JP2621838B2 - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JP2621838B2
JP2621838B2 JP8132948A JP13294896A JP2621838B2 JP 2621838 B2 JP2621838 B2 JP 2621838B2 JP 8132948 A JP8132948 A JP 8132948A JP 13294896 A JP13294896 A JP 13294896A JP 2621838 B2 JP2621838 B2 JP 2621838B2
Authority
JP
Japan
Prior art keywords
lens
curvature
light beam
plane
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8132948A
Other languages
Japanese (ja)
Other versions
JPH08320444A (en
Inventor
鈴木隆史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8132948A priority Critical patent/JP2621838B2/en
Publication of JPH08320444A publication Critical patent/JPH08320444A/en
Application granted granted Critical
Publication of JP2621838B2 publication Critical patent/JP2621838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザービームプリ
ンタ等に用いられる光走査装置に関する。さらに詳しく
は走査レンズ系に関する。
The present invention relates to an optical scanning device used for a laser beam printer or the like. More particularly, it relates to a scanning lens system.

【0002】[0002]

【従来の技術】レーザービーム等を高速に偏向走査して
画像情報を記録するレーザービームプリンタは、高速、
高解像度、低騒音という優れた特徴を有しており、小型
化低価格化が進むにつれ急速にその需要を増やしてきて
いる。そこで、その重要な構成要素である光書き込みヘ
ッドとして、光走査装置に対しても小型化低価格化の要
求は大きい。光走査装置は大きくわけて光源と偏向器と
走査レンズ系とから成るが、中でも走査レンズ系の単純
化は小型化低価格化に有効である。
2. Description of the Related Art A laser beam printer for recording image information by deflecting and scanning a laser beam or the like at a high speed has a high speed,
It has excellent features such as high resolution and low noise, and its demand is rapidly increasing as the size and price are reduced. Therefore, as an optical writing head, which is an important component thereof, there is a great demand for an optical scanning device to be reduced in size and cost. An optical scanning device is roughly divided into a light source, a deflector, and a scanning lens system. Among them, simplification of the scanning lens system is effective for miniaturization and cost reduction.

【0003】走査レンズ系は偏向器の回動特性にあわせ
て走査面上で光スポットが等速で移動するような歪み、
例えば偏向器が回転多面鏡であって光ビームが等角速度
偏向されている時は偏向角θと像高Yが比例するような
歪みを有し、かつ走査平面上のいたる所で光スポットを
所望の径に均一に結像する機能を有さなければならな
い。さらに回転多面鏡偏向器の場合には多面鏡の各面の
傾きのばらつき(面倒れ誤差)を補償するための面倒れ
補正機能も必要となる。これらの機能を兼ね備えた解像
力の高い高性能な走査用レンズは従来必然的に大型・複
雑で高価なものにならざるを得なかった。
The scanning lens system is distorted such that the light spot moves at a constant speed on the scanning surface in accordance with the rotation characteristics of the deflector.
For example, when the deflector is a rotating polygon mirror and the light beam is deflected at a constant angular velocity, there is a distortion such that the deflection angle θ is proportional to the image height Y, and a light spot is desired everywhere on the scanning plane. Must have the function of forming an image uniformly on the diameter of Further, in the case of a rotary polygon mirror deflector, a face tilt correction function for compensating for variations in tilt (face tilt error) of each face of the polygon mirror is also required. A high-performance, high-resolution scanning lens having these functions has conventionally been inevitably large, complicated, and expensive.

【0004】そこで特開昭54−98627、特開昭5
5−7727、特開昭58−5706等に開示されてい
るように走査用レンズの単玉化が試みられている。とこ
ろが、特開昭54−98627では正弦振動特性を有す
る偏向器に対してはその回動特性を利用して形状等のパ
ラメータの種々の値について幅広く良好に収差補正が可
能であるが、高速性等の点から現在も広く使用されてい
る回転多面鏡偏向器の等角速度回動特性に対してはそれ
に対応するために非球面化しているものの特殊な場合と
してきわめて限られた条件でしか使用できず、光学系の
寸法、光源、必要とするドット径等の種々の要求に柔軟
に対応することができない。
Accordingly, Japanese Patent Application Laid-Open Nos. Sho 54-98627 and Sho 5
As disclosed in JP-A-5-5727 and JP-A-58-5706, the use of a single scanning lens has been attempted. However, in Japanese Patent Application Laid-Open No. 54-98627, for a deflector having a sinusoidal vibration characteristic, it is possible to widely and satisfactorily correct aberrations for various values of a parameter such as a shape by using the rotation characteristic. From the point of view, the rotational angular characteristic of the rotary polygon mirror deflector, which is still widely used today, is aspherical to cope with it, but it can be used only in very limited conditions as a special case. Therefore, it is not possible to flexibly respond to various requirements such as the size of the optical system, the light source, and the required dot diameter.

【0005】また、特開昭55−7727では平凸レン
ズでfθレンズを構成しているが、像面湾曲等の点で良
好な結像性能を有しているとはいい難い。また、特開昭
58−5706では正のパワーを有するメニスカスレン
ズでfθレンズを構成しているが、球欠像面湾曲の点で
問題があり、これを解消するために面倒れ補正光学系を
兼ねる円筒レンズを付加しなくてはならない。さらに、
上記3例はすべて面倒れ補正機能を付与するためには新
たにレンズを付加しなければならず、結局単玉レンズで
はなくなってしまう。また光軸長を長くとって偏向角を
狭めることによって収差を許容範囲内に収めることは可
能であるが、光学系全体が大型するため好ましくない。
Further, in Japanese Patent Application Laid-Open No. 55-7727, the fθ lens is constituted by a plano-convex lens, but it is difficult to say that it has good imaging performance in terms of field curvature and the like. Further, in Japanese Patent Application Laid-Open No. 58-5706, the fθ lens is constituted by a meniscus lens having a positive power. However, there is a problem in terms of spherical missing image field curvature. You must add a cylindrical lens that also serves as the lens. further,
In all of the above three examples, a lens must be newly added in order to provide the surface tilt correction function, and eventually the lens is not a single lens. It is possible to keep the aberration within an allowable range by increasing the optical axis length and narrowing the deflection angle, but this is not preferable because the entire optical system becomes large.

【0006】ところで、小型化低価格化を考えるうえで
レンズの材質も重要な問題である。従来走査用レンズの
材質にはガラスが用いられるているが回折限界の性能を
要求される光学系であって要求精度が高いため、研磨等
の製造コストが高くつく。そこでポリメチルメタクリレ
ート(PMMA)、ポリカーボネート、ポリスチレン等
のプラスチックをレンズ媒質に用いれば、射出成形によ
る大量生産が可能となるため極めて安価に製造できる。
ことろが光学プラスチック材料は種類が少なくしかもガ
ラスに比べ高屈折率のものがない。従ってレンズ枚数の
削減や光学系の小型化がガラスに比べより困難である。
Incidentally, the material of the lens is also an important issue in considering miniaturization and cost reduction. Conventionally, glass is used as the material of the scanning lens, but since it is an optical system that requires diffraction-limited performance and has high required accuracy, manufacturing costs such as polishing are high. Therefore, if plastics such as polymethyl methacrylate (PMMA), polycarbonate, and polystyrene are used for the lens medium, mass production by injection molding becomes possible, so that production can be performed at extremely low cost.
However, there are few types of optical plastic materials, and none of them has a higher refractive index than glass. Therefore, it is more difficult to reduce the number of lenses and downsize the optical system as compared with glass.

【0007】これらの点を総合して、材質の屈折率によ
らず単玉でしかも光軸長が短くても収差を良好に補正で
きるような、自由度の大きなレンズ形状が望まれること
がわかる。
[0007] In view of these points, it is understood that a lens having a large degree of freedom is desired, which is a single lens regardless of the refractive index of the material and which can favorably correct aberrations even if the optical axis length is short. .

