JP2627619B2 - Organic amorphous film preparation method - Google Patents

Organic amorphous film preparation method

Info

Publication number
JP2627619B2
JP2627619B2 JP62172970A JP17297087A JP2627619B2 JP 2627619 B2 JP2627619 B2 JP 2627619B2 JP 62172970 A JP62172970 A JP 62172970A JP 17297087 A JP17297087 A JP 17297087A JP 2627619 B2 JP2627619 B2 JP 2627619B2
Authority
JP
Japan
Prior art keywords
organic
thin film
light
irradiating
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62172970A
Other languages
Japanese (ja)
Other versions
JPS6418441A (en
Inventor
卓史 吉田
彰 森中
宣博 舩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62172970A priority Critical patent/JP2627619B2/en
Publication of JPS6418441A publication Critical patent/JPS6418441A/en
Application granted granted Critical
Publication of JP2627619B2 publication Critical patent/JP2627619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光を照射するとその光を吸収して色、分子
構造、結晶構造、電子状態、結合状態、極性等が変化す
る有機物を用い、その真空蒸着膜がガラス状の非晶質薄
膜と成るようにする薄膜作製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention uses an organic substance that changes its color, molecular structure, crystal structure, electronic state, bonding state, polarity, etc. by absorbing the light when irradiated. The present invention also relates to a method for producing a thin film in which the vacuum-deposited film becomes a glassy amorphous thin film.

〔従来の技術〕 有機物の薄膜作製方法としては、スパツタ法、真空蒸
着法、スピンコート法、デイツピング法、ラングミユア
−プロジエツト(Lagmuir−Blodgett)(LB)法等があ
る。
[Prior Art] As a method for preparing an organic thin film, there are a spatter method, a vacuum evaporation method, a spin coating method, a dipping method, a Lagmuir-Blodgett (LB) method and the like.

このうち、真空蒸着法は溶媒や分散剤等を使用せず、
乾式(ドライ)プロセスで薄膜を作製できるため、膜厚
を簡単に制御でき、しかも多層薄膜や数種類の有機物を
任意の割合で混合した混合薄膜を作製することができ
る。
Among them, the vacuum deposition method does not use a solvent or a dispersant, etc.
Since a thin film can be manufactured by a dry (dry) process, the film thickness can be easily controlled, and a multilayer thin film or a mixed thin film in which several kinds of organic substances are mixed at an arbitrary ratio can be manufactured.

また、蒸着の際に昇華精製プロセスが必然的に加わる
ために、不純物を含まない純粋な物質から成る薄膜を得
ることができる。
In addition, since a sublimation purification process is inevitably added during the deposition, a thin film made of a pure substance containing no impurities can be obtained.

しかしながら、減圧下における沸点や昇華温度付近ま
で加熱しなければならないため、有機物によつては熱分
解してしまうものがあつた。また、有機物の種類によつ
ては真空蒸着法により作製した薄膜が、微結晶を含んだ
り多結晶質膜となり不透明な有機薄膜しか得られない物
も多数存在する。更に、真空中ではガラス状の非晶質薄
膜であつても、空気中にさらすと結晶化が発生、進行
し、白濁化・不透明化する有機物があつた。
However, since it has to be heated to near the boiling point or sublimation temperature under reduced pressure, some organic substances are thermally decomposed. Further, depending on the type of organic substance, there are many substances in which a thin film produced by a vacuum deposition method contains microcrystals or becomes a polycrystalline film, and only an opaque organic thin film can be obtained. Furthermore, even in the case of a glassy amorphous thin film in a vacuum, crystallization occurs and progresses when exposed to air, and some organic substances become cloudy and opaque.

光照射により分子構造を変化させてフオトクロミズム
を示す有機物、例えば、スピロピラン類及びフルギド類
(ビス・メチレン・コハク酸無水物の総称)、シス・ト
ランス異性変化を示す代表的な有機化合物、例えば、ア
ゾベンゼン類及びスチルベン類は、その蒸着膜のほとん
どが微結晶性の不透明な薄膜となつてしまい、上記に示
したような、いかなる薄膜作製方法を用いてもガラス状
の非晶質薄膜を作製することは困難であつた。
Organic substances that show photochromism by changing the molecular structure by light irradiation, for example, spiropyrans and fulgides (generic term for bis-methylene-succinic anhydride), typical organic compounds that show cis-trans isomerization, for example, Most of the deposited films of azobenzenes and stilbenes become microcrystalline and opaque thin films, and a glassy amorphous thin film can be formed using any of the thin film forming methods described above. It was difficult.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、有機物の真空蒸着法による有機薄膜作製法
において、従来技術では結晶化や酸化、分解のためにガ
ラス状の非晶質薄膜を得られない有機物でもガラス状の
非晶質薄膜を作製することが可能な真空蒸着法を提供す
ることにある。
The present invention relates to a method for producing an organic thin film by a vacuum evaporation method of an organic substance.In the conventional technique, a glassy amorphous thin film is produced even for an organic substance which cannot obtain a glassy amorphous thin film due to crystallization, oxidation, and decomposition. It is an object of the present invention to provide a vacuum deposition method capable of performing the above.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明を概説すれば、本発明は有機非晶質膜作製方法
に関する発明であつて、真空蒸着法による薄膜形成法に
おいて、スチルベン類、アゾベンゼン類、及びフルギド
類よりなる群から選択した有機物に真空槽の外に配置し
た光源からの光を照射しながら蒸着し非晶質膜を得るこ
とを特徴とする。
In general, the present invention relates to a method for forming an organic amorphous film. In a method for forming a thin film by a vacuum evaporation method, an organic material selected from the group consisting of stilbenes, azobenzenes, and fulgides is vacuum-evaporated. It is characterized in that an amorphous film is obtained by vapor deposition while irradiating light from a light source disposed outside the tank.

