering temperature was set to 2550 ° C. (Comparative Example 4), the starting materials for the honeycomb-shaped molded body and the plug material of Example 5 were used for the honeycomb-shaped molded body. As a starting material for the plug material, the properties of the honeycomb filter in the case where the raw material used for the plug material was used by replacing it as the starting material for the honeycomb formed body (Comparative Example 5) are shown in the table.

表より明らかなように、本発明のハニカム状フィルタ
ーは、「1400℃における酸化増量」が所期水準にあり実
用上の耐酸化性を満足するものであると共に、クラック
を生じるなどの外観変化がなく、また「ハニカム状成形
体隔壁の通気圧力」が「該隔壁と栓材の接合部の通気圧
力」より小であることより所要の気密性を備えており、
ハニカム状フィルターとして優れたものである。
As is clear from the table, the honeycomb filter of the present invention has a "oxidation weight increase at 1400 ° C" which is at a desired level and satisfies practical oxidation resistance, and changes in appearance such as generation of cracks. Moreover, the "air pressure of the honeycomb formed body partition wall" has a required airtightness because it is smaller than the "air pressure of the joint portion between the partition wall and the plug material".
It is an excellent honeycomb filter.

[発明の効果] 本発明のハニカム状フィルターは、ハニカム状成形体
と栓材とあいだで焼結時の膨張量または収縮量が異なる
ため、栓材をハニカム状成形体の貫通孔の隔壁に密着さ
せることができ、優れた気密性を有している。したがっ
て、隔壁を通過しない排ガス等の流出物がそのまま外部
に流出することがなく微粒子の捕集効率が極めて高い。
[Advantages of the Invention] In the honeycomb filter of the present invention, since the expansion amount or the contraction amount at the time of sintering is different between the honeycomb formed body and the plug material, the plug material adheres to the partition walls of the through holes of the honeycomb formed body. It has excellent airtightness. Therefore, the effluent such as exhaust gas that does not pass through the partition does not flow to the outside as it is, and the collection efficiency of the fine particles is extremely high.

また、不純物の含有量が少ないため耐酸化性にも優
れ、しかも結合剤を用いることなく両者を接合させてい
るので耐熱性にも優れている。
Further, since the content of impurities is small, it has excellent oxidation resistance, and since both are joined without using a binder, the heat resistance is also excellent.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均粒径が1〜200μmの炭化ケイ素粉末
を主体とする出発原料を成形しハニカム状成形体を得る
第1工程; 前記ハニカム状成形体の所定の貫通孔の端部を、平均粒
径が5μm以下で、かつ、粒径1μm以下の粒子が少な
くとも30重量%含まれている炭化ケイ素粉末を主体とす
る出発原料からなる栓材により目封止する第2工程; 前記目封止したハニカム状成形体を非酸化性雰囲気中で
焼結せしめる第3工程; とからなり、且つ該ハニカム状成形体及び該栓材中に炭
化ケイ素が少なくとも40重量%含まれており、更に該第
3工程における焼結が2000〜2500℃の温度で行われるこ
とを特徴とする炭化ケイ素質ハニカム状フィルターの製
造方法。
1. A first step of molding a starting material mainly composed of silicon carbide powder having an average particle diameter of 1 to 200 μm to obtain a honeycomb-shaped molded body; an end portion of a predetermined through hole of the honeycomb-shaped molded body, Second step of plugging with a plug material composed of a starting material mainly composed of silicon carbide powder having an average particle size of 5 μm or less and at least 30% by weight of particles having a particle size of 1 μm or less; A third step of sintering the stopped honeycomb-shaped molded body in a non-oxidizing atmosphere; and wherein the honeycomb-shaped molded body and the plug material contain at least 40% by weight of silicon carbide, and A method for manufacturing a silicon carbide honeycomb filter, wherein the sintering in the third step is performed at a temperature of 2000 to 2500 ° C.
JP1465188A 1988-01-27 1988-01-27 Method for manufacturing silicon carbide honeycomb filter Expired - Lifetime JP2672545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1465188A JP2672545B2 (en) 1988-01-27 1988-01-27 Method for manufacturing silicon carbide honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1465188A JP2672545B2 (en) 1988-01-27 1988-01-27 Method for manufacturing silicon carbide honeycomb filter

Publications (2)

Publication Number Publication Date
JPH01194916A JPH01194916A (en) 1989-08-04
JP2672545B2 true JP2672545B2 (en) 1997-11-05

Family

ID=11867108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1465188A Expired - Lifetime JP2672545B2 (en) 1988-01-27 1988-01-27 Method for manufacturing silicon carbide honeycomb filter

Country Status (1)

Country Link
JP (1) JP2672545B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60032392T2 (en) 1999-09-29 2007-10-11 Ibiden Co., Ltd., Ogaki Honeycomb filter and arrangement of ceramic filters
JP2006061909A (en) * 1999-09-29 2006-03-09 Ibiden Co Ltd Ceramic filter assembly
JP5185616B2 (en) * 2005-03-10 2013-04-17 日本碍子株式会社 Honeycomb structure
WO2007037222A1 (en) * 2005-09-28 2007-04-05 Ibiden Co., Ltd. Honeycomb filter
JP2021037485A (en) * 2019-09-04 2021-03-11 イビデン株式会社 Honeycomb filter and manufacturing method for honeycomb filter
CN114634354B (en) * 2022-03-15 2023-04-25 深圳市基克纳科技有限公司 Method for improving comprehensive performance stability of porous ceramic atomizing core

Also Published As

Publication number Publication date
JPH01194916A (en) 1989-08-04

Similar Documents

Publication Publication Date Title
JP4136319B2 (en) Honeycomb structure and manufacturing method thereof
US6815038B2 (en) Honeycomb structure
CA2362763C (en) Honeycomb structure and process for production thereof
EP1493724B1 (en) Porous material and method for production thereof
EP1558545B1 (en) Aluminum titanate-based ceramic article
US7341970B2 (en) Low thermal expansion articles
US6746748B2 (en) Honeycomb structure and process for production thereof
EP1680206A1 (en) Ceramic body based on aluminum titanate
TW200305452A (en) Composite cordierite filters
JPWO2012105478A1 (en) Silicon carbide-based material, honeycomb structure, and electrically heated catalyst carrier
EP2067756B1 (en) Silicon carbide based porous material and method for preparation thereof
JP2672545B2 (en) Method for manufacturing silicon carbide honeycomb filter
WO2002038513A1 (en) Pollucite-based ceramic with low cte
JP2634612B2 (en) Silicon carbide honeycomb filter and method for producing the same
KR100369210B1 (en) Porous Ceramic Heating Element, Its Preparation and Exhaust Gas Filter Using Same
JP4381011B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP3689408B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP2004002130A (en) Ceramic porous body and its forming process
US20080110147A1 (en) Low thermal expansion articles
JP2004277193A (en) Molded honeycomb body and silicon carbide honeycomb structure yielded therefrom

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080711

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080711