【0008】[0008]

【発明の解決しようとする課題】本発明は上述のような
問題点に鑑みてなされたもので、その目的は、小型で低
価格、しかも高性能な光走査装置とくに走査用レンズを
提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to provide a small, low-cost, and high-performance optical scanning device, particularly a scanning lens. It is.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の光走査装置は、細い光束を出射する光源と、該光束
を所定の方向に偏向走査する偏向器と、該偏向器で偏向
された光束を被走査平面上に結像させる走査用レンズと
を備え、前記走査用レンズは単玉レンズで構成され、子
午平面内における前記光束が入射する側の面の曲率半径
の符号が、前記子午平面内における前記光束の入射位置
に応じて途中から反転することを特徴とするものであ
る。
According to the present invention, there is provided an optical scanning apparatus which emits a thin light beam, a deflector which deflects and scans the light beam in a predetermined direction, and which is deflected by the deflector. A scanning lens that forms an image on the plane to be scanned with the light beam, wherein the scanning lens is formed of a single lens, and the sign of the radius of curvature of the surface on the side on which the light beam enters in the meridional plane is It is characterized in that the light is reversed from the middle according to the incident position of the light beam in the meridional plane.

【0010】この場合、曲率中心がレンズ面より光束射
出側にあるとき曲率半径が正、光束入射側にあるとき曲
率半径が負とすると、上記の符号の反転が光線高が大き
くなるにつれて途中から正から負に反転するものである
ことが望ましい。
In this case, if the radius of curvature is positive when the center of curvature is on the light beam exit side with respect to the lens surface, and the radius of curvature is negative when the center of curvature is on the light beam incident side, the above sign reversal starts from the middle as the ray height increases. It is desirable that the value be inverted from positive to negative.

【0011】また、球欠方向の像面湾曲収差を補正する
ように、その単玉レンズの両面の少なくとも何れか一方
の子午平面内での非円弧曲線に沿った位置の球欠方向の
曲率が子午方向の曲率とは相関なく変化するように定め
られてなることが望ましい。
In order to correct the curvature of field in the spherical missing direction, the curvature in the spherical missing direction at a position along the non-circular arc curve in at least one of the meridional planes on both surfaces of the single lens is corrected. Desirably, it is determined so as to change without correlation with the curvature in the meridian direction.

【0012】[0012]

【発明の実施の形態】本発明の原理を図1、図2、図
3、図4を用いて以下に説明する。走査用レンズは、前
述したように偏向器によって等角速度あるいは正弦振動
等の回動特性で偏向されている光束を被走査平面上に像
面湾曲なく結像しまた被走査平面上で像点が等速で走査
されるような歪みを与える機能を有する。例えば偏向器
が回転多面鏡であれば、図1に示されるように光源から
出射した光束は鏡面SM によって多面鏡5の回転に応じ
た偏向角θで反射されている。走査用レンズ1はこの光
束を被走査平面上で座標値Yが偏向角θと比例した点T
I に結像するよう設定される。本発明の走査用レンズは
以下に述べる原理に基づいて図1に示すS1 、S2 の両
面において非球面の特長が高度に利用された、収差が少
なくしかも広角偏向が可能な単玉レンズである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle of the present invention will be described below with reference to FIGS. 1, 2, 3, and 4. FIG. As described above, the scanning lens forms a light beam deflected by the deflector with a rotation characteristic such as constant angular velocity or sinusoidal vibration on the scanned plane without curvature of field, and an image point on the scanned plane is formed. It has a function of giving distortion such that scanning is performed at a constant speed. For example, if the deflector is rotating polygonal mirror, the light beam emitted from the light source as shown in FIG. 1 is reflected by the deflection angle θ in accordance with the rotation of the polygon mirror 5 by the mirror S M. The scanning lens 1 converts the light beam into a point T on the plane to be scanned where the coordinate value Y is proportional to the deflection angle θ.
It is set to focus on I. The scanning lens of the present invention is a single-lens lens that has a high degree of use of the aspherical features on both surfaces S 1 and S 2 shown in FIG. 1 based on the principle described below, has little aberration, and can perform wide-angle deflection. is there.

【0013】本発明に係るレンズ面形状の第1の構成原
理は、走査される光束が非常に細いと仮定して、光束を
主光線の位置と方向と結像距離のパラメータのみで表
し、レンズ面上のある一点はそこを通る主光線のみにつ
いて方向あるいは結像距離を変化させるべく傾きと曲率
が定められている、ということである。これを収差補正
の考え方でいえば、球面収差とコマ収差を無視して像面
湾曲収差と歪曲収差を高次の項まで含めて完全に補正す
るということを意味する。上述の仮定はレーザービーム
プリンタ等の走査光学系では一般に十分成立する。
According to a first principle of the lens surface shape according to the present invention, assuming that a light beam to be scanned is extremely thin, the light beam is represented only by the parameters of the position and direction of the principal ray and the imaging distance. One point on the surface is that the inclination and the curvature are determined so as to change the direction or the imaging distance only for the principal ray passing therethrough. In terms of the aberration correction, this means that spherical curvature and coma are ignored and field curvature aberration and distortion are completely corrected including higher-order terms. The above assumption is generally sufficient for a scanning optical system such as a laser beam printer.

【0014】さらに走査レンズ系は、任意の偏向角で偏
向された光束の主光線は必ず同一平面上にある(これを
子午面と呼ぶ)から、光束が非常に細いこととあわせ
て、面上で傾きと曲率が指定される点は、子午面とレン
ズ面が交わった曲線上だけでよいことがわかる。従って
本発明の第2の構成原理は子午面上に曲線を創成して、
その曲線上の任意の点において子午面内の傾きと曲率と
が前述の走査用レンズの目的を達しており、さらに曲線
上の任意の点において主光線を含み子午面に垂直な断面
(球欠断面と呼ぶ)の曲率が与えられれば面が形成でき
たとすることである。
Further, in the scanning lens system, the principal ray of a light beam deflected at an arbitrary deflection angle is always on the same plane (this is called a meridian plane). It can be seen that the point at which the inclination and the curvature are designated by is only on the curve where the meridional plane and the lens plane intersect. Therefore, the second construction principle of the present invention creates a curve on the meridian plane,
At any point on the curve, the inclination and curvature in the meridional plane attain the purpose of the above-described scanning lens, and at any point on the curve, the section perpendicular to the meridian plane containing the principal ray (spherical section) If a curvature of “cross section” is given, it means that a surface has been formed.

【0015】ただし、子午方向の傾きと曲率はそれを連
続的に接続して子午面内のレンズ面位置を形成するため
それぞれ独立には定められないが、球欠断面曲率はそれ
らとは独立に扱える。従って、子午面内のレンズ面形状
のみについて上記第1、第2の構成原理を適用した光学
系も当然本発明の範囲に含まれることは明らかである。
However, the inclination and curvature in the meridian direction are not determined independently of each other because they are continuously connected to form a lens surface position in the meridian plane. Can handle. Therefore, it is obvious that an optical system to which the first and second constitutional principles are applied only to the lens surface shape in the meridional plane is also included in the scope of the present invention.

【0016】以下、図2の斜視図を用いて本発明に係る
レンズの構成原理を具体的に説明する。図2において光
束{Li-1 }は面Si によって光束{Li }に変換され
る。光束{Li }のTi から測った結像距離は子午光束
でgmi、球欠光束でgsiとする。一般にgmiとgsiは等
しくない。前述したように光束は非常に細いので光束
{Li }を扱うとき、主光線Lciと子午、球欠それぞれ
の結像距離gmi、gsiだけを考えればよい。さて、面S
i を通過後の主光線Lciの方向は面Si のTi における
法線方向ei で制御することができる。また面Si を通
過後の結像距離gmi、gsiは面Si のTi における子午
断面曲率半径Rmiと球欠断面曲率半径Rsiで制御するこ
とができる。従ってある角度で偏向された光束1本を走
査平面上で等速走査が実現できる位置に結像させる機能
をレンズ面上の1点の位置とその微分量(法線方向と曲
率)で持たせることでできたわけで、それを連結させて
任意の角度で偏向された光束に対応したレンズ面上の各
点に上記の機能を持たせれば目的とする走査用レンズ形
状が定まるわけである。これが前述の第1の構成原理で
ある。
Hereinafter, the configuration principle of the lens according to the present invention will be specifically described with reference to the perspective view of FIG. Light flux {L i-1} 2 is converted into the light flux {L i} by the surface S i. The imaging distance measured from T i of the light flux {L i } is g mi for the meridional light flux and g si for the spherical missing light flux. In general, g mi and g si are not equal. As described above, since the light beam is very thin, when the light beam {L i } is handled, only the chief ray L ci and the image forming distances g mi and g si of the meridian and the sphere missing need to be considered. Well, surface S
direction of the principal ray L ci after passing through i may be controlled by the normal direction e i in T i surface S i. The image formation distance g mi after passing through the surface S i, g si can be controlled by the surface S meridional section curvature at T i of i radius R mi and sagittal section curvature radius R si. Accordingly, the function of forming an image of one light beam deflected at a certain angle on the scanning plane at a position where uniform scanning can be realized is provided by the position of one point on the lens surface and its differential amount (normal direction and curvature). Thus, if the above-mentioned functions are provided at each point on the lens surface corresponding to the light beam deflected at an arbitrary angle by linking them and the desired function of the scanning lens is determined. This is the first configuration principle described above.