本発明は、光を照射するとその光を吸収して色、分子
構造、結晶構造、電子状態、結合状態、極性等が変化す
る有機物に、光を照射しながら真空蒸着を行い、ガラス
状の非晶質薄膜を得ることを最も主要な特徴とする。
According to the present invention, when light is irradiated, an organic substance that changes its color, molecular structure, crystal structure, electronic state, bonding state, polarity, etc. by absorbing the light is subjected to vacuum deposition while irradiating the light, and a glassy non-glass The main feature is to obtain a crystalline thin film.

従来の真空蒸着法では、結晶化によりほとんどの有機
物が白濁化していた。しかし、本発明を用いれば、該有
機物が吸収する光を照射することにより、有機物の色、
分子構造、結晶構造、電子状態、結合状態、極性等が変
化するため、結晶構造を変化させ、従来の技術では得ら
れなかつた有機非晶質薄膜を得ることができる。
In the conventional vacuum deposition method, almost all organic substances have become cloudy due to crystallization. However, by using the present invention, by irradiating light absorbed by the organic substance, the color of the organic substance,
Since the molecular structure, the crystal structure, the electronic state, the bonding state, the polarity, and the like change, the crystal structure is changed, and an organic amorphous thin film that cannot be obtained by the conventional technique can be obtained.

しかも、非晶質薄膜となることにより、該化合物の結
晶構造に比べて、非晶質薄膜内では、該化合物分子の回
りに自由な空間(free volume)が存在するようにな
る。
In addition, the amorphous thin film has a free volume around the compound molecule in the amorphous thin film as compared with the crystal structure of the compound.

そのため、光照射により分子構造変化、シス・トラン
ス異性変化を示す代表的な化合物スチルベン類及びアゾ
ベンゼン類の量子収率は、結晶性の薄膜に対し、非晶質
薄膜内では飛躍的に増大する。
Therefore, the quantum yields of stilbenes and azobenzenes, which are typical compounds showing a molecular structure change and a cis-trans isomer change by light irradiation, are significantly increased in an amorphous thin film compared to a crystalline thin film.

更に、光照射により、分子運動を伴つて(E)
(Z)異性化する代表的な化合物、フルギド類の量子収
率は、結晶性の薄膜に対し、非晶質薄膜内では、飛躍的
に増大する。
Furthermore, by light irradiation, with molecular motion (E)
(Z) The quantum yield of typical isomerized compounds, fulgides, increases dramatically in an amorphous thin film compared to a crystalline thin film.

有機物に対する光照射は真空蒸着装置中のいかなる状
態の有機物に対して行つてもよい。例えば、気相状態と
なつている有機物、蒸着中の加熱ボート上にある有機
物、蒸着中の基板上にあり薄膜を形成している有機物に
対して行つてよい。また、その光照射は透明な基板を用
い基板を通して有機物に光照射してもよい。更に、本発
明による作製法で、同時に数種類の有機物を蒸着させる
場合には、少なくとも1種類の有機物に光を照射しなが
ら蒸着を行うのがよい。
Light irradiation on the organic substance may be performed on the organic substance in any state in the vacuum evaporation apparatus. For example, it may be performed for an organic substance in a gaseous phase state, an organic substance on a heating boat during vapor deposition, and an organic substance on a substrate during vapor deposition and forming a thin film. In addition, the light irradiation may use a transparent substrate and irradiate the organic substance with light through the substrate. Further, in the case where several kinds of organic substances are vapor-deposited simultaneously by the production method according to the present invention, it is preferable to perform vapor deposition while irradiating at least one kind of organic substance with light.

本発明方法で使用する光とは可視光に限らないが、高
エネルギーであると有機物が分解する恐れがあるので、
一般に紫外光領域から赤外光領域に入る光源を用いるの
が望ましい。
The light used in the method of the present invention is not limited to visible light, but if the energy is high, organic substances may be decomposed.
Generally, it is desirable to use a light source that enters the infrared region from the ultraviolet region.

本発明において用いる、光照射によつて色、分子構
造、結晶構造、電子状態、結合状態、極性等が変化する
化合物としては、フルギド類、スチルベン類及びアゾベ
ンゼン類を挙げることができる。
Examples of the compound used in the present invention, whose color, molecular structure, crystal structure, electronic state, bonding state, polarity and the like are changed by light irradiation, include fulgides, stilbenes, and azobenzenes.

スチルベン類及びアゾベンゼン類としては下記に示
す、基本構造式を持つ有機化合物を挙げることができ
る。
Examples of the stilbenes and azobenzenes include organic compounds having a basic structural formula shown below.

(上記各式において、R6〜R9は同一又は異なり、水素、
低級アルキル基、低級アルコキシ基、ニトロ基、水酸
基、ハロゲン、アミノ基、モノ若しくはジ−置換アミノ
基を示す) フルギド類としては下記に示す基本構造式を持つ化合
物を挙げることができる。
(In the above formulas, R 6 to R 9 are the same or different, and hydrogen,
(Indicating lower alkyl group, lower alkoxy group, nitro group, hydroxyl group, halogen, amino group, mono- or di-substituted amino group) Examples of fulgides include compounds having the following basic structural formula.

(式中R10〜R13は同一又は異なり、水素又は置換基を示
すが、少なくとも1個は芳香族環を有する基である) 〔実施例〕 以下、本発明を実施例により更に具体的に説明する
が、本発明はこれら実施例に限定されない。
(In the formula, R 10 to R 13 are the same or different and each represent hydrogen or a substituent, but at least one is a group having an aromatic ring.) [Examples] Hereinafter, the present invention will be more specifically described by Examples. Although described, the present invention is not limited to these examples.

