JP2657018B2 - Optical Connector Return Loss Measurement System - Google Patents

Optical Connector Return Loss Measurement System

Info

Publication number
JP2657018B2
JP2657018B2 JP34080591A JP34080591A JP2657018B2 JP 2657018 B2 JP2657018 B2 JP 2657018B2 JP 34080591 A JP34080591 A JP 34080591A JP 34080591 A JP34080591 A JP 34080591A JP 2657018 B2 JP2657018 B2 JP 2657018B2
Authority
JP
Japan
Prior art keywords
optical
light
optical connector
optical fiber
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34080591A
Other languages
Japanese (ja)
Other versions
JPH05172694A (en
Inventor
勝 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34080591A priority Critical patent/JP2657018B2/en
Publication of JPH05172694A publication Critical patent/JPH05172694A/en
Application granted granted Critical
Publication of JP2657018B2 publication Critical patent/JP2657018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光通信部品の評価技術
として、特に高精度、高感度の光コネクタの反射減衰量
を測定する光コネクタ反射減衰量測定装置に関する。
The present invention relates to an evaluation technique of optical communication parts, especially high precision, an optical connector return loss measurement apparatus for measuring the return loss of the optical connector sensitive.

【0002】[0002]

【従来の技術】従来における光コネクタ反射減衰量測定
方法を図14に示す。同図中、01は光源、02は光フ
ァイバカプラ、03はマスタ光コネクタ、04は被測定
光コネクタ、05は光パワーメータである。光源01は
光ファイバカプラ02の第1の光ファイバ02Aに接続
されており、その出射光は第2の光ファイバ02Bと第
3の光ファイバ02Cとに分岐される。測定光が出射さ
れる第3の光ファイバ02Cにはマスタ光コネクタ03
が接続され、このマスタ光コネクタ03には被測定光コ
ネクタ04が接合されている。さらに、被測定光コネク
タ04は光ファイバコード07の一端に接合されてお
り、他端には測定対象ではない非測定光コネクタ08が
存在するため、この非測定コネクタ08の端面には屈折
率整合剤06が塗布されている。また、参照光が出射さ
れる第2の光ファイバ02Bの端面にも屈折率整合剤0
6が塗布されている。なお、光パワーメータ05は光フ
ァイバコネクタ02の残りの第4の光ファイバ02Dに
接続されており、光ファイバ02Cからの反射光が光パ
ワーメータ05に入射するようになっている。
2. Description of the Related Art FIG. 14 shows a conventional optical connector return loss measuring method. In the figure, 01 is a light source, 02 is an optical fiber coupler, 03 is a master optical connector, 04 is an optical connector to be measured, and 05 is an optical power meter. The light source 01 is connected to the first optical fiber 02A of the optical fiber coupler 02, and the emitted light is branched into a second optical fiber 02B and a third optical fiber 02C. The master optical connector 03 is connected to the third optical fiber 02C from which the measurement light is emitted.
Is connected to the master optical connector 03. Further, the measured optical connector 04 is joined to one end of the optical fiber cord 07, and a non-measurement optical connector 08 which is not a measurement target exists at the other end. Agent 06 has been applied. Also, the refractive index matching agent 0 is provided on the end face of the second optical fiber 02B from which the reference light is emitted.
6 is applied. The optical power meter 05 is connected to the remaining fourth optical fiber 02D of the optical fiber connector 02, so that the reflected light from the optical fiber 02C enters the optical power meter 05.

【0003】図14に示した方法では、光源01の出射
光を光ファイバカプラ02に入射し、一方の分岐光を被
測定光コネクタ04が接合したマスタ光コネクタ03に
入射してその光コネクタ接合面からの反射光を光パワー
メータ05に入射するようにする。なお、被測定光コネ
クタ04には光ファイバコード07を介して非測定光コ
ネクタ08が接続されているため、その端面に屈折率整
合剤06を塗布すると共に、第2のファイバ02Bの端
面に屈折率整合剤06を塗布し、他の反射光をできるだ
け低減するようにする。
In the method shown in FIG. 14, light emitted from a light source 01 is incident on an optical fiber coupler 02, and one branch light is incident on a master optical connector 03 to which an optical connector 04 to be measured is connected, and the optical connector is connected. Light reflected from the surface is incident on the optical power meter 05. Since the non-measurement optical connector 08 is connected to the measured optical connector 04 via the optical fiber cord 07, the refractive index matching agent 06 is applied to the end face thereof, and the refractive index matching agent 06 is applied to the end face of the second fiber 02B. The rate matching agent 06 is applied to reduce other reflected light as much as possible.

【0004】このようにすると、理想的には光パワーメ
ータ05にはマスタ光コネクタ03と被測定光コネクタ
04との光コネクタ接合部からの反射光のみが入射する
ようになる。したがって、光パワーメータ05で反射光
パワーPs を測定することにより、下記数1に示す式に
基づいてマスタ光コネクタ03への入射光パワーPin
対しての反射減衰量Γ(dB)が求められる。
[0004] In this case, ideally, only the reflected light from the optical connector junction between the master optical connector 03 and the measured optical connector 04 enters the optical power meter 05. Thus, by measuring the reflected light power P s by the optical power meter 05, the reflection attenuation amount of the incident light power P in to the master optical connector 03 on the basis of the formula shown in the following Expression 1 gamma (dB) Desired.

【0005】[0005]

【数1】 (Equation 1)

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
測定方法では測定毎に非測定光コネクタ08端面からの
反射を除去するための作業が必要であり、特に非測定光
コネクタ08が遠隔地に存在する場合は作業量が増加す
るという問題がある。また、屈折率整合剤06として最
適な整合剤を選択してもその端面からの反射減衰量が5
0〜60dB程度存在するため、反射減衰量測定限界が
これに支配されることになる。また、整合剤と端面の屈
折率の整合が完全である場合においても、直接検波方式
のために、60dB以上の測定が困難である。さらに、
非測定光コネクタ08からの反射を除去できない場合あ
るいは光ファイバコード07の途中に他の反射点が存在
する場合に反射減衰量が測定できないという問題もあ
る。
However, in the conventional measuring method, it is necessary to remove the reflection from the end face of the non-measurement optical connector 08 for each measurement. However, there is a problem that the amount of work increases. Even if an optimum matching agent is selected as the refractive index matching agent 06, the return loss from the end face is 5
Since there is about 0 to 60 dB, the measurement limit of the return loss is governed by this. Further, even when the matching between the matching agent and the refractive index of the end face is perfect, it is difficult to measure 60 dB or more because of the direct detection method. further,
When the reflection from the non-measurement optical connector 08 cannot be removed, or when there is another reflection point in the middle of the optical fiber cord 07, there is a problem that the return loss cannot be measured.

【0007】[0007]

【従来の技術】本発明はこのような従来技術に鑑みてな
されたものであり、被測定光コネクタ端面のみの反射減
衰量を他の反射点部分からの影響を受けずに高い測定限
界で測定可能な光コネクタ反射減衰量測定装置を提供す
ることを目的とする。
2. Description of the Related Art The present invention has been made in view of such prior art, and measures the return loss only at the end face of an optical connector to be measured at a high measurement limit without being affected by other reflection points. It is an object of the present invention to provide a possible optical connector return loss measuring device .