【0017】さて、前述したように主光線Lci等は子午
面上を離れないため、面Si の法線方向ベクトルei
子午面内にあり面の傾きを表す自由度として図2に示す
光軸と法線ベクトルのなす角αi の1自由度でよい。ま
た面Si の子午断面曲率は面の傾きαi の微分量であ
り、面の傾きαi は面Si の子午面上の位置の微分量で
あるから、結局子午面の方向の面の傾きと曲率を指定す
ることは微分方程式を解いて子午面上の2次元曲線を創
成することと同じ意味を持つことがわかる。また、球欠
断面曲率は上記曲線に影響を与えず決定されるものであ
るから、曲線が創成された後その曲線上の各点について
それぞれ決定される。これが第2の構成原理である。
As described above, since the principal ray L ci and the like do not leave the meridional plane, the normal direction vector e i of the plane S i is also in the meridian plane and is shown in FIG. 2 as the degree of freedom representing the inclination of the plane. One degree of freedom of the angle α i between the indicated optical axis and the normal vector is sufficient. The meridional section curvature of the surface S i is the derivative of the inclination alpha i of the surface, because the inclination alpha i surface is a differential quantity of positions on the meridian plane of the surface S i, in the direction of the surface of Kekkyokuko meridional It can be seen that designating the slope and curvature has the same meaning as solving a differential equation and creating a two-dimensional curve on the meridian plane. Further, since the curvature of the sphere lacking section is determined without affecting the curve, it is determined for each point on the curve after the curve is created. This is the second configuration principle.

【0018】以上述べた構成原理より走査用レンズが実
現できるわけであるが、それが両非球面の単レンズで実
現可能であることを図3の原理図を用いて説明する。図
3において紙面は子午面を表している。
Although the scanning lens can be realized by the above-described configuration principle, the fact that it can be realized by a single aspherical lens will be described with reference to the principle diagram of FIG. In FIG. 3, the page represents the meridian plane.

【0019】まず子午面について考える。いま拘束した
いのは主光線Lciと被走査平面SIの交点TI の座標値
I とTI が結像点であることの2自由度である。例え
ば任意の角度θで偏向されている光束の走査位置YI
拘束するために面の傾きα1を面上の全位置で指定し、
それに従って滑らかに面を接続した形状は境界条件(例
えば光軸との交点P1 の座標値X1 とそこでの傾きが0
であること)を指定すれば、S1 のように1通りに定ま
り、その面での曲率半径Rm1を指定することはできず、
光束は被走査平面上にない点TI ’で結像してしまう。
逆に、結像点を拘束するために面の曲率半径Rm1を面上
の全位置で指定すれば同様に面の傾きα1 を指定するこ
とはできない。このように光線の持つパラメータのうち
ある1つの自由度を偏向角θの任意の値で拘束するため
には1つの面が必要であるから、今、上述の2自由度を
拘束するために、最低2面のレンズ面が必要となる。
First, the meridian plane is considered. Want to restrain now is two degrees of freedom that the principal ray L ci coordinate value Y I and T I of intersection T I of the scan plane S I is image forming point. For example the inclination alpha 1 surface to restrain the scanning position Y I of the light beam is deflected by any angle θ specified in all positions on the surface,
Accordingly, the shape in which the surfaces are smoothly connected is determined by the boundary condition (for example, the coordinate value X 1 of the intersection P 1 with the optical axis and the inclination at that point are 0).
) Is determined in one way as in S 1 , and the radius of curvature R m1 on that surface cannot be specified,
The light beam forms an image at a point T I ′ that is not on the plane to be scanned.
Conversely, it is impossible to specify the gradient alpha 1 in the same way the surface by specifying the radius of curvature R m1 of the surface at all positions on the surface to restrain the imaging point. As described above, one surface is required to constrain one degree of freedom among the parameters of the light ray with an arbitrary value of the deflection angle θ. Therefore, in order to restrict the above two degrees of freedom, At least two lens surfaces are required.

【0020】次に球欠光束について考えると、拘束した
いのは球欠方向結像位置gsiの一自由度であって、これ
は子午面内で拘束した状態すなわち曲線の形状を保存し
たまま、子午面上の曲線にそれと垂直な方向に曲率をつ
けることで制御できるため、前述の2面に新たに面を付
け加える必要はない。
[0020] Next consider the sagittal light beam, while a single degree of freedom of sagittal direction image forming position g si is like to restraint, which was stored the shape of state or curve restrained in meridional plane, Since the curve on the meridian plane can be controlled by giving a curvature in a direction perpendicular to the curve, it is not necessary to add a new plane to the above-mentioned two planes.

【0021】従って必要なレンズ面は2面で、単玉レン
ズでよいことがわかる。また2面ともレンズ面の全位置
で傾き、曲率が指定された面であるから単玉レンズは両
非球面でなければならない。
Accordingly, it is understood that the number of necessary lens surfaces is two and a single lens is sufficient. Also, since both surfaces are inclined at all positions of the lens surface and the curvature is designated, the single lens must have both aspheric surfaces.

【0022】さて、ここで上述の構成の単玉非球面レン
ズの面の対称性について考えてみる。子午面内に創成さ
れた2曲線を光軸等何らかの軸を中心にして回転させる
と球欠方向の曲率半径の自由度が失われてしまう。従っ
て回転対称性を持たせると球欠光束の結像を制御できず
球欠像面湾曲収差が生じる。面対称性については、光束
が常に子午面上にあるので明らかに子午面については対
称であり、また光軸を通る光束を偏向角0として偏向角
がθの光束と−θの光束とは同じ条件であるから光軸を
含み子午面と垂直な平面についても対称である。このよ
うに本発明の走査用レンズは対称面が2面ある以外は対
称性がないことによって球欠像面湾曲収差、子午像面湾
曲収差、歪曲特性収差の完全な補正が可能となってい
る。
Now, consider the symmetry of the surface of the single lens aspherical lens having the above-described configuration. If the two curves created in the meridian plane are rotated around some axis such as the optical axis, the degree of freedom of the radius of curvature in the direction of the sphere is lost. Therefore, if the rotation symmetry is provided, the imaging of the missing light beam cannot be controlled, and the missing curvature of the spherical image surface occurs. Regarding the plane symmetry, since the light flux is always on the meridian plane, it is clearly symmetric about the meridian plane, and the light flux having a deflection angle of θ and the light flux of −θ are the same assuming that the light flux passing through the optical axis has a deflection angle of 0. Because of the condition, it is also symmetric about a plane that includes the optical axis and is perpendicular to the meridian plane. As described above, since the scanning lens of the present invention has no symmetry except for two symmetry surfaces, it is possible to completely correct spherical aberration of curvature of field, meridional curvature of field, and distortion characteristic aberration. .