本発明方法の1例 第1図は、実施例1で使用する有機非晶質膜作製装置
の断面概略図である。第1図において符号11はベルジヤ
ー、12は基板、13は紫外光、14は超高圧水銀灯、15はス
リツト、16は試料、17は加熱ボート、18は加熱温度制御
装置、19は石英製窓、20は色ガラスフイルターを意味す
る。
FIG. 1 is a schematic sectional view of an apparatus for producing an organic amorphous film used in Example 1. In FIG. 1, reference numeral 11 is a bell jewel, 12 is a substrate, 13 is an ultraviolet light, 14 is an ultra-high pressure mercury lamp, 15 is a slit, 16 is a sample, 17 is a heating boat, 18 is a heating temperature control device, 19 is a quartz window, 20 means a colored glass filter.

実施例2 第2図は本発明方法の1例で使用する有機非晶質薄膜
蒸着装置の断面概略図である。第2図において符号51は
500Wの超高圧水銀灯、52は光反射ミラー、53は365nmの
紫外光を透過するガラス製ベルジヤー、54は石英基板、
55は試料、56は加熱ボート、57は加熱温度制御装置、58
は光線、59は色ガラスフイルターを意味する。基板に透
明な石英基板を用い、基板の後方から光を照射し、石英
基板上に堆積しつつある薄膜と蒸着中の気相状態である
試料、及び、加熱ボート上の試料に光を照射した。
Embodiment 2 FIG. 2 is a schematic sectional view of an organic amorphous thin film deposition apparatus used in one example of the method of the present invention. In FIG. 2, reference numeral 51 indicates
500W ultra-high pressure mercury lamp, 52 is a light reflecting mirror, 53 is a glass bell jer that transmits 365nm ultraviolet light, 54 is a quartz substrate,
55 is a sample, 56 is a heating boat, 57 is a heating temperature controller, 58
Indicates a light beam, and 59 indicates a color glass filter. Using a transparent quartz substrate as the substrate, light was irradiated from the back of the substrate, and the thin film being deposited on the quartz substrate, the sample in the vapor phase during vapor deposition, and the sample on the heating boat were irradiated with light. .

実施例3 第3図は本発明方法の1例で使用する有機非晶質薄膜
蒸着装置の断面概略図である。第3図において符号61は
500Wの超高圧水銀灯、62は光反射ミラー、63は365nmの
紫外光を透過するガラス製ベルジヤー、64はシリコン
(Si)基板、65は試料、66は加熱ボート、67は加熱温度
制御装置、68は光線、69は色ガラスフイルターを意味す
る。この場合には基板に不透明なSi基板を用いているた
め、基板側から光を照射し、Si基板上に堆積しつつある
薄膜に紫外光を照射した。
Embodiment 3 FIG. 3 is a schematic sectional view of an organic amorphous thin film deposition apparatus used in one example of the method of the present invention. In FIG. 3, reference numeral 61 denotes
500W ultra high pressure mercury lamp, 62 is a light reflecting mirror, 63 is a glass bell jersey that transmits 365nm ultraviolet light, 64 is a silicon (Si) substrate, 65 is a sample, 66 is a heating boat, 67 is a heating temperature control device, 68 Indicates a light beam, and 69 indicates a colored glass filter. In this case, since the opaque Si substrate was used as the substrate, light was irradiated from the substrate side, and the thin film being deposited on the Si substrate was irradiated with ultraviolet light.

実施例4 第4図は本発明方法の1例で使用する有機非晶質薄膜
蒸着装置の断面概略図である。第4図において符号71は
500Wの超高圧水銀灯、73は365nmの紫外光を透過するガ
ラス製ベルジヤー、74は基板、75は試料、76は加熱ボー
ト、77は加熱温度制御装置、78は光線、79は色ガラスフ
イルターを意味する。
Example 4 FIG. 4 is a schematic sectional view of an organic amorphous thin film deposition apparatus used in one example of the method of the present invention. In FIG. 4, reference numeral 71 indicates
500W ultra-high pressure mercury lamp, 73 is a glass bell jar that transmits 365nm ultraviolet light, 74 is a substrate, 75 is a sample, 76 is a heating boat, 77 is a heating temperature control device, 78 is a light beam, and 79 is a color glass filter I do.

実施例5 第1図に示した装置を使用した。用いた有機物試料は
光照射によりシス・トランス異性変化をする化合物、4
−ニトロ−4′−ジメチルアミノスチルベン(略記:NDA
SB)である。その構造変化を下記式で示す。
Example 5 The apparatus shown in FIG. 1 was used. The organic sample used was a compound that undergoes cis-trans isomerization upon light irradiation,
-Nitro-4'-dimethylaminostilbene (abbreviation: NDA
SB). The structural change is shown by the following formula.

第1図中18の加熱温度制御装置によつて第1図中17の
加熱ボートを80℃にし、真空度は1×10-4 Torr、紫外
光源としては500Wの超高圧水銀灯の360nmの輝線を用い
て、蒸着中の気相状態であるNDASBに紫外光照射しなが
ら真空蒸着を行つた。NDASBは前記式に示すように、紫
外光を照射するとシス・トランス異性により、分子構造
を変化させる。このNDASBは通常の真空蒸着法によつて
蒸着すると、結晶化により不透明な薄膜しか得られなか
つた。しかしながら、本発明法による第1図の構成のよ
うに、紫外光を照射しながら蒸着をするとNDASB分子の
構造がシス体からトランス体へと変化し、その結晶構造
も変化させるためNDASBのガラス状有機非晶質薄膜を得
ることができた。
The heating boat shown in FIG. 1 is heated to 80 ° C. by the heating temperature control device 18 in FIG. 1, the degree of vacuum is 1 × 10 −4 Torr, and the ultraviolet light source is a super high pressure mercury lamp of 500 W, which emits 360 nm bright lines. Vacuum evaporation was performed while irradiating ultraviolet light to NDASB in a gas phase state during evaporation. As shown in the above formula, NDASB changes its molecular structure by cis-trans isomerism when irradiated with ultraviolet light. When NDASB was deposited by a conventional vacuum deposition method, only an opaque thin film was obtained by crystallization. However, as shown in FIG. 1 according to the method of the present invention, when vapor deposition is performed while irradiating ultraviolet light, the structure of NDASB molecules changes from a cis form to a trans form, and the crystal structure also changes. An organic amorphous thin film was obtained.