【0008】[0008]

【課題を解決するための手段】前記目的を達成する本発
明に係る光コネクタ反射減衰量測定方法は、被測定光コ
ネクタとマスタ光コネクタとの光コネクタ接続部での反
射減衰量を測定する方法であって、光源出射光を測定光
と参照光とに分岐して該測定光を前記マスタ光コネクタ
に接続された被測定光コネクタに導き、当該光コネクタ
接続部での反射光と前記参照光とを結合すると共にこれ
ら反射光と参照光との伝搬光路長を調整して両者を干渉
させ、その干渉信号の強度から前記光コネクタ接続部で
の反射減衰量を測定することを特徴とする。
According to the present invention, there is provided an optical connector return loss measuring method for measuring the return loss at an optical connector connection between a measured optical connector and a master optical connector. Wherein the light emitted from the light source is branched into a measuring light and a reference light, and the measuring light is guided to an optical connector to be measured connected to the master optical connector. And adjusting the propagation optical path length of the reflected light and the reference light so that they interfere with each other, and measuring the return loss at the optical connector connection portion from the intensity of the interference signal.

【0009】また、本発明に係る光コネクタ反射減衰量
測定装置は、マスタ光コネクタと被測定光コネクタとの
光コネクタ接続部での反射減衰量を測定する方法であっ
て、光源と、該光源に接続されて光源出射光を測定光及
び参照光に分岐する光分岐器と、該光分岐器の測定光出
射側に接続されると共に被測定光コネクタと接合される
マスタ光コネクタと、該マスタ光コネクタと被測定光コ
ネクタとの光コネクタ接合部での反射光と前記参照光と
を結合する光結合器と、該反射光と参照光との伝搬光路
長差を調整する調整機構と、前記光結合器で結合された
反射光と参照光との干渉信号を検出する光波形モニタと
を備えたことを特徴とする。
An optical connector return loss measuring apparatus according to the present invention is a method for measuring return loss at an optical connector connection between a master optical connector and a measured optical connector, comprising: a light source; An optical splitter connected to the optical splitter to split the light emitted from the light source into the measurement light and the reference light; a master optical connector connected to the measurement light emission side of the optical splitter and joined to the optical connector to be measured; An optical coupler that couples the reflected light at the optical connector junction between the optical connector and the measured optical connector and the reference light, and an adjustment mechanism that adjusts a difference in the propagation optical path length between the reflected light and the reference light; An optical waveform monitor for detecting an interference signal between the reflected light and the reference light combined by the optical coupler is provided.

【0010】また、本発明に係る他の光コネクタ反射減
衰量測定方法は、マスタ光コネクタと被測定光コネクタ
との光コネクタ接続部での反射減衰量を測定する方法で
あって、光源出射光を参照光とN個の測定光とに分岐
し、この光分岐部から各端面までの光路長を光源の可干
渉距離程度ずつ変化させた地点に配置されると共に被測
定光コネクタに接続されたN個のマスタ光コネクタに前
記N個の測定光を導き、当該N個の光コネクタ接続部で
の反射光と前記参照光とを結合すると共に各反射光と参
照光との伝搬光路長差を調整して順次干渉させ、各干渉
信号の強度から各光コネクタ接続部での反射減衰量を測
定することを特徴とする。
Another method of measuring the return loss of an optical connector according to the present invention is a method of measuring the return loss at an optical connector connection between a master optical connector and an optical connector to be measured. Is divided into reference light and N measurement lights, and is disposed at a point where the optical path length from the light branching section to each end face is changed by about the coherence length of the light source, and is connected to the optical connector to be measured. The N measurement lights are guided to N master optical connectors, and the reflected light at the N optical connector connection portions and the reference light are coupled with each other, and the propagation optical path length difference between each reflected light and the reference light is calculated. It is characterized by adjusting and causing interference sequentially, and measuring the return loss at each optical connector connection from the intensity of each interference signal.

【0011】さらに、本発明に係る他の光コネクタ反射
減衰量測定装置は、マスタ光コネクタと被測定光コネク
タとの光コネクタ接続部での反射減衰量を測定する装置
であって、光源と、該光源に接続されて光源出射光を参
照光とN個の測定光とに分岐する光分岐器と、該光分岐
器の測定光出射側に接続されて当該光分岐部から各端面
までの光路長を光源の可干渉距離程度ずつ変化させた地
点に配置されると共に被測定コネクタと接続されるN個
のマスタ光コネクタと、該マスタ光コネクタと被測定光
コネクタとの光コネクタ接続部でのN個の反射光と前記
参照光とを結合する光結合器と、該反射光と前記参照光
との伝搬光路長差を調整する調整機構と、前記光結合器
で結合された各反射光と参照光との干渉信号を検出する
光波形モニタとを備えたことを特徴とする。
Further, another optical connector return loss measuring device according to the present invention is a device for measuring a return loss at an optical connector connecting portion between a master optical connector and a measured optical connector, comprising: a light source; An optical splitter connected to the light source and splitting the light emitted from the light source into reference light and N measurement lights; and an optical path connected to the measurement light output side of the optical splitter and extending from the optical splitter to each end face. N master optical connectors arranged at points where the lengths are changed by the coherence distance of the light source and connected to the connector under test, and an optical connector connecting portion between the master optical connector and the optical connector under test. An optical coupler that couples the N reflected lights and the reference light, an adjustment mechanism that adjusts a propagation optical path length difference between the reflected light and the reference light, and each reflected light that is coupled by the optical coupler. An optical waveform monitor that detects an interference signal with the reference light And it said that there were pictures.

【0012】[0012]

【作用】本発明では、測定光の光コネクタ接合部での反
射光と参照光とを伝搬光路長差を調整して結合し、光コ
ネクタ接合部での反射光と参照光とを干渉させる。この
ときの干渉信号電力は反射光強度に比例するので、干渉
信号強度から反射減衰量を測定することができる。かか
る場合、光源出射光の可干渉距離内に光コネクタ接合部
以外の反射点が存在しなければ、その反射点での反射光
に影響されることなく、光コネクタ接合部での反射減衰
量を測定することができる。また、本発明では反射光と
参照光とを干渉させるコヒーレント検波方式によるの
で、従来の直接検波方式よりも測定限界が高い。
According to the present invention, the reflected light of the measuring light at the optical connector joint and the reference light are combined by adjusting the difference in the propagation optical path length, and the reflected light at the optical connector joint and the reference light interfere with each other. Since the interference signal power at this time is proportional to the reflected light intensity, the return loss can be measured from the interference signal intensity. In such a case, if there is no reflection point other than the optical connector junction within the coherence distance of the light emitted from the light source, the return loss at the optical connector junction is reduced without being affected by the reflected light at the reflection point. Can be measured. Further, in the present invention, since the coherent detection method in which the reflected light and the reference light interfere with each other, the measurement limit is higher than that of the conventional direct detection method.