【0023】以下本発明の走査用単玉両非球面レンズの
形状を実現する具体的方法を図4の原理図を用いて説明
する。まず、子午面上の2曲線の創成方法を説明する。
図4に示すようにレンズ面S1 、S2 はそれぞれ光軸と
の交点P1 、P2 から曲線に沿った距離s1 、s2 とそ
の点での光軸に垂直な方向からの傾き角α1 、α2 との
関係で規定されている。これを直交座標で表現し直す
と、面S1 、S2 について、それぞれP1 、P2 を原点
として光軸をx軸、レンズの高さ方向をy軸とすると、
点T1 、T2 の座標値(x1 ,y1 ),(x2 ,y2
となる。
Hereinafter, a specific method for realizing the shape of a single-lens bi-aspherical lens for scanning according to the present invention will be described with reference to the principle diagram of FIG. First, a method of creating two curves on the meridian plane will be described.
As shown in FIG. 4, the lens surfaces S 1 and S 2 are distances s 1 and s 2 along the curve from the intersections P 1 and P 2 with the optical axis, respectively, and the inclination at that point from the direction perpendicular to the optical axis. It is defined in relation to the angles α 1 and α 2 . If this is expressed in rectangular coordinates again, for the surfaces S 1 and S 2 , if the optical axis is the x axis and the height direction of the lens is the y axis with the origins at P 1 and P 2 respectively,
Coordinate values (x 1 , y 1 ), (x 2 , y 2 ) of points T 1 and T 2
Is Becomes

【0024】いま、図4に示すように、光軸上の出射点
M から偏向角θ、子午結像距離gm0で出射した光束L
i (i=0,1,2)が面S1 、S2 とそれぞれT1
2で、像面SI とTI で交わるとし、以下のように光
束の出射位置、出射方向を表す。すなわち ベクトルPM 1 =(a0 cosθ ,a0 sinθ ) ベクトルT1 2 =(a1 cosθ1 ,a1 sinθ1 ) (2) ベクトルT2 I =(a2 cosθ2 ,a2 sinθ2 ) とする。さらに面S1 、S2 のT1 、T2 での子午断面
曲率半径をそれぞれRm1、Rm2とし、また、光束L1
2 の子午結像距離をgm1、gm2とする。
[0024] Now, as shown in FIG. 4, the deflection angle from the emission point P M on the optical axis theta, the light beam L emitted by the meridional image formation distance g m0
i (i = 0, 1 , 2) are the surfaces S 1 , S 2 and T 1 , respectively.
Assuming that the image plane S I intersects with T I at T 2 , the light emitting position and the light emitting direction are represented as follows. That vector P M T 1 = (a 0 cosθ, a 0 sinθ) vector T 1 T 2 = (a 1 cosθ 1, a 1 sinθ 1) (2) vector T 2 T I = (a 2 cosθ 2, a 2 sin θ 2 ). And R m1, R m @ 2 further surface S 1, S 2 of T 1, a meridional cross section radius of curvature at T 2, respectively, also the light beams L 1,
Let the meridional imaging distances of L 2 be g m1 and g m2 .

【0025】以上の記述方法に従って、前述したレンズ
形状の構成原理を定式化することができる。定式化を以
下に示す6項目に分けて説明する。 面S1 、S2 と光束の交点において面の傾きによっ
て光束の方向を制御する。 面S1 、S2 と光束の交点において面の曲率によっ
て光束の結像距離を制御する。 面の光束の交点の座標が等しい。 面上の各点は滑らかに連続している。 光束は走査平面上に結像する。 走査平面上で結像点は等速走査される。
According to the above description method, the principle of the lens shape described above can be formulated. The formulation will be described by dividing it into the following six items. The direction of the light beam is controlled by the inclination of the surface at the intersection of the light beams with the surfaces S 1 and S 2 . The image forming distance of the light beam is controlled by the curvature of the surface at the intersection of the light beams with the surfaces S 1 and S 2 . The coordinates of the intersections of the light beams on the surfaces are equal. Each point on the surface is smoothly continuous. The light beam forms an image on the scanning plane. The imaging point is scanned at a constant speed on the scanning plane.

【0026】の屈折面の傾きと光束の方向の関係は、
よく知られた屈折の法則をS1 、S 2 面とL1 、L2
交点について適用することによって sin(α1 −θ)=nsin(α1 −θ1 ) :S1 面 (3) nsin(α2 −θ1 )=sin(α2 −θ2 ) :S2 面 (4) と表せる。ただしnはレンズ媒質の屈折率である。
The relationship between the inclination of the refraction surface and the direction of the light beam is
The well-known law of refraction is S1, S TwoPlane and L1, LTwoof
By applying for the intersection, sin (α1−θ) = nsin (α)1−θ1): S1Plane (3) nsin (αTwo−θ1) = Sin (α)Two−θTwo): STwoPlane (4). Here, n is the refractive index of the lens medium.

【0027】の面の曲率と光束の結像距離の関係は、
細い光束がある曲率を持った面に斜め入射した時の子午
結像距離の関係式をS1 面、S2 面に適用して ncos2 (α1 −θ1 )/gm1 =cos2 (α1 −θ)/(gm0−a0 )+ {ncos(α1 −θ1 )−cos(α1 −θ)}/Rm1 (5) S1 面 cos2 (α2 −θ2 )/gm2 =ncos2 (α2 −θ1 )/(gm1−a1 )+ {cos(α2 −θ2 )−ncos(α2 −θ1 )}/Rm2(6) S2 面 が得られる。
The relationship between the curvature of the surface and the imaging distance of the light beam is
Thin S 1 side of the meridional image formation distance relationship when the obliquely incident on the surface having a curvature which the light beam is, by applying the S 2 side ncos 2 (α 1 -θ 1) / g m1 = cos 2 ( α 1 -θ) / (g m0 -a 0) + {ncos (α 1 -θ 1) -cos (α 1 -θ)} / R m1 (5) S 1 side cos 2 22) / g m2 = ncos 2 (α 2 -θ 1) / (g m1 -a 1) + {cos (α 2 -θ 2) -ncos (α 2 -θ 1)} / R m2 (6) S 2 surface Is obtained.

【0028】については、前出の(1)式で計算され
る面位置の直交座標値と前出の(2)式をもとに計算さ
れる光線の屈折点の直交座標値が等しいとおいて、 の関係がある。ただしX1 は面S1 と光軸の交点のx座
標値、X2 は面S2 と光軸の交点のx座標値である。
Regarding the above, it is assumed that the rectangular coordinate values of the surface position calculated by the above equation (1) are equal to the rectangular coordinate values of the refraction point of the light ray calculated based on the above equation (2). , There is a relationship. Here, X 1 is the x coordinate value of the intersection of the surface S 1 and the optical axis, and X 2 is the x coordinate value of the intersection of the surface S 2 and the optical axis.

【0029】について、面が連続している条件は、
(7)〜(10)式中の積分が可能であるということで
ある。また面が滑らかである条件は、面の傾きα1 、α
2 が微分可能であるということであって dα1 /ds1 =−1/Rm1 (11) dα2 /ds2 =−1/Rm2 (12) なる関係がある。
Regarding the condition that the surface is continuous,
That is, the integration in the equations (7) to (10) is possible. The condition that the surface is smooth is determined by the surface inclination α 1 , α
2 is differentiable and dα 1 / ds 1 = −1 / R m1 (11) dα 2 / ds 2 = −1 / R m2 (12)

【0030】の走査平面上で像点が等速走査される条
件は像面と光束の交点(XI ,YI)が XI =a2 cosθ2 +a1 cosθ1 +a0 cosθ (13) YI =a2 sinθ2 +a1 sinθ1 +a0 sinθ (14) の関係があって、かつ走査点位置YI は、偏向器の回動
特性 θ=F(τ) (15) を用いて YI =K・F-1(θ) (16) となる。ただしF-1はFの逆関数、τは時間のパラメー
タ、Kは適当な比例定数である。例えば今、回動特性が
等角速度偏向であった場合、 F(τ)=ωτ ω:角速度 (17) であるから YI =K・θ/ω=f・θ f=K/ω:定数 (18) と書ける。また(13)式のXI は走査面のx座標で光
軸長を表している。
The condition that the image point is scanned at a constant speed on the scanning plane is that the intersection (X I , Y I ) of the image plane and the light beam is X I = a 2 cos θ 2 + a 1 cos θ 1 + a 0 cos θ (13) Y there is relationship I = a 2 sinθ 2 + a 1 sinθ 1 + a 0 sinθ (14), and the scan point position Y I, using the deflector rotation characteristic θ = F (τ) (15 ) Y I = K · F -1 (θ) (16) Where F -1 is an inverse function of F, τ is a time parameter, and K is an appropriate proportional constant. For example, if the rotation characteristic is a constant angular velocity deflection, then F (τ) = ωτω: angular velocity (17) Y I = K · θ / ω = f · θ f = K / ω: constant ( 18) You can write X I in addition (13) represents the optical axis length is x-coordinate of the scanning surface.