第5図は、従来の方法(破線a)と、本発明による方
法(実線b)とで得たNDASB薄膜の吸収スペクトル図
〔横軸は波長(nm)、縦軸は光学密度(Optical Densit
y,OD)を示す〕を示す。基板はどちらも透明な石英基板
を用いた。従来の方法で得たNDASB膜は結晶化により白
濁し不透明なため、測定波長全域にわたつて、光の散乱
による光学密度(OD)の増加が観察された。それに対
し、本発明による方法で得られたNDASB薄膜はシス体に
よる吸収以外の領域では全く吸収がなく、完全に透明で
あつた。また、シス体による吸収も加熱又は可視光照射
により、NDASBをトランス体に戻すことで減少し、第5
図、実線cに示すようにガラス状NDASB蒸着膜を初めて
得ることができた。この膜に再び紫外光を照射すると発
色し、非晶質のまま可逆なシストランス異性変化を示
すNDASB非晶質薄膜を初めて得ることができた。
FIG. 5 is an absorption spectrum diagram of the NDASB thin film obtained by the conventional method (broken line a) and the method according to the present invention (solid line b) [the horizontal axis represents wavelength (nm), and the vertical axis represents optical density (Optical Densit).
y, OD)]. Both substrates used transparent quartz substrates. Since the NDASB film obtained by the conventional method became cloudy and opaque due to crystallization, an increase in optical density (OD) due to light scattering was observed over the entire measurement wavelength range. On the other hand, the NDASB thin film obtained by the method of the present invention did not absorb at all in the region other than the absorption by the cis-form, and was completely transparent. In addition, absorption by the cis-form is reduced by returning NDASB to the trans-form by heating or irradiation with visible light.
As shown in the figure and the solid line c, a glassy NDASB vapor deposition film was obtained for the first time. When this film was irradiated with ultraviolet light again, it developed a color, and it was possible to obtain, for the first time, an NDASB amorphous thin film showing a reversible cis-trans isomer change while being amorphous.

実施例6 第2図に示した装置を使用した。蒸着試料は実施例5
と同様にNDASBを用い、諸条件も実施例5と同じにし
た。このように透明な基板に直接、光を照射しても実施
例5で得られたNDASBの透明なガラス大非晶質薄膜を得
ることができた。
Example 6 The apparatus shown in FIG. 2 was used. The deposition sample is Example 5.
In the same manner as in Example 5, NDASB was used, and various conditions were the same as in Example 5. Thus, even if the transparent substrate was directly irradiated with light, the transparent glass large amorphous thin film of NDASB obtained in Example 5 could be obtained.

実施例7 第3図に示した装置を使用した。蒸着試料は実施例5
と同様にNDASBを用い、諸条件も実施例5と同じにし
た。このように不透明な基板を用いて蒸着する側から基
板に光を照射しても、実施例5で得られたNDASBの透明
なガラス状非晶質薄膜を得ることができた。
Example 7 The apparatus shown in FIG. 3 was used. The deposition sample is Example 5.
In the same manner as in Example 5, NDASB was used, and various conditions were the same as in Example 5. Thus, even when the substrate was irradiated with light from the side of vapor deposition using the opaque substrate, the transparent glassy amorphous thin film of NDASB obtained in Example 5 could be obtained.

実施例8 第4図に示した装置を使用した。試料は実施例5と同
様にNDASBを用いた。NDASBは蒸着する際に、加熱ボート
上で固体から一旦溶融し液体状態になつてから蒸発す
る。本実施例8においてはこの加熱ボート上の液体状態
にあるNDASBに紫外光を照射し、実施例5と同じ条件で
真空蒸着を行つた。このように加熱ボート上の試料に直
接光照射しても、実施例5で得られたNDASBの透明なガ
ラス状非晶質薄膜を得ることができた。
Example 8 The apparatus shown in FIG. 4 was used. As the sample, NDASB was used as in Example 5. During deposition, NDASB once melts from a solid on a heated boat, turns into a liquid state, and then evaporates. In Example 8, NDASB in a liquid state on the heating boat was irradiated with ultraviolet light, and vacuum deposition was performed under the same conditions as in Example 5. Thus, even when the sample on the heating boat was directly irradiated with light, the transparent glassy amorphous thin film of NDASB obtained in Example 5 could be obtained.

実施例9 第1図に示した装置を使用した。用いた有機物試料は
光照射によりシス・トランス異性変化をする代表的な化
合物アゾベンゼンである。その構造変化を下記式で示
す。
Example 9 The apparatus shown in FIG. 1 was used. The organic sample used is a representative compound, azobenzene, which undergoes cis-trans isomerization upon light irradiation. The structural change is shown by the following formula.