【0013】さらに、マスタ光コネクタをN個配した場
合、N個を可干渉距離程度ずつ変化させた地点に配置
し、各光コネクタ接合部からの反射光と参照光とを結合
すると、参照光と各反射光とを順次干渉させることによ
り各干渉信号からN個の被測定光コネクタの反射減衰量
を別個に測定することができる。
Further, when N master optical connectors are arranged, N master optical connectors are arranged at points which are changed by the coherence distance each other, and when the reflected light from each optical connector joint and the reference light are combined, the reference light can be obtained. And the respective reflected lights, the return loss of the N optical connectors to be measured can be separately measured from each interference signal.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0015】図1には第1の実施例を示す。図中、1は
光源、2は2×2の光ファイバカプラ、3はマスタ光コ
ネクタ、4は被測定光コネクタ、5は光波形モニタ、6
は電力計、7はレンズ、8は可動ミラーである。光源1
は光ファイバカプラ2の第1の光ファイバ2Aに接続さ
れており、その出射光は第2の光ファイバ2Bへの参照
光と第3の光ファイバ2Cへの測定光とに分岐されるよ
うになっている。ここで、第3の光ファイバ2Cにはマ
スタ光コネクタ3が接続されており、このマスタ光コネ
クタ3には被測定光コネクタ4が接合されている。一
方、第2の光ファイバ2Bの端面にはレンズ7を介して
光軸方向に移動自在の可動ミラー8が光学的に結合され
ており、第2の光ファイバ2Bの端面から出射した参照
光は可動ミラー8で反射されて再び第2の光ファイバ2
Bの端面から入射するようになっている。そして、この
反射した参照光と、マスタ光コネクタ3と被測定光コネ
クタ4との光コネクタ接合部での反射光とは光ファイバ
カプラ2で結合されて第4の光ファイバ2Dに出射する
ようになっており、また、この光ファイバ2Dには光波
形モニタ5及び電力計6が接続されている。
FIG. 1 shows a first embodiment. In the figure, 1 is a light source, 2 is a 2 × 2 optical fiber coupler, 3 is a master optical connector, 4 is an optical connector to be measured, 5 is an optical waveform monitor, 6
Is a power meter, 7 is a lens, and 8 is a movable mirror. Light source 1
Is connected to the first optical fiber 2A of the optical fiber coupler 2, and the emitted light is split into reference light to the second optical fiber 2B and measurement light to the third optical fiber 2C. Has become. Here, a master optical connector 3 is connected to the third optical fiber 2C, and an optical connector 4 to be measured is joined to the master optical connector 3. On the other hand, a movable mirror 8 movably in the optical axis direction is optically coupled to the end face of the second optical fiber 2B via a lens 7, and the reference light emitted from the end face of the second optical fiber 2B is The second optical fiber 2 is reflected by the movable mirror 8 and again
B is incident from the end face. Then, the reflected reference light and the light reflected at the optical connector junction between the master optical connector 3 and the measured optical connector 4 are coupled by the optical fiber coupler 2 and emitted to the fourth optical fiber 2D. An optical waveform monitor 5 and a power meter 6 are connected to the optical fiber 2D.

【0016】図1に示す装置を用いて光コネクタ接合部
の反射減衰量を測定するには、光源1からの出射光を光
ファイバカプラ2で分岐し、マスタ光コネクタ3と被測
定光コネクタ4との光コネクタ接合部での反射光と可動
ミラー8で反射した参照光とを光ファイバカプラ2で結
合して光波形モニタ5に入射させる。そして、可動ミラ
ー8を移動させながら光強度を光波形モニタ5で観測
し、電力計6で干渉信号の電力を測定する。
In order to measure the return loss at the optical connector junction using the apparatus shown in FIG. 1, the light emitted from the light source 1 is split by the optical fiber coupler 2, and the master optical connector 3 and the optical connector 4 to be measured are separated. The light reflected at the optical connector junction and the reference light reflected by the movable mirror 8 are coupled by the optical fiber coupler 2 and made incident on the optical waveform monitor 5. Then, the light intensity is observed by the optical waveform monitor 5 while moving the movable mirror 8, and the power of the interference signal is measured by the wattmeter 6.

【0017】このときの光波形モニタ5及び電力計6の
出力を図2及び図3に示す。両図に示すように、その出
力は、光ファイバカプラ2の光分岐点と可動ミラー8の
距離が光ファイバカプラ2の光分岐点からマスタ光コネ
クタ3の端面までの距離と一致した地点で最大値を示
し、光源1の可干渉距離Lc 程度の幅をもつ。なお、可
干渉距離Lc はファブリペロー型レーザダイオードで1
cm程度、発光ダイオードで0.1mm程度である。
The outputs of the optical waveform monitor 5 and the wattmeter 6 at this time are shown in FIGS. As shown in both figures, the output is maximum at the point where the distance between the optical branch point of the optical fiber coupler 2 and the movable mirror 8 matches the distance from the optical branch point of the optical fiber coupler 2 to the end face of the master optical connector 3. And has a width about the coherent distance L c of the light source 1. The coherence length Lc is 1 in a Fabry-Perot laser diode.
cm, and about 0.1 mm for light emitting diodes.

【0018】ここで、参照光の電界振幅をE0 、マスタ
光コネクタ3と被測定光コネクタ4との接続部への入射
光の電界振幅をE1 、接続部での反射率をRとすると、
反射光の電界振幅は√R・E1 となり、波形モニタ5の
出力の干渉信号強度Iは√R・E0 ・E1 に比例し、干
渉信号電力PはRE0 21 2に比例し且つ接合部の反射率
Rに比例する。したがって、干渉信号の最大値Pmax
測定し、100%反射率のときの信号電力Pmax (10
0%)に対しての反射減衰量Γ(dB)は次の数2に示
す式で求められる。
Here, assuming that the electric field amplitude of the reference light is E 0 , the electric field amplitude of the light incident on the connection between the master optical connector 3 and the measured optical connector 4 is E 1 , and the reflectance at the connection is R. ,
Field amplitude of the reflected light √R · E 1, and the interference signal intensity I of the output of the waveform monitor 5 in proportion to √R · E 0 · E 1, the interference signal power P is proportional to RE 0 2 E 1 2 And it is proportional to the reflectance R of the joint. Therefore, the maximum value Pmax of the interference signal is measured, and the signal power Pmax (10
0%) can be obtained by the following equation (2).

【0019】[0019]

【数2】 (Equation 2)

【0020】図1の装置によると、このようにして反射
減衰量を求めることができるが、コヒーレント検波であ
るので、光コネクタ接合部以外の反射点があっても可干
渉距離外にあるようにすれば影響を受けることはない。
例えば被測定光コネクタ4以降に反射点があっても可干
渉距離外であれば問題はなく、また、第2の光ファイバ
2Bの端面で反射する参照光も可干渉距離外とすれば問
題はない。
According to the apparatus shown in FIG. 1, the amount of return loss can be obtained in this manner. However, since the coherent detection is used, even if there is a reflection point other than the optical connector junction, the reflection loss is outside the coherence distance. If you do, you will not be affected.
For example, even if there is a reflection point after the optical connector 4 to be measured, there is no problem as long as it is outside the coherence distance. Absent.