【0031】の走査平面上で結像する条件は、(6)
式中の子午光束結像距離gm2が(13)、(14)式で
表されるa2 に等しければ満足される。即ち gm2=a2 (19) 以上のようにして本発明に係るレンズ形状の構成原理が
(3)、(4)、(5)、(6)、(7)、(8)、
(9)、(10)、(11)、(12)、(13)、
(14)、(16)、(19)の14式で定式化された
わけだが、以下にこれらを計算することによって実際に
レンズ面形状が何らかの形で直接表現できることを述べ
る。式中に現れた変数のうち偏向角θ、初期子午結像距
離gm0は出射時に与えられており既知である。また光軸
長XI 、面S1 、S2 の光軸との交点位置X1 、X2
等速走査の定数Kは偏向角θによらない定数値である。
従って未知数は残ったθ1 ,θ2 ,α1 ,α2 ,s1
2 ,gm1,gm2,a0 ,a1,a2 ,Rm1,Rm2,Y
I の14個であって、前出の14式はすべて独立である
から、連立方程式は解けて上記14変数は例えば偏向角
θの関数として表現できる。従って例えば面S1 を表現
する時は傾きα1 と光軸から面に沿った距離s1の関係
を偏向角θをパラメータとして対応させればよい。
The condition for forming an image on the scanning plane is (6)
It satisfies if the meridional light flux imaging distance g m2 in the equation is equal to a 2 represented by the equations (13) and (14). G m2 = a 2 (19) As described above, the configuration principle of the lens shape according to the present invention is (3), (4), (5), (6), (7), (8),
(9), (10), (11), (12), (13),
Formulas (14), (16) and (19) are formalized, but it will be described below that by calculating these, the lens surface shape can actually be directly expressed in some form. Among the variables appearing in the expression, the deflection angle θ and the initial meridional imaging distance g m0 are given at the time of emission and are known. The optical axis length X I, surface S 1, the intersection position X 1 of the optical axis of the S 2, X 2,
The constant K for constant-speed scanning is a constant value independent of the deflection angle θ.
Therefore, the unknowns are the remaining θ 1 , θ 2 , α 1 , α 2 , s 1 ,
s 2, g m1, g m2 , a 0, a 1, a 2, R m1, R m2, Y
Since I is 14 and the above 14 equations are all independent, the simultaneous equations can be solved and the above 14 variables can be expressed as a function of the deflection angle θ, for example. Thus, for example when representing the surface S 1 may be made to correspond to the deflection angle θ as a parameter the relationship between the distance s 1 along the plane of inclination alpha 1 and the optical axis.

【0032】ところで、上述の14元連立方程式は非線
形でかつ微分項と積分項を含んでいるため、直接解くこ
とはできず数値解法を用いなければならない。数値解法
としては種々考えられ本発明はそれを限定するものでは
ないが、ここでは一実施例として、微分ベクトル場にお
ける数値積分の方法で実際にこの方程式が数値計算で解
けレンズ形状が決定できることを示しておく。
Incidentally, since the above-mentioned 14-way simultaneous equations are nonlinear and include a differential term and an integral term, they cannot be directly solved and must use a numerical solution method. The present invention is not limited to a variety of numerical solutions, but the present invention is not limited thereto.Here, as an example, it is assumed that this equation can be actually solved by numerical calculation and the lens shape can be determined by a numerical integration method in a differential vector field. I will show you.

【0033】微分ベクトル場で解くとは、方程式をすべ
て微分形式で表して現在の変数の値はすべて既知として
それぞれの変数の増分(微分変数)を計算して次の変数
の値を求めるというものである。前出14式を整理して
微分形で表すと、(3)、(4)式は (dα1 −dθ)cos(α1 −θ) =n(dα1 −dθ1 )cos(α1 −θ1 ) (20) n(dα2 −dθ1 )cos(α2 −θ1 ) =(dα2 −dθ2 )cos(α2 −θ2 ) (21) (5)、(6)式と(11)、(12)式をあわせて {ncos2 (α1 −θ1 )/gm1}ds1 ={cos2 (α1 −θ)/(gm0−a0 )}ds1 − {ncos(α1 −θ1 )−cos(α1 −θ)}dα1 (22) {cos2 (α2 −θ2 )/a2 }ds2 ={ncos2 (α2 −θ1 )/(gm1−a1 )}ds2 − {cos(α2 −θ2 )−ncos(α2 −θ1 )}dα2 (23) ただし、gm1は(22)、(23)式を連立させて消去
する。
Solving with a differential vector field means expressing all equations in a differential form, assuming that all current variable values are known, and calculating the increment of each variable (differential variable) to obtain the value of the next variable. It is. Expressed in differential form to organize supra 14 Equation (3), (4) expression (dα 1 -dθ) cos (α 1 -θ) = n (dα 1 -dθ 1) cos (α 1 - θ 1) (20) n ( dα 2 -dθ 1) cos (α 2 -θ 1) = (dα 2 -dθ 2) cos (α 2 -θ 2) (21) (5), and (6) By combining the equations (11) and (12), {ncos 21 −θ 1 ) / g m1 } ds 1 = {cos 21 −θ) / (g m0 −a 0 )} ds 1 − { ncos (α 1 −θ 1 ) −cos (α 1 −θ)} dα 1 (22) {cos 22 −θ 2 ) / a 2 } ds 2 = {ncos 22 −θ 1 ) / (G m1 −a 1 )} ds 2 − {cos (α 2 −θ 2 ) −ncos (α 2 −θ 1 )} dα 2 (23) where g m1 is a combination of equations (22) and (23). And erase it.

【0034】また(7)〜(10)式は da0 cosθ−a0 sinθdθ=−sinα1 ds1 (24) da0 sinθ+a0 cosθdθ=cosα1 ds1 (25) da1 cosθ1 −a1 sinθ1 dθ1 +da0 cosθ −a0 sinθdθ=−sinα2 ds2 (26) da1 sinθ1 +a1 cosθ1 dθ1 +da0 sinθ +a0 cosθdθ=cosα2 ds2 (27) (13)、(14)式は 0=da2 cosθ2 −a2 sinθ2 dθ2 +da1 cosθ1 − a1 sinθ1 dθ1 +da0 cosθ−a0 sinθdθ (28) dYI =da2 sinθ2 +a2 cosθ2 dθ2 +da1 sinθ1 + a1 cosθ1 dθ1 +da0 sinθ+a0 cosθdθ (29) (16)式は dYI =K{F-1(θ)}dθ (30) となる。(19)式は単に代入すれば良い。(20)〜
(30)式のうち未知である微分変数はdθ1 ,d
θ2 ,dα1 ,dα2 ,ds1 ,ds2 ,da0 ,da
1 ,da2 ,dYI であって、上記(20)〜(30)
式は(22)、(23)式を連立させて1個の式にした
ものが2次の方程式である以外はすべて1次であるから
容易に解けて、既知の微分変数dθによって例えば dθ1 =Fθ1 (θ1 ,θ2 ,α1 ,α2 ,s1 ,s2 ,a0 ,a1 ,a2 )dθ (31) のように表現できる。これより例えばθ1 は、 と積分すれば偏向角θをパラメータとして表現できる。
ただしθ0 1は初期値である。実際の計算は初期値を
θ1 ,θ2 ,α1 ,α2 ,s1 ,s2 については0、a
0 ,a1 ,a2 については前出のX1 ,X2 ,XI の値
を用いて a0 0=X1 0 1=X2 −X1 (33) a0 2=XI −X2 として、数値積分によって計算できる。
Equations (7) to (10) are as follows: da 0 cos θ−a 0 sin θ dθ = −sin α 1 ds 1 (24) da 0 sin θ + a 0 cos θd θ = cos α 1 ds 1 (25) da 1 cos θ 1 −a 1 sin θ 11 + da 0 cos θ −a 0 sin θ dθ = −sin α 2 ds 2 (26) da 1 sin θ 1 + a 1 cos θ 11 + da 0 sin θ + a 0 cos θdθ = cos α 2 ds 2 (27) (13), (14) The equation is: 0 = da 2 cos θ 2 −a 2 sin θ 22 + da 1 cos θ 1 −a 1 sin θ 11 + da 0 cos θ−a 0 sin θd θ (28) dY I = da 2 sin θ 2 + a 2 cos θ 22 1 sin θ 1 + a 1 cos θ 11 + da 0 sin θ + a 0 cos θd θ (29) The expression (16) becomes dY I = K {F −1 (θ)} d θ (30). Equation (19) may be simply substituted. (20)-
The unknown differential variables in equation (30) are dθ 1 , d
θ 2 , dα 1 , dα 2 , ds 1 , ds 2 , da 0 , da
1 , da 2 , dY I and the above (20) to (30)
Expression (22), (23) the melts easily because except those in one expression by simultaneous is second order equations are all first-order equation, for example, by known differential variables d [theta] d [theta] 1 = Fθ 11 , θ 2 , α 1 , α 2 , s 1 , s 2 , a 0 , a 1 , a 2 ) dθ (31) Thus, for example, θ 1 is And the deflection angle θ can be expressed as a parameter.
However θ 0 1 is the initial value. The actual calculations 1 the initial value θ, θ 2, α 1, α 2, s 1, the s 2 is 0, a
0, a 1, a 0 0 = X 1 a 0 1 = X 2 -X 1 (33) for a 2 by using the value of X 1, X 2, X I, supra a 0 2 = X I - X 2 can be calculated by numerical integration.