第1図中18の加熱温度制御装置によつて第1図中17の
加熱ボートを80℃にし、真空度は1×10-4 Torr、紫外
光源としては500Wの超高圧水銀灯の360nmの輝線を用い
て、蒸着中の気相状態であるアゾベンゼンに紫外光照射
しながら真空蒸着を行つた。アゾベンゼンは前記式に示
すように、紫外光を照射するとシス・トランス異性によ
り、分子構造を変化させる。このアゾベンゼンは通常の
真空蒸着法によつて蒸着すると、結晶化により不透明な
薄膜しか得られなかつた。
The heating boat shown in FIG. 1 is heated to 80 ° C. by the heating temperature control device 18 in FIG. 1, the degree of vacuum is 1 × 10 −4 Torr, and the ultraviolet light source is a super high pressure mercury lamp of 500 W, which emits 360 nm bright lines. Vacuum evaporation was performed while irradiating ultraviolet light to azobenzene in a gas phase state during evaporation. As shown in the above formula, azobenzene changes its molecular structure by cis-trans isomerism when irradiated with ultraviolet light. When this azobenzene was deposited by a usual vacuum deposition method, only an opaque thin film was obtained due to crystallization.

しかしながら、本発明法による第1図の構成のよう
に、紫外光を照射しながら蒸着をするとアゾベンゼン分
子の構造がシス体からトランス体へと変化し、その結晶
構造も変化させるため、アゾベンゼンのガラス状有機非
晶質薄膜を得ることができた。
However, as shown in FIG. 1 according to the method of the present invention, when vapor deposition is performed while irradiating ultraviolet light, the structure of azobenzene molecules changes from a cis-form to a trans-form, and the crystal structure also changes. An organic amorphous thin film was obtained.

第6図は、従来の方法(破線a)と、本発明による方
法(実線b)とで得たアゾベンゼン薄膜の吸収スペクト
ル図〔横軸は波長(nm)、縦軸は光学密度(Optical De
nsity,OD)を示す〕を示す。基板はどちらも透明な石英
基板を用いた。
FIG. 6 is an absorption spectrum diagram of an azobenzene thin film obtained by the conventional method (broken line a) and the method according to the present invention (solid line b) [the horizontal axis is wavelength (nm), and the vertical axis is optical density (Optical Depth).
nsity, OD)]. Both substrates used transparent quartz substrates.

従来の方法で得たアゾベンゼン薄膜は結晶化により白
濁し不透明なため、測定波長全域にわたつて、光の散乱
による光学密度(OD)の増加が観察された。
Since the azobenzene thin film obtained by the conventional method became cloudy and opaque due to crystallization, an increase in optical density (OD) due to light scattering was observed over the entire measurement wavelength range.

それに対し、本発明による方法で得られたアゾベンゼ
ン薄膜はシス体による吸収以外の領域では全く吸収がな
く、完全に透明であつた。また、シス体による吸収も加
熱又は可視光照射により、アゾベンゼンをトランス体に
戻すことで減少し、第6図、実線cに示すようにガラス
状アゾベンゼン蒸着膜を初めて得ることができた。この
膜に再び紫外光を照射すると発色し、非晶質のまま可逆
なシストランス異性変化を示すアゾベンゼン非晶質薄
膜を初めて得ることができた。
On the other hand, the azobenzene thin film obtained by the method according to the present invention did not absorb at all except in the region other than the absorption by the cis body, and was completely transparent. In addition, absorption by the cis-form was also reduced by returning azobenzene to the trans-form by heating or irradiation with visible light, and a glassy azobenzene-deposited film could be obtained for the first time as shown by the solid line c in FIG. When this film was irradiated with ultraviolet light again, it developed a color, and it was possible to obtain, for the first time, an azobenzene amorphous thin film showing a reversible cis-trans isomer change while being amorphous.

実施例10 第2図に示した装置を使用した。蒸着試料は実施例9
と同様にアゾベンゼンを用い、諸条件も実施例9と同じ
にした。このように透明な基板に直接、光を照射しても
実施例9で得られたアゾベンゼンの透明なガラス状非晶
質薄膜を得ることができた。
Example 10 The apparatus shown in FIG. 2 was used. The deposition sample is Example 9
Azobenzene was used in the same manner as in Example 9 and the conditions were the same as in Example 9. Thus, even if the transparent substrate was directly irradiated with light, a transparent glassy amorphous thin film of azobenzene obtained in Example 9 could be obtained.

実施例11 第3図に示した装置を使用した。蒸着試料は実施例9
と同様にアゾベンゼンを用い、諸条件も実施例9と同じ
にした。このように不透明な基板を用いて蒸着する側か
ら基板に光を照射しても、実施例9で得られたアゾベン
ゼンの透明なガラス状非晶質薄膜を得ることができた。
Example 11 The apparatus shown in FIG. 3 was used. The deposition sample is Example 9
Azobenzene was used in the same manner as in Example 9 and the conditions were the same as in Example 9. Thus, even when the substrate was irradiated with light from the side to be vapor-deposited using the opaque substrate, the transparent glassy amorphous thin film of azobenzene obtained in Example 9 could be obtained.

実施例12 第4図に示した装置を使用した。試料は実施例9と同
様にアゾベンゼンを用いた。アゾベンゼンは蒸着する際
に、加熱ボート上で固体から一旦溶融し液体状態になつ
てから蒸発する。本実施例12においてはこの加熱ボート
上の液体状態にあるアゾベンゼンに紫外光を照射し、実
施例9と同じ条件で真空蒸着を行つた。このように加熱
ボートの試料に直接光照射しても、実施例9で得られた
アゾベンゼンの透明なガラス状非晶質薄膜を得ることが
できた。
Example 12 The apparatus shown in FIG. 4 was used. As the sample, azobenzene was used as in Example 9. When depositing azobenzene, it is first melted from a solid on a heating boat, becomes a liquid state, and then evaporates. In Example 12, azobenzene in a liquid state on the heating boat was irradiated with ultraviolet light, and vacuum deposition was performed under the same conditions as in Example 9. Thus, even when the sample of the heating boat was directly irradiated with light, the transparent glassy amorphous thin film of azobenzene obtained in Example 9 could be obtained.