【0021】また、従来例の直接検波方式では測定信号
が光源出射パワーの一乗に比例するのに対して、コヒー
レント検波では測定信号が反射光パワーE1 2と参照光パ
ワーE0 2との積、つまり、光源出射光パワーの二乗に比
例する。したがって、この理由から本発明では高い測定
感度で反射減衰量を測定できる。
Further, the product of whereas the measurement signal is a direct detection method of the conventional example is proportional to a square of the light source output power measurement signal in coherent detection is the reference optical power E 0 2 and the reflected light power E 1 2 That is, it is proportional to the square of the light source output light power. Therefore, for this reason, the present invention can measure the return loss with high measurement sensitivity.

【0022】さらに、コヒーレント検波では原理的にシ
ョットノイズ限界までの測定感度向上が可能であり、反
射率に換算したショットノイズレベルΓshot(dB)は
次の数3に示す式で表される。なお、式中、hはプラン
ク定数、νは光周波数、Bは受信器の帯域、ηは光検出
器の変換効率、Pは100%反射光パワーを示す。
Further, in the coherent detection, the measurement sensitivity can be improved up to the shot noise limit in principle, and the shot noise level Γ shot (dB) converted into the reflectance is expressed by the following equation (3). In the equation, h is Planck's constant, ν is the optical frequency, B is the band of the receiver, η is the conversion efficiency of the photodetector, and P is the 100% reflected light power.

【0023】[0023]

【数3】 (Equation 3)

【0024】ここで、ν=230THz(波長λ=1.
3μm)、B=100Hz、η=0.75、P=0.1
mWのとき、Γshot=127dBであり、130dB程
度の反射減衰量を測定可能であることがわかる。
Here, ν = 230 THz (wavelength λ = 1.
3 μm), B = 100 Hz, η = 0.75, P = 0.1
When mW, a Γ shot = 127dB, it can be seen that can measure return loss of about 130 dB.

【0025】図4は第2の実施例を示すものであり、図
1と同一部材には同一符号を付してある。同図に示すよ
うに、本実施例は光ファイバカプラ2の第2の光ファイ
バ2Bを円筒型ピエゾ電歪素子(以下、ピエゾ素子とい
う)9に巻き付け、その端面を開放状態としている以外
は図1と同一の構成を有する。
FIG. 4 shows a second embodiment, and the same members as those in FIG. 1 are denoted by the same reference numerals. As shown in the figure, the present embodiment is different from the diagram in that the second optical fiber 2B of the optical fiber coupler 2 is wound around a cylindrical piezoelectric element (hereinafter referred to as a piezoelectric element) 9 and its end face is opened. 1 has the same configuration.

【0026】本実施例では、参照光の反射を第2の光フ
ァイバ2Bの端面で行うようにし、また、参照光の光路
長をピエゾ素子9により行うようにしている。すなわ
ち、ピエゾ素子9は電圧を印加すると半径方向に膨張す
るものであり、この膨張により光ファイバ2Bを長手方
向に伸ばすことにより、光路長を調整するものである。
本実施例ではピエゾ素子9、当該ピエゾ素子9の直径、
光ファイバ2Bの巻数、印加電圧の設定によりΔL=
0.1mm程度の光ファイバ長の調整が可能であり、石
英系光ファイバの屈折率nは約1.5なので、nΔL=
1.5×ΔL程度の光路長調整が可能である。したがっ
て、光源1として可干渉距離0.1mm以下の発光ダイ
オードを選択し、光ファイバカプラ2の分岐点から第2
の光ファイバ2Bの端面まで、及びマスタ光コネクタ3
の端面までの光ファイバ長を0.1mm以下の精度で揃
えておくことにより、第1の実施例と同様に、図2、図
3で説明した結果が得られる。
In this embodiment, the reference light is reflected at the end face of the second optical fiber 2B, and the optical path length of the reference light is controlled by the piezo element 9. That is, the piezoelectric element 9 expands in the radial direction when a voltage is applied, and expands the optical fiber 2B in the longitudinal direction by this expansion to adjust the optical path length.
In this embodiment, the piezo element 9, the diameter of the piezo element 9,
Depending on the number of turns of the optical fiber 2B and the setting of the applied voltage, ΔL =
The optical fiber length can be adjusted to about 0.1 mm, and the refractive index n of the silica-based optical fiber is about 1.5.
An optical path length adjustment of about 1.5 × ΔL is possible. Therefore, a light emitting diode having a coherence distance of 0.1 mm or less is selected as the light source 1, and the second
Up to the end face of the optical fiber 2B and the master optical connector 3
By aligning the optical fiber lengths up to the end face with an accuracy of 0.1 mm or less, the results described with reference to FIGS. 2 and 3 can be obtained as in the first embodiment.

【0027】図5は第3の実施例を示すものであり、図
1と同一部材には同一符号を付してある。同図に示すよ
うに、本実施例は光ファイバカプラ2の第2の光ファイ
バ2Bを温度コントローラ10内に配置し、その端面を
開放状態としている以外は図1と同一の構成を有してい
る。
FIG. 5 shows a third embodiment, and the same members as those in FIG. 1 are denoted by the same reference numerals. As shown in the figure, the present embodiment has the same configuration as that of FIG. 1 except that the second optical fiber 2B of the optical fiber coupler 2 is disposed in the temperature controller 10 and its end face is open. I have.

【0028】本実施例では、参照光の反射を第2の光フ
ァイバ2Bの端面で行うようにし、また、参照光の光路
長を温度コントローラ10により行うようにしている。
すなわち、温度コントローラ10で光ファイバ2Bの温
度を変化することにより、その屈折率を変化させて光路
長を調整するものである。
In this embodiment, the reference light is reflected at the end face of the second optical fiber 2B, and the optical path length of the reference light is controlled by the temperature controller 10.
That is, by changing the temperature of the optical fiber 2B by the temperature controller 10, the refractive index thereof is changed to adjust the optical path length.

【0029】石英系光ファイバの屈折率温度依存性(1
/L)・(dn/dT)は10-5程度であり、ガラスの
線膨張係数(1/L)・(dL/dT)は10-6程度で
あるので、屈折率温度依存性が光路長温度依存性をほぼ
支配する。したがって、光ファイバ2BのうちL=1m
の温度をΔT=10℃変化させることにより、次の数4
で示すように0.15mm程度の光路長調整が可能であ
り、これにより第1の実施例と同様に、図2、図3で説
明したような結果が得られる。
Temperature dependence of refractive index of quartz optical fiber (1)
/ L) · (dn / dT) is about 10 −5 and the coefficient of linear expansion of glass (1 / L) · (dL / dT) is about 10 −6 , so that the temperature dependence of the refractive index depends on the optical path length. Almost dominates temperature dependence. Therefore, of the optical fiber 2B, L = 1m
Is changed by ΔT = 10 ° C. to obtain the following equation 4.
The optical path length can be adjusted by about 0.15 mm as shown by, thereby obtaining the results as described in FIGS. 2 and 3 as in the first embodiment.