【0035】さて、以上のようにして本発明のレンズ形
状の子午面上曲線が具体化されるわけだが、具体化する
過程で現れた定数n,X1 ,X2 ,XI ,gm0,Kはそ
のまま本発明のレンズ形状のとりうる自由度となる。す
なわち、ある適当な定数の組{X1 * ,X2 *
I * ,gm0 * ,K* }の1つについて1つのレンズ形
状が存在するわけであり、当然本発明はこれらのすべて
のものを含んでいる。
Now, the curve on the meridian plane of the lens shape of the present invention is embodied as described above. The constants n, X 1 , X 2 , X I , g m0 , and g appear during the embodying process. K is the degree of freedom that the lens shape of the present invention can take. That is, a set of appropriate constants {X 1 * , X 2 * ,
X I *, g m0 *, it is not there is one lens shape for one of the K *}, naturally present invention includes those of all these.

【0036】なお、子午初期結像位置gm0 * を無限大に
設定する、すなわち走査用レンズに入射する前の子午光
束を平行光束としておけば、ビーム径等が制御し易く取
扱い易い光学系となる。本発明の走査用レンズは上述の
ように平行光束に対しても当然適用可能である。
If the initial meridional imaging position g m0 * is set to infinity, that is, if the meridional light beam before entering the scanning lens is set as a parallel light beam, the beam diameter and the like can be easily controlled and the optical system can be easily handled. Become. The scanning lens of the present invention is naturally applicable to a parallel light beam as described above.

【0037】さて次に、球欠結像距離を制御する球欠断
面曲率半径Rs1、Rs2の決定方法を説明する。(5)、
(6)式に細い光束が斜めに入射した時の子午結像距離
の関係式を示したが、球欠結像距離については、 n/gs1=1/(gs0−a0 )+ {ncos(α1 −θ1 )−cos(α1 −θ)}/Rs1 :S1 面 (34) 1/gs2=n/(gs1−a1 )+ {cos(α2 −θ2 )−ncos(α2 −θ1 )}/Rs2 :S2 面 (35) が成り立つ。被走査平面上に球欠方向の結像点がある条
件は gs2=a2 (36) である。(34)、(35)、(36)式によって球欠
断面曲率半径Rs1,Rs2が決定されるわけであるが、式
中でa0 ,a1 ,a2 ,α1 ,α2 ,θ,θ1 ,θ2
前述の方法によって子午面曲線がすでに決定されている
ため既知であり、gs0は与えられているため未知数はg
s1,gs2,Rs1,Rs2の4個である。従って方程式3個
に対し冗長自由度があることになり、未知数のうち1つ
は適当に定めてよいことがわかる。例えば面形状の簡単
化のため、Rs1を常に無限大にして(34)式の右辺第
2項を0にすれば第1面は球欠方向に曲率を持たない面
になる。
Next, a method for determining the radiuses of curvature R s1 and R s2 of the sphere lacking section for controlling the sphere missing image distance will be described. (5),
Although narrow light beam to (6) showed a relational expression meridional imaging distance when incident obliquely, for Tamaketsuyuizo distance, n / g s1 = 1 / (g s0 -a 0) + { ncos (α 1 -θ 1) -cos (α 1 -θ)} / R s1: S 1 side (34) 1 / g s2 = n / (g s1 -a 1) + {cos (α 2 -θ 2 ) −ncos (α 2 −θ 1 )} / R s2 : S 2 plane (35) The condition that there is an image point in the missing direction on the plane to be scanned is g s2 = a 2 (36). The radii of curvature R s1 and R s2 of the spherical section are determined by the equations (34), (35) and (36). In the equations, a 0 , a 1 , a 2 , α 1 , α 2 , θ, θ 1 , and θ 2 are known because the meridional curve has already been determined by the above-described method, and g s0 is given, so the unknown is g.
s1 , gs2 , Rs1 , and Rs2 . Accordingly, there are redundant degrees of freedom for the three equations, and it is understood that one of the unknowns may be appropriately determined. For example, if R s1 is always set to infinity and the second term on the right side of the equation (34) is set to 0 for simplification of the surface shape, the first surface becomes a surface having no curvature in the ball missing direction.

【0038】なお初期球欠結像距離gs0は任意に与えて
よいが偏向器が回転多面鏡の場合、gs0=0ととれば鏡
面の反射点と走査点とが共役像点となって面倒れ補正機
能を持たせることができる。
Note that the initial sphere-missing image distance g s0 may be arbitrarily given, but when the deflector is a rotating polygon mirror, if g s0 = 0, the reflection point and scanning point of the mirror surface become conjugate image points. It can be provided with a face tilt correction function.

【0039】[0039]

【発明の実施の形態】本発明に係るレンズ形状の構成原
理に基づいてレンズ面形状を計算した実施例を表1から
表9までと図5から図12までに示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Tables 1 to 9 and FIGS. 5 to 12 show examples of calculating the lens surface shape based on the principle of the lens shape according to the present invention.

【0040】前述したように本発明のレンズ形状は、レ
ンズ媒質の屈折率n、初期結像距離g0 、レンズの第1
面、第2面が光軸と交わる位置X1 、X2 、光軸長
I 、走査速度定数Kの6個のパラメータをそれぞれ独
立に変化させることができ、1つのパラメータの値の組
に対して1つのレンズ形状が存在する。従って一見して
全く異質の形状と思われるような実施例が極めて多数存
在し、それらすべてを掲げることは不可能であるため、
ここには代表的な実施例を示すにとどめる。
As described above, the lens shape according to the present invention is such that the refractive index n of the lens medium, the initial imaging distance g 0 , the first
The six parameters of the position X 1 , X 2 at which the surface and the second surface intersect the optical axis, the optical axis length X I , and the scanning speed constant K can be independently changed. In contrast, there is one lens shape. Therefore, there are so many examples that seemingly completely different shapes, and it is impossible to list all of them,
Here, only a typical embodiment is shown.

【0041】以下に示す実施例に共通する計算条件は、 ・レンズ媒質の屈折率 n=1.486 ・偏向点から被走査平面までの光軸長 XI =200mm ・偏向器は回転多面鏡偏向器で等角速度偏向 ・初期子午結像距離gm0は無限大。すなわち走査用レン
ズに入射する前の光束は平行光束である。 ・球欠断面曲率は第2面にのみ付与してある。 ・初期球欠結像距離gs0は0。従って回転多面鏡の反射
点と走査点は共役像点となり、面倒れ補正機能が付与さ
れている。である。
Calculation conditions common to the following embodiments are as follows: Refractive index of lens medium n = 1.486 Optical axis length from deflection point to plane to be scanned X I = 200 mm Deflector is rotating polygon mirror deflection・ Initial meridional imaging distance g m0 is infinite. That is, the light beam before entering the scanning lens is a parallel light beam. -Spherical section curvature is given only to the second surface. The initial sphere-missing image distance g s0 is 0. Therefore, the reflection point and the scanning point of the rotary polygon mirror are conjugate image points, and a plane tilt correction function is provided. It is.