実施例13 第1図に示した装置を使用した。有機物は紫外光照射
により分子構造の変化する(E)−α−2,5−ジメチル
−3−フリルエチリデン(7,7−ジメチルメチレン)コ
ハク酸無水物(略称:フリルフルギド)を用いた。その
構造変化を下記式で示す。
Example 13 The apparatus shown in FIG. 1 was used. As the organic substance, (E) -α-2,5-dimethyl-3-furylethylidene (7,7-dimethylmethylene) succinic anhydride (abbreviation: furylflugide) whose molecular structure changes upon irradiation with ultraviolet light was used. The structural change is shown by the following formula.

第1図中18の加熱温度制御装置によつて第1図中17の
加熱ボートを200℃にし、真空度は1×10-4 Torr、紫外
光源としては500Wの超高圧水銀灯の360nmの輝線を用い
て、蒸着中の気相状態であるフチルフルギドに紫外光照
射しながら真空蒸着を行つた。フリルフルギドは前記式
に示すように、紫外光を照射すると分子構造を変化させ
る。このフリルフルギドを通常の真空蒸着法により蒸着
すると結晶化によつて不透明な薄膜しか得られなかつ
た。しかしながら、本発明法による第1図の構成のよう
に、紫外光を照射しながら蒸着をするとフリルフルギド
分子の構造が変化し、その結晶構造も変化させるため、
フリルフルギドのガラス状有機非晶質薄膜を初めて得る
ことができた。
The heating boat shown in FIG. 1 is heated to 200 ° C. by the heating temperature control device 18 in FIG. 1, the degree of vacuum is 1 × 10 −4 Torr, and the ultraviolet light source is a super high pressure mercury lamp of 500 W, which emits 360 nm bright lines. Vacuum deposition was performed while irradiating ultraviolet light to futilfurgide in a gas phase state during the deposition. As shown in the above formula, furrfulgide changes its molecular structure when irradiated with ultraviolet light. When frillfulgide was deposited by a usual vacuum deposition method, only an opaque thin film could be obtained by crystallization. However, as shown in the structure of FIG. 1 according to the method of the present invention, when vapor deposition is performed while irradiating ultraviolet light, the structure of the furylflugide molecule changes, and the crystal structure also changes.
A glassy organic amorphous thin film of furfurflugide was obtained for the first time.

第7図は、従来の方法(破線a)と、本発明による方
法(実線b)とで得たフリルフルギド薄膜の吸収スペク
トル図〔横軸は波長(nm)、縦軸は光学密度(Optical
Density,OD)を示す〕を示す。基板はどちらも透明な石
英基板を用いた。従来の方法で得たフリルフルギド薄膜
は結晶化により白濁し不透明なため、測定波長全域にわ
たつて、光の散乱による光学密度(OD)の増加が観察さ
れた。
FIG. 7 is an absorption spectrum diagram of a frillflugide thin film obtained by the conventional method (broken line a) and the method of the present invention (solid line b) [the horizontal axis represents wavelength (nm), and the vertical axis represents optical density (Optical density).
Density, OD). Both substrates used transparent quartz substrates. Since the frillfulgide thin film obtained by the conventional method becomes cloudy and opaque due to crystallization, an increase in optical density (OD) due to light scattering was observed over the entire measurement wavelength range.

それに対し、本発明による方法で得られたフリルフル
ギド薄膜は(Z)体による吸収以外の領域では全く吸収
がなく、完全に透明であつた。また、(Z)体による吸
収も加熱又は可視光照射により、フリルフルギドを
(E)体に戻すことで減少し、第7図、実線cに示すよ
うにガラス状フリルフルギド蒸着膜を初めて得ることが
できた。この膜に再び紫外光を照射すると発色し、非晶
質のまま可逆な(E)(Z)変化を示すフリルフルギ
ド非晶質薄膜を初めて得ることができた。
On the other hand, the furyl fulgide thin film obtained by the method of the present invention had no absorption except in the region other than the absorption by the (Z) body, and was completely transparent. Further, the absorption by the (Z) body is also reduced by returning the firfulgide to the (E) body by heating or irradiation with visible light, and as shown in FIG. 7, a solid line c, a glassy frillfulgide deposited film can be obtained for the first time. Was. When this film was irradiated with ultraviolet light again, a color was formed, and a frillfulgide amorphous thin film showing a reversible (E) (Z) change in an amorphous state could be obtained for the first time.

実施例14 第2図に示した装置を使用した。蒸着試料は実施例13
と同様にフリルフルギドを用い、諸条件も実施例13と同
じにした。このように透明な基板に直接、光を照射して
も実施例13で得られたフリルフルギドの透明なガラス状
非晶質薄膜を得ることができた。
Example 14 The apparatus shown in FIG. 2 was used. The vapor deposition sample is Example 13.
In the same manner as in Example 2, furylfurgide was used, and the conditions were the same as in Example 13. Thus, even if the transparent substrate was directly irradiated with light, the transparent glassy amorphous thin film of frillfulgide obtained in Example 13 could be obtained.

実施例15 第3図に示した装置を使用した。蒸着試料は実施例13
と同様にフリルフルギドを用い、諸条件も実施例13と同
じにした。このように不透明な基板を用いて蒸着する側
から基板に光を照射しても、実施例13で得られたフリル
フルギドの透明なガラス状非晶質薄膜を得ることができ
た。
Example 15 The apparatus shown in FIG. 3 was used. The vapor deposition sample is Example 13.
In the same manner as in Example 2, furylfurgide was used, and the conditions were the same as in Example 13. Thus, even when the substrate was irradiated with light from the side of vapor deposition using the opaque substrate, the transparent glassy amorphous thin film of frillfulgide obtained in Example 13 could be obtained.