【0030】[0030]

【数4】 (Equation 4)

【0031】図6は第4の実施例を示すものであり、図
4,5と同一部材には同一符号を付してある。同図に示
すように、本実施例は第2又は第3の実施例において、
光路長調整精度に余裕をとるための例であり、光ファイ
バ2Bの端面に厚さtの多重反射用光学薄膜11を張り
付けてある以外は第2又は第3の実施例と同一である。
なお、図中のピエゾ素子9及び温度コントローラ10は
何れか一方を採用するようにする。
FIG. 6 shows a fourth embodiment, and the same members as those in FIGS. 4 and 5 are denoted by the same reference numerals. As shown in the figure, this embodiment is different from the second or third embodiment in that
This is an example for providing a margin for the optical path length adjustment accuracy, and is the same as the second or third embodiment except that the multiple reflection optical thin film 11 having a thickness t is attached to the end face of the optical fiber 2B.
Note that either one of the piezo element 9 and the temperature controller 10 in the drawing is adopted.

【0032】本実施例において、薄膜11と光ファイバ
2Bの端面との接合面、及び薄膜11が空気に接する面
での反射率をそれぞれ50%,100%とすると、参照
光は2つの面で多重反射し、図7に示すように光路長が
2ntずつ異なる点と干渉を起こすことが可能である。
したがって、第2又は第3の実施例で調整可能な光路長
調整距離0.15mm毎に参照光が存在するように、薄
膜11の厚さtを2nt=0.15mmとなるように選
択すれば、調整可能な光路長を拡大することができる。
なお、N番目の参照光は入射光の(0.5)N の電力と
なるが、元来、測定限界が130dBと高いので、10
番目の反射光を参照光として測定結果が、(0.5)10
=1/1000=−30dBとなったとしても、100
dBの反射減衰量測定が可能である。
In this embodiment, assuming that the reflectance at the joint surface between the thin film 11 and the end face of the optical fiber 2B and the reflectance at the surface where the thin film 11 contacts the air are 50% and 100%, respectively, the reference light is reflected on two surfaces. It is possible to cause multiple reflections and to interfere with points where the optical path lengths differ by 2 nt as shown in FIG.
Therefore, if the thickness t of the thin film 11 is selected to be 2 nt = 0.15 mm so that the reference light exists every 0.15 mm of the optical path length adjustment distance that can be adjusted in the second or third embodiment. The adjustable optical path length can be expanded.
Note that the N-th reference light has a power of (0.5) N of the incident light, but originally has a high measurement limit of 130 dB, so that
The measurement result is (0.5) 10
= 1/1000 = −30 dB, but 100
It is possible to measure dB return loss.

【0033】したがって、本実施例では、光ファイバカ
プラ2の分岐点からマスタ光コネクタ3の端面まで、及
び光ファイバ2Bの路面までのそれぞれ光ファイバ長を
1mm以内の精度で調整すれば、ピエゾ素子9又は温度
コントローラ10による光路長調整により、マスタ光コ
ネクタ3端面での反射光を10番目以内の多重反射した
参照光と干渉させることができ、反射減衰量を測定でき
る。
Therefore, in this embodiment, if the optical fiber length from the branch point of the optical fiber coupler 2 to the end face of the master optical connector 3 and the road surface of the optical fiber 2B is adjusted with an accuracy of 1 mm or less, the piezo element 9 or the optical path length adjustment by the temperature controller 10, the reflected light at the end face of the master optical connector 3 can be made to interfere with the reference light that has been multiply reflected within the tenth and the return loss can be measured.

【0034】図8は第5の実施例を示すものであり、図
6と同一部材には同一符号を付してある。同図に示すよ
うに、本実施例は第4の実施例と同様に、第2又は第3
の実施例において、光路長調整に余裕をとるための例で
あり、第3の光ファイバ2Cの一部を複屈折光ファイバ
12で置き換えてある以外は第4の実施例と同一であ
る。
FIG. 8 shows a fifth embodiment, and the same members as those in FIG. 6 are denoted by the same reference numerals. As shown in the figure, the present embodiment is similar to the fourth embodiment in that the second or third
This embodiment is an example for providing a margin for adjusting the optical path length, and is the same as the fourth embodiment except that a part of the third optical fiber 2C is replaced with the birefringent optical fiber 12.

【0035】本実施例では、複屈折光ファイバ12の2
つの偏光軸で屈折率が異なることを利用し、光ファイバ
カプラ2の分岐点から光ファイバ2Bの端面まで、及び
マスタ光コネクタ3の端面までの光ファイバ長の調整精
度にさらに余裕をとっている。
In this embodiment, the birefringent optical fiber 12
Utilizing the fact that the refractive indices are different between the two polarization axes, there is more room for adjustment accuracy of the optical fiber length from the branch point of the optical fiber coupler 2 to the end face of the optical fiber 2B and the end face of the master optical connector 3. .

【0036】複屈折光ファイバ12の複屈折率は2つの
偏光軸の屈折率差であり、B=n1 −n2 ≒10-4程度
で、長さLの複屈折光ファイバではn1 ・Lとn2 ・L
との2つの光路長が存在し、L=1mのとき2つの光路
長差はn1 ・L−n2 ・L=BL=100μmとなる。
例えば、長さL1 =1m、L2 =2mの複屈折光ファイ
バ12を2段接続した場合、光路長の組み合わせはn2
・L1 +n2 ・L2 、n1 ・L1 +n2 ・L2 =(n2
・L1 +n2 ・L2 )+100μm、n2 ・L 1 +n1
・L2 =(n2 ・L1 +n2 ・L2 )+200μm、n
1 ・L1 +n1 ・L2 =(n2 ・L1 +n2 ・L2 )+
300μmの100μm間隔の4つとなる。このように
長さを適当に選んだ複屈折光ファイバ12によりある間
隔でいくつかの光路長で干渉を起こす可能性がある。し
たがって、これにより光ファイバ長の調整精度に余裕を
とることができる。
The birefringence of the birefringent optical fiber 12 is two
It is the refractive index difference of the polarization axis, and B = n1-NTwo$ 10-Fourdegree
In a birefringent optical fiber of length L, n1・ L and nTwo・ L
And there are two optical paths when L = 1 m.
The length difference is n1・ LnTwoL = BL = 100 μm
For example, length L1= 1m, LTwo= 2m birefringent optical fiber
When the bars 12 are connected in two stages, the combination of the optical path lengths is nTwo
・ L1+ NTwo・ LTwo, N1・ L1+ NTwo・ LTwo= (NTwo
・ L1+ NTwo・ LTwo) +100 μm, nTwo・ L 1+ N1
・ LTwo= (NTwo・ L1+ NTwo・ LTwo) +200 μm, n
1・ L1+ N1・ LTwo= (NTwo・ L1+ NTwo・ LTwo) +
Four 100 μm intervals of 300 μm are provided. in this way
With a birefringent optical fiber 12 with a suitably chosen length
Interference can occur at several optical path lengths at intervals. I
Therefore, this allows a margin in the adjustment accuracy of the optical fiber length.
Can be taken.

【0037】図9は第6の実施例を示すものであり、図
6と同一部材には同一符号を付してある。同図に示すよ
うに、本実施例は第4の実施例と同様に、第2又は第3
の実施例において、光路長調整に余裕をとるための例で
あり、第3の光ファイバ2Cを途中で一旦切断すると共
に、V溝光ファイバ接続器13で接続し、2つの光ファ
イバ端面間の間隔を調整することにより、光ファイバカ
プラ2の分岐点から光ファイバ2Bの端面まで、及びマ
スタ光コネクタ3の端面までの光ファイバ長の調整精度
にさらに余裕をとるようにした以外は、第4の実施例と
同一である。
FIG. 9 shows a sixth embodiment, and the same members as those in FIG. 6 are denoted by the same reference numerals. As shown in the figure, the present embodiment is similar to the fourth embodiment in that the second or third
In this embodiment, the third optical fiber 2C is cut once in the middle and is connected by a V-groove optical fiber connector 13 to allow a margin for adjusting the optical path length. The fourth example is the same as the fourth example except that by adjusting the interval, the margin for adjusting the optical fiber length from the branch point of the optical fiber coupler 2 to the end face of the optical fiber 2B and the end face of the master optical connector 3 is further increased. This is the same as the embodiment.

【0038】V溝光ファイバ接続器13の光ファイバ端
面間隔をdとすると、伝搬光の損失は下記数5に示す式
で表される。
Assuming that the distance between the optical fiber end faces of the V-groove optical fiber connector 13 is d, the loss of the propagating light is expressed by the following equation (5).

【0039】[0039]

【数5】 (Equation 5)

【0040】これによると、d=1mmの長さ調整をし
た場合でも損失は約6dB、往復で12dBであり、反
射減衰量測定限界を12dB劣化させるだけで済む。な
お、接合部に屈折率整合剤を塗布すればさらに劣化を抑
えることができる。
According to this, even when the length is adjusted to d = 1 mm, the loss is about 6 dB and the round-trip is 12 dB, and it is only necessary to degrade the measurement limit of the return loss by 12 dB. If a refractive index matching agent is applied to the joint, the deterioration can be further suppressed.

【0041】第7の実施例として、第2又は第3の実施
例において、光ファイバカプラ2の分岐点から光ファイ
バ2Bの端面まで、及びマスタ光コネクタ3の端面まで
の光ファイバ長さ調整精度に余裕をとるための他の例を
説明する。
As a seventh embodiment, in the second or third embodiment, the optical fiber length adjustment accuracy from the branch point of the optical fiber coupler 2 to the end face of the optical fiber 2B and the end face of the master optical connector 3 Another example for providing a margin will be described.

【0042】本実施例は光源1(図4,5参照)として
ファブリペロー型レーザダイオードを用いるものであ
る。ファブリペロ型レーザダイオードの光スペクトル
は、図10に示すようないくつかの縦モードを有するも
のであり、これを光源1として、図1に示す構成で可動
ミラー8を移動した場合、その位置に対して干渉信号電
力は図11に示すように、1cm程度にわたって数10
0μm間隔でピークを示す。したがって、本実施例では
光ファイバカプラ2の分岐点から光ファイバ2Bの端面
まで、及びマスタ光コネクタ3の端面までの光ファイバ
長をそれぞれ1cmの精度で調整すれば、第2又は第3
の実施例による光路長調整機構(ピエゾ素子9又は温度
コントローラ10)の調整可能範囲に必ず1つのピーク
が存在し、そのピーク値を用いて反射減衰量が測定可能
である。
In this embodiment, a Fabry-Perot laser diode is used as the light source 1 (see FIGS. 4 and 5). The optical spectrum of the Fabry-Perot type laser diode has several longitudinal modes as shown in FIG. 10, and when this is used as the light source 1 and the movable mirror 8 is moved in the configuration shown in FIG. As shown in FIG. 11, the interference signal power is several tens of
Peaks are shown at 0 μm intervals. Therefore, in this embodiment, if the lengths of the optical fibers from the branch point of the optical fiber coupler 2 to the end face of the optical fiber 2B and the end face of the master optical connector 3 are each adjusted with an accuracy of 1 cm, the second or third optical fiber can be adjusted.
There is always one peak in the adjustable range of the optical path length adjusting mechanism (piezo element 9 or temperature controller 10) according to the embodiment, and the return loss can be measured using the peak value.

【0043】以上、第1〜第7の実施例について説明し
たが、第2又は第3の実施例のピエゾ素子9及び温度コ
ントローラ10は参照光ではなく光コネクタ接合部の反
射光が伝搬する光ファイバ2C側に設けてもよく、ま
た、第4又は第5の実施例の複屈折光ファイバ11及び
V溝光ファイバ接続器12は反射光ではなく参照光が伝
搬する光ファイバ2B側に設けてもよい。さらに第1〜
第7の実施例は互いに組合せることも可能である。な
お、以上は被測定光コネクタ4が1つの例を示したが、
次に、N個の被測定光コネクタを同時に検査できる例を
示す。
Although the first to seventh embodiments have been described above, the piezo element 9 and the temperature controller 10 of the second or third embodiment are different from the reference light in that the light reflected by the optical connector junction is propagated. The birefringent optical fiber 11 and the V-groove optical fiber connector 12 of the fourth or fifth embodiment may be provided on the optical fiber 2B side through which the reference light propagates instead of the reflected light. Is also good. In addition,
The seventh embodiment can also be combined with each other. In the above, an example in which the measured optical connector 4 is one is shown.
Next, an example in which N optical connectors under test can be inspected simultaneously will be described.

【0044】図12は第8の実施例を示すものであり、
図1と同一部材には同一符号を付して重複する説明は省
略する。本実施例は測定光が出射する光ファイバカプラ
2の第3の光ファイバ2Cに1×N光分岐器14を接続
して測定光をN個に分岐し、各分岐光が出射するN本の
出射光ファイバ15に、それぞれ被測定光コネクタ4が
接合されるマスタ光コネクタ3を接続したものである。
ここで、N個の各マスタ光コネクタ3は、光ファイバカ
プラ2の分岐点から測長して光源1の可干渉距離Lc
度であるΔLずつ光路長を変化させてある。因みに、可
干渉距離は上述したように、ファブリペロー型レーザダ
イオードで1cm程度、発光ダイオードで0.1mm程
度である。
FIG. 12 shows an eighth embodiment.
The same members as those in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted. In this embodiment, a 1 × N optical splitter 14 is connected to the third optical fiber 2C of the optical fiber coupler 2 from which the measurement light is emitted, and the measurement light is branched into N light beams. The output optical fiber 15 is connected to the master optical connector 3 to which the measured optical connector 4 is connected.
Here, N pieces of the master optical connector 3, are then measuring from the branch point of the optical fiber coupler 2 by changing the ΔL by optical path length is a coherence length of about L c of the light source 1. Incidentally, as described above, the coherence length is about 1 cm for a Fabry-Perot laser diode and about 0.1 mm for a light emitting diode.