【0042】なお本発明によるレンズ形状は簡単な数値
や数式では表現されず、例えば数値例として結果が求ま
る。そこで便宜上、子午面上の曲線形状については周知
の非球面係数を用いた式 x=(y2 /R)/[1+√{1−(y/R)2 }]+
By4 +Cy6 +Dy8 +Ey10 :ただしxは光軸をx軸、面と光軸の交点を原点にとっ
たときのx座標値。で表し、第2面の球欠断面曲率半径
s2については Rs2=Rs2 0 +Ay2 +By4 +Cy6 +Dy8 +Ey
10 で表す。このように近似した時の真の形状からの誤差は
0.001%〜0.01%程度である。
Note that the lens shape according to the present invention is not represented by simple numerical values or mathematical expressions, but results are obtained as numerical examples. Therefore convenience, the formula x = (y 2 / R) / [1 + √ {1- (y / R) 2}] Using the well-known aspherical coefficients for the curve shape of the meridian plane +
By 4 + Cy 6 + Dy 8 + Ey 10 : where x is the x-axis value when the optical axis is the x-axis and the intersection of the plane and the optical axis is the origin. And the radius of curvature R s2 of the spherical section of the second surface is R s2 = R s2 0 + Ay 2 + By 4 + Cy 6 + Dy 8 + Ey
Expressed as 10 . The error from the true shape at the time of such approximation is about 0.001% to 0.01%.

【0043】表1、表2、表3に第1面S1 の子午平面
上の曲線形状を示す係数Rm1,B1,C1 ,D1 ,E1
を、表4、表5、表6に第2面S2 の子午平面上の曲線
形状を示す係数Rm2,B2 ,C2 ,D2 ,E2 を、表
7、表8、表9に球欠断面方向の曲率半径変化を示す係
数Rs 0 ,As ,Bs ,Cs ,Ds ,Es を、パラメー
タθe ,X1 ,X2 を変化させて計算した値を掲げる。
ただし有効偏向角θe は、前出(18)式の走査速度係
数Kのかわりに用いたパラメータで、有効走査幅を20
0mmと定めると、 θe =200/K (rad) である。X1 ,X2 は前出のとおり、第1面S1 、第2
面S2 が光軸と交わる点の位置である。なお、前述の共
通の計算条件のもとで、パラメータの組θe ,X1 ,X
2 の値が同じものは同一のレンズとなる。
[0043] Table 1, Table 2, the coefficient R m1 indicating the curve shape of the first surface S 1 of the meridional plane in Table 3, B 1, C 1, D 1, E 1
Tables 4, 5, and 6 show coefficients R m2 , B 2 , C 2 , D 2 , and E 2 showing the curved shapes on the meridional plane of the second surface S 2 in Tables 7, 8, and 9 respectively. listed sagittal cross section direction of the curvature factor R s 0 indicating the radius variation, a s, B s, C s, D s, the E s, the calculated value by changing the parameters θ e, X 1, X 2 in .
However, the effective deflection angle θ e is a parameter used in place of the scanning speed coefficient K in the expression (18), and the effective scanning width is 20
When defined as 0 mm, is θ e = 200 / K (rad ). As described above, X 1 and X 2 are the first surface S 1 and the second surface S 1
Surface S 2 is the position of the point of intersection with the optical axis. Under the above-mentioned common calculation conditions, a set of parameters θ e , X 1 , X
Those having the same value of 2 are the same lens.

【0044】さらに、表に示した実施例中のいくつかの
ものについて、子午面上の曲線形状の概観を、光路図と
ともに図5から図12までに示した。だだし曲線は光軸
について対称であるため、光軸の逆側は省略してある。
ここで掲載された実施例はすべて本発明の構成原理に従
って、球欠像面湾曲収差、子午像面湾曲収差は完全に除
去されており、また歪み特性は走査点が等速移動するよ
うに完全に定められている。
Further, for some of the examples shown in the table, an outline of the curved shape on the meridian plane is shown in FIGS. 5 to 12 together with the optical path diagrams. However, since the curve is symmetric about the optical axis, the opposite side of the optical axis is omitted.
In all the embodiments described here, the spherical aberration of curvature and the meridional curvature of field are completely eliminated in accordance with the constitutional principle of the present invention, and the distortion characteristics are completely adjusted so that the scanning point moves at a constant speed. Stipulated.

【0045】だだし、完全というのは理想的な状態であ
って実際のレンズ形状には形状を算出する時の数値計算
誤差、あるいは製造誤差等のため像面湾曲収差、歪曲特
性収差が多少は生じる。もちろんそれらの収差にはある
程度の許容範囲があり、その範囲内であれば走査用レン
ズとして有効であるから、本発明はそれらを除外するも
のではない。
However, perfectness is an ideal state, and the actual lens shape may have a slight numerical field curvature error or distortion characteristic aberration due to a numerical calculation error in calculating the shape or a manufacturing error. Occurs. Of course, these aberrations have a certain allowable range, and if they are within that range, they are effective as a scanning lens. Therefore, the present invention does not exclude them.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】[0051]

【表6】 [Table 6]

【0052】[0052]

【表7】 [Table 7]

【0053】[0053]

【表8】 [Table 8]

【0054】[0054]

【表9】 [Table 9]

【0055】図13に本発明に基づくレンズ形状の一実
施例を用いたレーザービームプリンタの光学系の全体像
を表す斜視図を示す。半導体レーザー2から出射した光
束はコリメータレンズ3で平行光束となり、シリンドリ
カルレンズ4によって球欠方向にのみ収束させられて回
転多面鏡偏向器6の鏡面付近で線状で結像する。光束は
多面鏡5の回転によって子午平面内で等角速度偏向さ
れ、本発明による走査用レンズ1を通過した後、感光ド
ラム7上に結像する。球欠方向については鏡面と感光ド
ラム面が共役結像点となっており面倒れ補正系をなして
いる。像点は本発明の走査用レンズ1によって感光ドラ
ム7の軸方向に等速走査され、像面湾曲なく直線上に結
像する。この走査1回につき感光ドラムが1ピッチだけ
回転してそれが繰返されることによって感光ドラム上に
潜像が形成される。
FIG. 13 is a perspective view showing an overall image of an optical system of a laser beam printer using one embodiment of a lens shape according to the present invention. The light beam emitted from the semiconductor laser 2 is converted into a parallel light beam by the collimator lens 3, converged only in the direction of the sphere by the cylindrical lens 4, and forms a linear image near the mirror surface of the rotary polygon mirror deflector 6. The light beam is deflected at a constant angular velocity in the meridional plane by the rotation of the polygon mirror 5, passes through the scanning lens 1 according to the present invention, and forms an image on the photosensitive drum 7. In the missing direction of the sphere, the mirror surface and the photosensitive drum surface are conjugate image forming points, forming a surface tilt correction system. The image point is scanned at a constant speed in the axial direction of the photosensitive drum 7 by the scanning lens 1 of the present invention, and forms an image on a straight line without curvature of field. The latent image is formed on the photosensitive drum by rotating the photosensitive drum by one pitch for each scan and repeating the rotation.

【0056】[0056]

【発明の効果】以上述べてきたように、本発明の光走査
装置は走査用レンズが、光束が被走査平面上で等速で移
動するような歪み特性を有し、かつ被走査平面上におけ
る光束の像面湾曲収差が零またはほとんど零となる如く
両面が非球面である単玉レンズであるため、単玉であっ
てもほとんど収差がなくきわめて良好な結像スポットが
得られまた広角偏向で光軸長の短い走査用レンズが構成
できる。また同じ理由によりレンズ媒質が低屈折率であ
っても設計上の何らの支障にならず、従ってレンズ媒質
のプラスチック化が可能となる。また、図1、図8のよ
うに、本発明による走査用レンズの入射側の面の曲率半
径の符号が光線高が大きくなるにつれて途中から正から
負に反転するものの場合、走査用レンズをより小型化す
ることができる。従って小型で低価格、しかも高性能な
光走査装置を提供することができる、という効果を有す
る。
As described above, in the optical scanning device of the present invention, the scanning lens has a distortion characteristic such that the light beam moves at a constant speed on the plane to be scanned, and the scanning lens has Since it is a single lens with both surfaces being aspherical so that the field curvature aberration of the light beam is zero or almost zero, even a single lens has very little aberration and very good imaging spot is obtained. A scanning lens having a short optical axis length can be configured. For the same reason, even if the lens medium has a low refractive index, there is no problem in designing, and therefore, the lens medium can be made plastic. Also, as shown in FIGS. 1 and 8, when the sign of the radius of curvature of the surface on the incident side of the scanning lens according to the present invention reverses from positive to negative from the middle as the ray height increases, the scanning lens is The size can be reduced. Therefore, there is an effect that a compact, low-cost, and high-performance optical scanning device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光走査装置の概略の構成を示す原理図
である。
FIG. 1 is a principle diagram showing a schematic configuration of an optical scanning device of the present invention.