実施例16 第4図に示した装置を使用した。試料は実施例13と同
様にフリルフルギドを用いた。フリルフルギドは蒸着す
る際に、加熱ボート上で固体から一旦溶融し液体状態に
なつてから蒸発する。本実施例16においてはこの加熱ボ
ート上の液体状態にあるフリルフルギドに紫外光を照射
し、実施例13と同じ条件で真空蒸着を行つた。このよう
に加熱ボート上の試料に直接光照射しても、実施例13で
得られたフリルフルギドの透明なガラス状非晶質薄膜を
得ることができた。
Example 16 The apparatus shown in FIG. 4 was used. As a sample, frillflugide was used as in Example 13. During vapor deposition, frillfulgide is once melted from a solid on a heating boat, turned into a liquid state, and then evaporated. In Example 16, the liquid state furyl fulgide on the heating boat was irradiated with ultraviolet light, and vacuum deposition was performed under the same conditions as in Example 13. Thus, even when the sample on the heating boat was directly irradiated with light, the transparent glassy amorphous thin film of frillfulgide obtained in Example 13 could be obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の有機非晶質膜作製方法
を用いることにより、従来の薄膜作製方法では、非晶質
の薄膜を得ることが困難であつた化合物も、ガラス状の
透明な非晶質膜を、形成させることができるようになつ
た。したがつて、従来、真空蒸着が不可能であつた化合
物も蒸着が可能となり、現在、湿式でしか薄膜が得られ
なかつた有機物も乾式で薄膜化が可能となる。本方法を
用いることにより、レジスト材料等の乾式薄膜化に大き
な効果を期待できる。
As described above, by using the method for producing an organic amorphous film of the present invention, even a compound in which it was difficult to obtain an amorphous thin film by the conventional method for producing a thin film can be used as a glassy transparent non-crystalline film. A crystalline film can now be formed. Therefore, compounds that have conventionally been impossible to vapor-deposit can now be vapor-deposited. At present, thin films can be obtained only by a wet method, and organic substances can be thinned by a dry method. By using this method, a great effect can be expected for dry thinning of a resist material or the like.

また、光照射により、有機物が励起状態のままで薄膜
化されるため、従来の方法で作製した薄膜では実現し得
なかつた機能、例えば、有機物太陽電池の作製等が可能
となる。
Further, since the organic substance is thinned by the light irradiation while being in an excited state, a function that cannot be realized by a thin film manufactured by a conventional method, for example, an organic solar cell can be manufactured.

更にまた、実施例で示したように、従来の方法では結
晶化し白濁化してしまい、不透明な薄膜となるフリルフ
ルギド膜、更にNDASB膜及びアゾベンゼン膜は、本発明
によれば、非晶質になり、しかも透明な非晶質のまま、
紫外光、可視光(又は加熱)により可逆な変化、すなわ
ち色の着色・消色、いわゆるフオトクロミズム又はシス
・トランス異性変化を効率よく示すので、書換え型の光
デイスク媒体として用いることができ、高分子分散媒体
等を用いる必要がなく、非晶質の単独の薄膜なので、高
SN比を得ることができる。
Furthermore, as shown in the examples, the conventional method crystallizes and becomes cloudy, and the frillfulgide film which becomes an opaque thin film, further the NDASB film and the azobenzene film become amorphous according to the present invention, Moreover, while being transparent and amorphous
It can be used as a rewritable optical disk medium because it efficiently shows a reversible change by ultraviolet light or visible light (or heating), that is, coloring and decoloring of color, so-called photochromism or cis-trans isomerization change. There is no need to use a molecular dispersion medium, etc.
An SN ratio can be obtained.