【0045】図9の装置で光コネクタ反射減衰量を測定
するには、光源1の出射光を光ファイバカプラ2で参照
光と測定光に分岐し、参照光は光ファイバ2Bの端面か
らレンズ7を介して可動ミラー8で反射させ、測定光は
1×N光分岐器14でN分割してN個のマスタ光コネク
タ3と被測定光コネクタ4との接合部に入射するように
する。これにより、N個の光コネクタ接合部の反射光は
屈折率をnとすると伝搬光路長の差2nΔLずつの遅延
をもって1×N光分岐器14を逆行して光ファイバカプ
ラ2で参照光と結合される。そして、可動ミラー8によ
り参照光の伝搬光路長を変化させてゆくと、参照光は光
ファイバカプラ2の光分岐部からの光路長が一致した反
射光と順次干渉し、光波形モニタ5の後段に設けられた
電力計6の出力は図13に示すような結果となる。
In order to measure the return loss of the optical connector with the apparatus shown in FIG. 9, the light emitted from the light source 1 is split into the reference light and the measurement light by the optical fiber coupler 2, and the reference light is transmitted from the end face of the optical fiber 2B to the lens 7 The measurement light is reflected by the movable mirror 8 through the optical path, and is divided into N by the 1 × N optical splitter 14 so as to be incident on the joint portion between the N master optical connectors 3 and the measured optical connectors 4. Thus, assuming that the refractive index is n, the reflected light from the N optical connector junctions goes back through the 1 × N optical splitter 14 with a delay of 2nΔL in the propagation optical path length and is coupled with the reference light by the optical fiber coupler 2. Is done. When the propagation optical path length of the reference light is changed by the movable mirror 8, the reference light sequentially interferes with the reflected light having the same optical path length from the optical branching portion of the optical fiber coupler 2, and the subsequent stage of the optical waveform monitor 5. The output of the wattmeter 6 provided in FIG.

【0046】ここで参照光の電界振幅をE0 、N番目の
マスタ光コネクタと被測定光コネクタ接続部への入射光
の電界振幅をEN 、接続部の反射率をRN とすると、反
射光の電界振幅は√RN ・EN となり、波形モニタの干
渉信号強度IN は√RN ・E 0 ・EN に比例し、干渉信
号電力PがRN 0 2N 2 に比例し接合部の反射率R N
に比例する。したがって、各干渉信号の最大値PNmax
測定すると、各マスタ光コネクタ3で100%反射率の
ときの信号電力PNmax(100%)に対して反射減衰量
ΓN (dB)は次の数6に示す式で求められる。
Here, the electric field amplitude of the reference light is E0, Nth
Light incident on the connection between the master optical connector and the measured optical connector
Field amplitude of EN, The reflectance of the connection portion is RNThen, anti
The electric field amplitude of the emitted light is √RN・ ENAnd the waveform monitor
Interference signal strength IN√RN・ E 0・ ENIs proportional to
Signal power P is RNE0 TwoEN Two And the reflectance R of the joint is proportional to N
Is proportional to Therefore, the maximum value P of each interference signalNmaxTo
When measured, each master optical connector 3 has a 100% reflectance.
Signal power PNmax(100%) return loss
ΓN(DB) is obtained by the following equation (6).

【0047】[0047]

【数6】 (Equation 6)

【0048】コヒーレント検波では上述したように13
0dB程度の反射減衰量を測定可能であるが、N個の光
コネクタの測定では反射光は往復でパワーがN2 分の1
に低下する。しかし、例えばN=128のときの信号は
N=1の場合と比較して(1/1282 )=6×10-5
=−42dBとなり、依然として90dB程度の反射減
衰測定が可能であり、従来の測定限界である60dBを
はるかに上回る。なお、本実施例に上述した第2〜第7
の実施例を応用すれば光ファイバ長さの調整精度に余裕
をとることができるようになることは言うまでもない。
In coherent detection, as described above, 13
The return loss of about 0 dB can be measured. However, in the measurement of N optical connectors, the reflected light is reciprocated and the power is N1 / 2.
To decline. However, for example, the signal when N = 128 is (1/128 2 ) = 6 × 10 −5 as compared with the signal when N = 1.
= −42 dB, and a return loss measurement of about 90 dB is still possible, far exceeding the conventional measurement limit of 60 dB. Note that the second to seventh embodiments described in the present embodiment are described above.
It is needless to say that if the embodiment is applied, it is possible to provide a margin for the adjustment accuracy of the optical fiber length.

【0049】[0049]

【発明の効果】以上説明したように、光源出射光を測定
光と参照光とに分岐して測定光をマスタ光コネクタに送
ると共に、光コネクタ接合部での反射光と参照光とを結
合して干渉するようにし、且つ光源出射光の可干渉距離
内に被測定光コネクタ端面以外の反射点が存在しないよ
うにすれば、被測定光コネクタ端面の反射光と参照光の
伝搬光路長差を調整することにより、被測定光コネクタ
端面の反射光のみを参照光と干渉させることができ、干
渉信号電力は反射光強度に比例するので、干渉信号強度
から反射減衰量が他の反射点の影響を受けずに高い測定
限界で測定することができる。また、さらに、測定光を
N個に分岐してこの分岐光を、光源の可干渉距離ずつ変
化させた地点に配置したマスタ光コネクタに送ると共
に、各光コネクタ接合部での反射光と参照光とを結合す
るようにすれば、参照光とN個の反射光とを一度の伝搬
光路長差調整で順次干渉させ、干渉信号からN個の被測
定光コネクタの反射減衰量を別個に測定することによ
り、非測定コネクタ端面の処理なしで、且つ一度の測定
操作で多数の光コネクタの反射減衰量測定が可能とな
る。
As described above, the light emitted from the light source is split into the measuring light and the reference light, the measuring light is sent to the master optical connector, and the reflected light at the optical connector junction and the reference light are combined. If there is no reflection point other than the end face of the optical connector to be measured within the coherent distance of the light emitted from the light source, the difference in the propagation optical path length between the reflected light of the end face of the optical connector to be measured and the reference light can be obtained. By adjusting, only the reflected light from the end face of the optical connector under test can interfere with the reference light, and the interference signal power is proportional to the reflected light intensity. It can be measured at a high measurement limit without suffering. Further, the measuring light is further branched into N light beams, and the branched light beams are sent to a master optical connector arranged at a point where the coherent distance of the light source is changed by a coherent distance. In this case, the reference light and the N reflected lights are sequentially caused to interfere with each other by one time adjustment of the propagation optical path length difference, and the return loss of the N optical connectors to be measured is separately measured from the interference signal. This makes it possible to measure the return loss of a large number of optical connectors without processing the end face of the non-measurement connector and performing a single measurement operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】光波形モニタの出力の一例を示す説明図であ
る。
FIG. 2 is an explanatory diagram illustrating an example of an output of an optical waveform monitor.

【図3】電力計の出力の一例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of an output of a wattmeter.

【図4】第2の実施例を示す構成図である。FIG. 4 is a configuration diagram showing a second embodiment.

【図5】第3の実施例を示す構成図である。FIG. 5 is a configuration diagram showing a third embodiment.

【図6】第4の実施例を示す構成図である。FIG. 6 is a configuration diagram showing a fourth embodiment.

【図7】第4の実施例の作用を示す説明図である。FIG. 7 is an explanatory diagram showing the operation of the fourth embodiment.

【図8】第5の実施例を示す構成図である。FIG. 8 is a configuration diagram showing a fifth embodiment.

【図9】第6の実施例を示す構成図である。FIG. 9 is a configuration diagram showing a sixth embodiment.

【図10】ファブリペロー型レーザダイオードの光スペ
クトルを示す図である。
FIG. 10 is a diagram showing an optical spectrum of a Fabry-Perot laser diode.

【図11】第7の実施例の干渉信号電力を示す説明図で
ある。
FIG. 11 is an explanatory diagram showing interference signal power according to a seventh embodiment.

【図12】第8の実施例を示す構成図である。FIG. 12 is a configuration diagram showing an eighth embodiment.

【図13】第8の実施例の干渉信号電力を示す説明図で
ある。
FIG. 13 is an explanatory diagram showing interference signal power according to the eighth embodiment.

【図14】従来技術を示す構成図である。FIG. 14 is a configuration diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 光源 2 光ファイバカプラ 2A〜2D 光ファイバ 3 マスタ光コネクタ 4 被測定光コネクタ 5 光波形モニタ 6 電力計 7 レンズ 8 可動ミラー 9 円筒型ピエゾ電歪素子 10 温度コントローラ 11 多重反射用光学薄膜 Reference Signs List 1 light source 2 optical fiber coupler 2A to 2D optical fiber 3 master optical connector 4 optical connector to be measured 5 optical waveform monitor 6 wattmeter 7 lens 8 movable mirror 9 cylindrical piezoelectric electrostrictive element 10 temperature controller 11 optical thin film for multiple reflection

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源と、光源に接続されて光源出射光を
測定光と参照光とに分岐する光分岐器と、分岐器の測定
光出射側に接続されるとともに被測定光コネクタと接続
されるマスタ光コネクタと、マスタ光コネクタと被測定
光コネクタとの光コネクタ接続部での反射光と参照光と
を結合する光結合器と、伝播光路長差を調整する調整機
構と、光結合器で結合された反射光と参照光との干渉信
号を検出する光検出器とを具備した光コネクタ反射減衰
量測定装置において、 前記光源が複数の縦モードを有するファブリ・ペロ型レ
ーザダイオードであることを特徴とする光コネクタ反射
減衰量測定装置。
A light source connected to the light source and emitting light emitted from the light source;
Optical splitter that splits into measurement light and reference light, and measurement of the splitter
Connected to the light emitting side and connected to the optical connector to be measured
Master optical connector and master optical connector
The reflected light at the optical connector connection to the optical connector and the reference light
Coupler that couples light and an adjusting device that adjusts the difference in the propagation optical path length
Interference between the reflected light and the reference light combined by the optical coupler
Connector return attenuation equipped with a photodetector for detecting a signal
In a mass measuring apparatus, the light source has a Fabry-Perot type laser having a plurality of longitudinal modes.
Optical connector reflection characterized by laser diode
Attenuation measurement device.
【請求項2】 請求項1記載の光コネクタ反射減衰量測
定装置において、 前記伝播光路長差を調整する調整機構が光ファイバを伸
縮させることを特徴とする光コネクタ反射減衰量測定装
置。
2. An optical connector return loss measuring apparatus according to claim 1,
In the constant device, adjusting mechanism for adjusting the propagation optical path length difference of the optical fiber Shin
Optical connector return loss measuring device characterized by shrinking
Place.
JP34080591A 1991-12-24 1991-12-24 Optical Connector Return Loss Measurement System Expired - Lifetime JP2657018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34080591A JP2657018B2 (en) 1991-12-24 1991-12-24 Optical Connector Return Loss Measurement System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34080591A JP2657018B2 (en) 1991-12-24 1991-12-24 Optical Connector Return Loss Measurement System

Publications (2)

Publication Number Publication Date
JPH05172694A JPH05172694A (en) 1993-07-09
JP2657018B2 true JP2657018B2 (en) 1997-09-24

Family

ID=18340456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34080591A Expired - Lifetime JP2657018B2 (en) 1991-12-24 1991-12-24 Optical Connector Return Loss Measurement System

Country Status (1)

Country Link
JP (1) JP2657018B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268741A (en) * 1992-01-31 1993-12-07 Hewlett-Packard Company Method and apparatus for calibrating a polarization independent optical coherence domain reflectometer
US7346126B2 (en) 2001-11-28 2008-03-18 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for channel estimation using plural channels
JP5066038B2 (en) * 2008-09-11 2012-11-07 株式会社雄島試作研究所 Optical path length adjustment device
US9041992B2 (en) * 2013-01-18 2015-05-26 The Boeing Company Fiber stabilization of optical path differences (OPD) over a wide bandwidth frequency range for extended periods of time
WO2019194188A1 (en) * 2018-04-03 2019-10-10 株式会社オプトゲート Reflected light measurement device

Also Published As

Publication number Publication date
JPH05172694A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
US5341205A (en) Method for characterization of optical waveguide devices using partial coherence interferometry
US5682237A (en) Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer
JP3304696B2 (en) Optical sensor
US8040523B2 (en) Measurement method of chromatic dispersion of optical beam waveguide using interference fringe measurement system
CA2272033A1 (en) Arrangement for determining the temperature and strain of an optical fiber
EP1416246A2 (en) Fiber optic Fabry-Perot interferometer and associated methods
US5557400A (en) Multiplexed sensing using optical coherence reflectrometry
JP6062104B2 (en) Optical fiber sensor device
Sorin et al. Multiplexed sensing using optical low-coherence reflectometry
JP2657018B2 (en) Optical Connector Return Loss Measurement System
Ribeiro et al. Low coherence fiber optic system for remote sensors illuminated by a 1.3 μm multimode laser diode
US5189299A (en) Method and apparatus for sensing strain in a waveguide
RU2307318C1 (en) Interferometer measuring device (variants)
JPH05248996A (en) Wavelength dispersion measuring device for optical fiber
JP3925202B2 (en) High speed wavelength detector
AU2020103532A4 (en) A fiber Mach-Zehnder and a Michelson interferometer array combined measurer
JP3317281B2 (en) Optical path length measuring device for arrayed waveguide diffraction grating
JPH06241929A (en) Optical fiber sensor
Courteville et al. Contact-free on-axis metrology for the fabrication and testing of complex optical systems
Wilhelm et al. Dimensional metrology for the fabrication of imaging optics using a high accuracy low coherence interferometer
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
GB2190187A (en) Optical fibre sensors
JPH02140640A (en) Backscattering light measuring instrument
JPH0953999A (en) Optical external force detector
Ding et al. Sapphire fiber Bragg grating coupled with graded-index fiber lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 15