【図2】本発明のレンズ形状を構成する原理を説明する
ための原理図である。
FIG. 2 is a principle diagram for explaining the principle of configuring the lens shape of the present invention.

【図3】本発明の走査用レンズが単玉両非球面レンズで
実現可能であることを説明するための原理図である。
FIG. 3 is a principle diagram for explaining that the scanning lens of the present invention can be realized by a single-lens bi-aspherical lens.

【図4】本発明の走査用レンズの形状を算出する方法を
説明するための原理図である。
FIG. 4 is a principle diagram for explaining a method of calculating the shape of a scanning lens according to the present invention.

【図5】本発明のレンズ形状の1実施例を示した図であ
る。
FIG. 5 is a view showing one embodiment of a lens shape according to the present invention.

【図6】本発明のレンズ形状の別の実施例を示した図で
ある。
FIG. 6 is a view showing another embodiment of the lens shape of the present invention.

【図7】本発明のレンズ形状の別の実施例を示した図で
ある。
FIG. 7 is a view showing another embodiment of the lens shape of the present invention.

【図8】本発明のレンズ形状の別の実施例を示した図で
ある。
FIG. 8 is a view showing another embodiment of the lens shape of the present invention.

【図9】本発明のレンズ形状の別の実施例を示した図で
ある。
FIG. 9 is a view showing another embodiment of the lens shape of the present invention.

【図10】本発明のレンズ形状の別の実施例を示した図
である。
FIG. 10 is a view showing another embodiment of the lens shape of the present invention.

【図11】本発明のレンズ形状の別の実施例を示した図
である。
FIG. 11 is a view showing another embodiment of the lens shape of the present invention.

【図12】本発明のレンズ形状の別の実施例を示した図
である。
FIG. 12 is a view showing another embodiment of the lens shape of the present invention.

【図13】本発明の光走査装置全体の実施例を示す斜視
図である。
FIG. 13 is a perspective view showing an embodiment of the entire optical scanning device of the present invention.

【符号の説明】 1…走査用レンズ 2…半導体レーザー 5…多面鏡 6…回転多面鏡偏向器 7…被走査面(感光ドラム)[Description of Signs] 1 ... Scanning lens 2 ... Semiconductor laser 5 ... Polygon mirror 6 ... Rotating polygon mirror deflector 7 ... Scanned surface (photosensitive drum)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 細い光束を出射する光源と、該光束を所
定の方向に偏向走査する偏向器と、該偏向器で偏向され
た光束を被走査平面上に結像させる走査用レンズとを備
え、前記走査用レンズは単玉レンズで構成され、子午平
面内における前記光束が入射する側の面の曲率半径の符
号が、前記子午平面内における前記光束の入射位置に応
じて途中から反転することを特徴とする光走査装置。
1. A light source for emitting a thin light beam, a deflector for deflecting and scanning the light beam in a predetermined direction, and a scanning lens for forming an image of the light beam deflected by the deflector on a plane to be scanned. The scanning lens is a single lens, and the sign of the radius of curvature of the surface on the side on which the light beam enters in the meridional plane is reversed halfway according to the incident position of the light beam in the meridian plane. An optical scanning device characterized by the above-mentioned.
【請求項2】 曲率中心がレンズ面より光束射出側にあ
るとき曲率半径が正、光束入射側にあるとき曲率半径が
負とすると、前記の符号の反転が光線高が大きくなるに
つれて途中から正から負に反転することを特徴とする請
求項1記載の光走査装置。
2. If the radius of curvature is positive when the center of curvature is on the light beam exit side with respect to the lens surface, and the radius of curvature is negative when the center of curvature is on the light beam incident side, the sign inversion becomes positive from the middle as the ray height increases. 2. The optical scanning device according to claim 1, wherein the optical scanning device is inverted from.
【請求項3】 球欠方向の像面湾曲収差を補正するよう
に、前記単玉レンズの両面の少なくとも何れか一方の子
午平面内での非円弧曲線に沿った位置の球欠方向の曲率
が子午方向の曲率とは相関なく変化するように定められ
てなることを特徴とする請求項1記載の光走査装置。
3. A curvature in a ball missing direction at a position along a non-circular arc curve in at least one of meridional planes of both surfaces of the single element lens so as to correct a field curvature aberration in a ball missing direction. 2. The optical scanning device according to claim 1, wherein the optical scanning device is determined so as to change without correlation with the curvature in the meridian direction.
JP8132948A 1996-05-28 1996-05-28 Optical scanning device Expired - Lifetime JP2621838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132948A JP2621838B2 (en) 1996-05-28 1996-05-28 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132948A JP2621838B2 (en) 1996-05-28 1996-05-28 Optical scanning device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60280246A Division JPH0760221B2 (en) 1985-12-13 1985-12-13 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH08320444A JPH08320444A (en) 1996-12-03
JP2621838B2 true JP2621838B2 (en) 1997-06-18

Family

ID=15093246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132948A Expired - Lifetime JP2621838B2 (en) 1996-05-28 1996-05-28 Optical scanning device

Country Status (1)

Country Link
JP (1) JP2621838B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253936B2 (en) 2004-03-26 2007-08-07 Samsung Electronics Co., Ltd. Laser scanning unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898844A (en) * 1972-03-29 1973-12-14
JPS5093720A (en) * 1973-12-20 1975-07-26
JPS5228666A (en) * 1975-08-29 1977-03-03 Nitto Electric Ind Co Method of producing flexible printed circuit substrate
JPS5498627A (en) * 1978-12-27 1979-08-03 Canon Inc Optical scanning device
JPS57144518A (en) * 1981-03-03 1982-09-07 Canon Inc Scan optical system having fall compensating function
JPS60133416A (en) * 1983-12-22 1985-07-16 Ricoh Co Ltd Cylindrical lens for surface inclination correcting and scanning optical system
JPH0760221A (en) * 1993-08-31 1995-03-07 Entetsuku Kenkyusho:Kk Waste treatment material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898844A (en) * 1972-03-29 1973-12-14
JPS5093720A (en) * 1973-12-20 1975-07-26
JPS5228666A (en) * 1975-08-29 1977-03-03 Nitto Electric Ind Co Method of producing flexible printed circuit substrate
JPS5498627A (en) * 1978-12-27 1979-08-03 Canon Inc Optical scanning device
JPS57144518A (en) * 1981-03-03 1982-09-07 Canon Inc Scan optical system having fall compensating function
JPS60133416A (en) * 1983-12-22 1985-07-16 Ricoh Co Ltd Cylindrical lens for surface inclination correcting and scanning optical system
JPH0760221A (en) * 1993-08-31 1995-03-07 Entetsuku Kenkyusho:Kk Waste treatment material

Also Published As

Publication number Publication date
JPH08320444A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP3445050B2 (en) Scanning optical device and multi-beam scanning optical device
JP2804647B2 (en) Optical beam scanning optical device
JPH0760221B2 (en) Optical scanning device
JP2621838B2 (en) Optical scanning device
US5771062A (en) Beam scanning apparatus, for providing tilt correction to a rotary optical device
JPH0221565B2 (en)
JP2671893B2 (en) Recording device
JP2671891B2 (en) Optical scanning device
JP2671894B2 (en) Scanning lens
JP2671895B2 (en) Optical scanning method
JPH08320442A (en) Optical scanning device
JPH08320445A (en) Optical scanning device
JPS62138823A (en) Photoscanning device
JP3051671B2 (en) Optical scanning lens and optical scanning device
JP2621838C (en)
JP3381333B2 (en) Optical scanning device
JP3404204B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP3717656B2 (en) Optical scanning device and scanning imaging lens
JPH08146322A (en) Aspherical reflection mirror and light beam scanning optical system
JPH1164760A (en) Imaging optical system for optical scanning device
JPS62139519A (en) Photoscanning device
JPH09281422A (en) Scanning optical device
JP3405373B2 (en) Optical deflector and optical scanning device
JPH0511212A (en) Optical scanning device
JPS62139524A (en) Photoscanning device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term