【図面の簡単な説明】 第1図、第2図、第3図及び第4図は本発明で使用する
有機非晶質薄膜作製装置の1例の断面概略図、第5図、
第6図及び第7図は本発明の真空蒸着薄膜の18例の吸収
スペクトル図である。 11:ペルジヤー、12、64:基板、13:紫外光線、14、51、6
1、71:500W超高圧水銀灯、15:スリツト、16、55、65、7
5:試料、17、56、66、76:加熱ボート、18、57、67、77:
加熱温度制御装置、19:石英窓、52、62:光反射ミラー、
53、63、73:ガラス製ベルジヤー、54、74:石英基板、5
8、68、78:光線、20、59、69、79:色ガラスフイルタ
ー。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are schematic sectional views of an example of an organic amorphous thin film producing apparatus used in the present invention, FIG.
6 and 7 are absorption spectrum diagrams of 18 examples of the vacuum deposited thin film of the present invention. 11: Perzier, 12, 64: Substrate, 13: Ultraviolet ray, 14, 51, 6
1, 71: 500W ultra-high pressure mercury lamp, 15: slit, 16, 55, 65, 7
5: Sample, 17, 56, 66, 76: Heated boat, 18, 57, 67, 77:
Heating temperature control device, 19: quartz window, 52, 62: light reflection mirror,
53, 63, 73: glass bell jersey, 54, 74: quartz substrate, 5
8, 68, 78: rays, 20, 59, 69, 79: colored glass filters.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 舩越 宣博 茨城県那珂郡東海村大字白方字白根162 番地 日本電信電話株式会社茨城電気通 信研究所内 (56)参考文献 特開 昭63−224023(JP,A) 特開 昭62−274063(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Nobuhiro Funakoshi No. 162, Shirane, Shikata, Tokai-mura, Naka-gun, Ibaraki Pref. JP, A) JP-A-62-274063 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空蒸着法による薄膜形成法において、ス
チルベン類、アゾベンゼン類、及びフルギド類よりなる
群から選択した有機物に真空槽の外に配置した光源から
の光を照射しながら蒸着し非晶質膜を得ることを特徴と
する有機非晶質膜作製方法。
An organic material selected from the group consisting of stilbenes, azobenzenes, and fulgides is vapor-deposited while irradiating light from a light source disposed outside a vacuum chamber to an amorphous material. A method for producing an organic amorphous film, characterized by obtaining a porous film.
【請求項2】該光照射を、蒸着中の気相状態となってい
る有機物に対して照射することにより行う特許請求の範
囲第1項記載の有機非晶質膜作製方法。
2. The method for producing an organic amorphous film according to claim 1, wherein said light irradiation is performed by irradiating an organic substance in a gas phase state during vapor deposition.
【請求項3】該光照射を、蒸着中の基板に照射し、堆積
しつつある有機薄膜に照射することにより行う特許請求
の範囲第1項記載の有機非晶質作製方法。
3. The method for producing an organic amorphous material according to claim 1, wherein the light irradiation is performed by irradiating the substrate being vapor-deposited and irradiating the organic thin film being deposited.
【請求項4】該光照射を、蒸着中の基板を通した光で、
堆積した有機薄膜と気相状態の有機物の両方に照射しな
がら行う特許請求の範囲第1項記載の有機非晶質膜作製
方法。
4. The method according to claim 1, wherein the light irradiation is performed by light passing through a substrate being deposited.
2. The method for producing an organic amorphous film according to claim 1, wherein the method is performed while irradiating both the deposited organic thin film and the organic substance in a gas phase.
【請求項5】該光照射を、蒸着中の加熱ボート上の有機
物に光を照射することにより行う特許請求の範囲第1項
記載の有機非晶質膜作製方法。
5. The method for producing an organic amorphous film according to claim 1, wherein said light irradiation is performed by irradiating an organic substance on a heating boat during vapor deposition with light.
【請求項6】該蒸着で、同時に数種類の有機物を蒸着さ
せる場合には、少なくとも1種類の有機物に光を照射し
ながら蒸着を行う特許請求の範囲第1項〜第5項のいず
れか1項に記載の有機非晶質膜作製方法。
6. The method according to claim 1, wherein, in the case of depositing several kinds of organic substances simultaneously, the deposition is performed while irradiating at least one kind of organic substances with light. 3. The method for producing an organic amorphous film according to item 1.
JP62172970A 1987-07-13 1987-07-13 Organic amorphous film preparation method Expired - Fee Related JP2627619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62172970A JP2627619B2 (en) 1987-07-13 1987-07-13 Organic amorphous film preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62172970A JP2627619B2 (en) 1987-07-13 1987-07-13 Organic amorphous film preparation method

Publications (2)

Publication Number Publication Date
JPS6418441A JPS6418441A (en) 1989-01-23
JP2627619B2 true JP2627619B2 (en) 1997-07-09

Family

ID=15951734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62172970A Expired - Fee Related JP2627619B2 (en) 1987-07-13 1987-07-13 Organic amorphous film preparation method

Country Status (1)

Country Link
JP (1) JP2627619B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6274204B1 (en) * 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
TW439308B (en) 1998-12-16 2001-06-07 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6207239B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6506461B2 (en) 1999-03-31 2003-01-14 Battelle Memorial Institute Methods for making polyurethanes as thin films
US20100330748A1 (en) 1999-10-25 2010-12-30 Xi Chu Method of encapsulating an environmentally sensitive device
US6548912B1 (en) 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6573652B1 (en) 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6623861B2 (en) 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
KR20020001738A (en) * 1999-12-02 2002-01-09 하야시바라 켄 Styryl Dye
US6492026B1 (en) 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
WO2008083308A1 (en) 2006-12-28 2008-07-10 3M Innovative Properties Company Nucleation layer for thin film metal layer formation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117406A (en) * 1984-11-13 1986-06-04 Toshiba Corp Measuring instrument for curvature of rotating cylinder
JPS63224023A (en) * 1987-03-12 1988-09-19 Hitachi Maxell Ltd Magnetic recording medium and production thereof

Also Published As

Publication number Publication date
JPS6418441A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
JP2627619B2 (en) Organic amorphous film preparation method
Lukyanov et al. Spiropyrans: synthesis, properties, and application.
Pu et al. Synthesis, structure and fluorescence of a novel diarylethene
US5304406A (en) Method for forming an organic film
Krongauz et al. Quasi-crystals from irradiated photochromic dyes in an applied electric field
JPH0473387B2 (en)
Yoshida et al. UV light-assisted vacuum deposition of spiropyran compounds
US4341863A (en) Archival optical recording medium
JP2590343B2 (en) Photochromic thin film and method for producing the same
Hayashida et al. Photochromic evaporated films of spiropyrans with long alkyl chains
Yoshida et al. Photochromism of a vacuum-deposited 1′, 3′, 3′-trimethyl-6-hydroxyspiro [2 H-1-benzopyran-2, 2′-indoline] film
Lukyanov et al. Photochromism of the spiropyran thin solid films
US5576055A (en) Photochromic material, photochromic thin film, clay thin film, and their preparation
JPH0742573B2 (en) Light irradiation organic thin film formation method
JPS63207887A (en) Photochromic material and coloring thereof
JPH0424631A (en) Production of amorphous film
Sakiyama et al. Photoinduced reversible heteroepitaxial microcrystal growth of a photochromic diarylethene on (110) surface of SrTiO3
JPS60219646A (en) Optical information recording medium
JPH07179454A (en) Diarylethene-based compound
JPH03257448A (en) Production of organic thin film by photoirradiation
JP2581106B2 (en) Optical information recording medium
JP3068891B2 (en) Recording medium using bifluvenyl compound
JPS6372594A (en) Optical information recording medium
Freimanis et al. Condensed state spectra and phase transitions of charge transfer autocomplexes.
JPH06148791A (en) Photochromic thin film and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees