JP2611960B2 - Dipole estimation method - Google Patents

Dipole estimation method

Info

Publication number
JP2611960B2
JP2611960B2 JP4200426A JP20042692A JP2611960B2 JP 2611960 B2 JP2611960 B2 JP 2611960B2 JP 4200426 A JP4200426 A JP 4200426A JP 20042692 A JP20042692 A JP 20042692A JP 2611960 B2 JP2611960 B2 JP 2611960B2
Authority
JP
Japan
Prior art keywords
dipole
potential
meas
opt
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4200426A
Other languages
Japanese (ja)
Other versions
JPH0622916A (en
Inventor
利光 武者
三郎 本間
祥夫 中島
良夫 岡本
仁平 中村
博元 渡辺
啓一 宮本
伸夫 中川
正史 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Electronics Co Ltd
Original Assignee
Chuo Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Electronics Co Ltd filed Critical Chuo Electronics Co Ltd
Priority to JP4200426A priority Critical patent/JP2611960B2/en
Publication of JPH0622916A publication Critical patent/JPH0622916A/en
Application granted granted Critical
Publication of JP2611960B2 publication Critical patent/JP2611960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生体表面上の電位を測
定し、該測定値から生体内部に仮定した等価双極子の位
置及びベクトル成分を算出する等価双極子推定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an equivalent dipole estimating method for measuring a potential on the surface of a living body and calculating a position and a vector component of an equivalent dipole assumed inside the living body from the measured value.

【0002】[0002]

【従来の技術】従来から、生体の神経活動により、該生
体表面上に現れる電位を測定する装置として脳波計,筋
電計,誘発電位加算装置等が使用されている。近時、生
体の神経活動に伴って該生体表面上に発生する電位又は
磁界を計測し、生体内の活動部位を推定する等価双極子
が提案されている。この方法の原理は次の如くである。
すなわち、例えば、脳の各活動部位の細胞が刺激される
と起電力を発生して、頭皮上に電位又は磁界を生ずる。
この様な電位又は磁界から脳内の各部位を電気的な双極
子で対応させ、この双極子の位置とベクトル成分を上述
の電位又は磁界から演算して活動している脳細胞の位置
を推定することにより、脳の活動状態を追跡する様にし
たものである。この様な双極子を推定する等価双極子法
に於いては、双極子が発生する電位又は磁界を繰り返し
演算する関係から、当初は、例えば、頭を完全な球と仮
定すると共に、頭蓋が一様な無限導体の中にあるものと
仮定して演算が行われた。すなわち、頭部内に均質な脳
があるものとした均質導体球を仮定し、また同心或いは
異心の球殻を仮定して電位や磁界を演算する方法等が提
案されている。
2. Description of the Related Art Conventionally, an electroencephalograph, an electromyograph, an evoked potential adding device, and the like have been used as devices for measuring a potential appearing on the surface of a living body due to nerve activity of the living body. 2. Description of the Related Art Recently, an equivalent dipole has been proposed, which measures a potential or a magnetic field generated on the surface of a living body in accordance with a nerve activity of the living body, and estimates an active site in the living body. The principle of this method is as follows.
That is, for example, when cells in each active site of the brain are stimulated, an electromotive force is generated to generate a potential or a magnetic field on the scalp.
From these potentials or magnetic fields, each part in the brain is made to correspond with an electric dipole, and the position of this dipole and the vector component are calculated from the above potential or magnetic field to estimate the position of active brain cells. By doing so, the state of activity of the brain is tracked. In the equivalent dipole method for estimating such a dipole, initially, for example, the head is assumed to be a complete sphere and the skull is one-handed because of the repeated calculation of the potential or magnetic field generated by the dipole. The calculations were performed assuming that they were in such an infinite conductor. That is, a method of calculating a potential or a magnetic field by assuming a homogeneous conductive sphere having a homogeneous brain in the head and assuming a concentric or eccentric spherical shell has been proposed.

【0003】しかし、球状でない頭蓋を球状モデルで近
似する方法は電位,磁界の計算に誤差を伴うばかりでな
く推定された等価双極子の位置が脳内のどこに対応して
いるかが判然としなかった。そこで、頭蓋内の均質性を
乱す眼孔や耳孔等の空洞部の影響を除去する方法(特願
昭62−285728号,特願昭63−86464号
等)や頭部形状の影響を除去する方法(特願昭62−2
85728号,特願昭63−182163号等)が提案
されている。
However, the method of approximating a non-spherical skull with a spherical model not only involves an error in the calculation of electric potential and magnetic field, but also makes it unclear where the estimated equivalent dipole position corresponds in the brain. . In view of this, a method for removing the influence of a cavity such as an eye hole or an ear hole that disturbs the homogeneity in the skull (Japanese Patent Application No. 62-285728, Japanese Patent Application No. 63-86464, etc.) and an influence of the head shape are removed. Method (Japanese Patent Application No. 62-2)
No. 85728, Japanese Patent Application No. 63-182163).

【0004】[0004]

【発明が解決しようとする課題】従来の等価双極子法で
は、例えば頭部では、頭蓋内の均質性を乱す原因となる
空洞部の影響はある程度は除去できる。しかし、等価双
極子の位置及びベクトル成分を算出する上では頭蓋骨の
影響も無視することはできない。すなわち、頭蓋骨は頭
蓋内の他の組織充填部とは導電率の大きさが異なり、他
の組織充填部と同一の導電率として計算すると誤差を生
じてしまう。本発明は、従来の等価双極子法のこのよう
な欠点を解消するためになされたものであり、誤差発生
の原因となる各部での導電率の差を考慮して正確な双極
子の位置とベクトル成分を比較的簡単に推定して得る双
極子推定方法を提供することを目的とする。
In the conventional equivalent dipole method, for example, in the head, the influence of a cavity that causes disturbance of intracranial homogeneity can be removed to some extent. However, the influence of the skull cannot be neglected in calculating the position and vector component of the equivalent dipole. That is, the skull is different in conductivity from other tissue filling portions in the skull, and an error occurs when calculated as the same conductivity as the other tissue filling portions. The present invention has been made in order to solve such a drawback of the conventional equivalent dipole method, and takes into account the difference in the electrical conductivity in each part that causes an error, and the accurate position of the dipole. It is an object of the present invention to provide a dipole estimating method which can obtain a vector component relatively easily .

【0005】即ち、この発明は、内部が導電率σの異な
る複数種類の層からなる生体の表面上に、三角形を複数
個隙間なく網状に配置し、これらの三角形をつなぎ合わ
せて近似的に多面体を形成するとともに、前記各三角形
の頂点に電極を装着し、この複数M個の電極により前記
生体表面上の電位uを測定し、この測定値を用いて所定
の演算を行い前記生体内部の双極子dの位置r opt 及び
ベクトル成分d opt (d x ,d y ,d z )を推定する
極子推定方法であって、生体内部を、それぞれ固有の導
電率σ a ,σ b ,σ c が分布する領域Ω1 ,Ω2 ,Ω3
に分けて複数に分割し、求めようとする双極子d
(d x ,d y ,d z )の仮想的な存在位置を仮位置rと
して予め複数個設定し、その設定された双極子d
(d x ,d y ,d z )の仮位置rに基づいて各領域毎に
その表面上の電位分布の各成分(a 1 ,a 2 ,a 3 )を
境界要素法によって演算し、これらの演算値に基づいて
伝達行列A(r)を決定するとともに、この伝達行列A
(r)を用いた次式、u cal =A(r)dから生体表面
の前記各電極点で発生する各電位u cal を算出し、実測
した生体表面上の各位置rでの電位u meas とそれぞれ生
体内部の各仮位置rに双極子dがあるとしたときにその
双極子dから発生することが予想される演算により算出
した前記同位置での各電位u cal との間の各2乗誤差を
与える2乗誤差関数S(r,d)=|u meas −u cal
2 を求め、これら位置rと電位分布dとからなる2乗誤
差関数について、これら位置rと電位分布dとの各3変
数のうち電位分布についての3変数dを次の変換式、d
opt =(A(r) t A(r)) -1 A(r) t meas
(但しここで、A(r) t は行列A(r)の転置行列)
を用いて消去して双極子の位置rのみについての2乗誤
差関数S(r)=u t meas {E M −A(r)(A(r)
t A(r)) -1 A(r) t }u meas 、(但しここで、u
t meas は行列u meas の転置行列、E M は単位行列)に変
換し、前記これらの2乗誤差関数S(r)について最も
小さな誤差を与えるときの双極子dの仮位置rをシンプ
レックス法で補正して求め、この求めた双極子dの仮位
置rを生体内での真の双極子d opt の真の位置r opt
して推定するとともに、その推定した真の双極子位置r
opt から前記変換式d opt =(A(r) t A(r)) -1
A(r) t meas を用いて双極子dのベクトル成分を求
め、この求めた双極子dのベクトル成分を双 極子の真の
ベクトル成分d opt として推定するものである。
That is, according to the present invention, the inside has a different conductivity σ.
Multiple triangles on the surface of a living body
Arrange them in a mesh without gaps, and join these triangles together.
To approximately form a polyhedron,
An electrode is attached to the vertex of the
The potential u on the surface of the living body is measured, and a predetermined value is determined using the measured value.
And the position r opt of the dipole d inside the living body and
A bi <br/> pole estimation method for estimating a vector component d opt (d x, d y , d z), the internal biological, each unique conductive
The regions Ω1, Ω2, Ω3 where the electric powers σ a , σ b , σ c are distributed
Dipole d to be obtained
A virtual existence position of (d x , d y , d z ) is defined as a temporary position r.
And a plurality of dipoles d are set in advance.
Based on the provisional position r of (d x , d y , d z ),
Each component (a 1 , a 2 , a 3 ) of the potential distribution on the surface is
Computed by the boundary element method and based on these computed values
The transfer matrix A (r) is determined, and the transfer matrix A (r) is determined.
From the following equation using (r), u cal = A (r) d,
Calculate each potential u cal generated at each electrode point of
Each life and potential u meas at each position r on the surface of the living body
When there is a dipole d at each temporary position r inside the body,
Calculated by calculation expected to be generated from dipole d
Each square error between each potential u cal at the same position and
Given square error function S (r, d) = | u meas −u cal |
2 and the square error formed by the position r and the potential distribution d
Regarding the difference function, each of these three changes of the position r and the potential distribution d
Of the numbers, three variables d regarding the potential distribution are converted into the following conversion formulas, d
opt = (A (r) t A (r)) -1 A (r) t u meas,
(Where A (r) t is the transposed matrix of matrix A (r))
Squared error only for dipole position r
Difference function S (r) = u t meas {E M -A (r) (A (r)
t A (r)) -1 A (r) t } u meas , (where, u
t meas is the transposed matrix of matrix u meas , and E M is the identity matrix.
In other words, regarding these square error functions S (r),
Simplify the temporary position r of the dipole d when giving a small error
Corrected by the Rex method, the obtained hypothesis of dipole d
The location r and the true position r opt true dipole d opt in vivo
And the estimated true dipole position r
From opt , the conversion equation d opt = (A (r) t A (r)) -1
Calculated vector components of the dipole d using A (r) t u meas
Because, the obtained vector components of the dipole d twin pole true
It is estimated as a vector component d opt .

【0006】[0006]

【作用】本発明の等価双極子測定装置においては、生体
内部の双極子電源により該生体表面上に発生した電位を
測定する。一方、予め特定位置に双極子を設定すると共
に、生体内を導電率の大きさに合せて領域を分割し、こ
の領域毎にその表面上の電位分布を演算し、これによっ
て生体表面上での電位を算出し、この算出した演算値と
実測値との2乗誤差を最小とするように、設定した双極
子の位置及びベクトル成分を補正して双極子の真の位置
及びベクトル成分を推定することができる。
In the equivalent dipole measuring apparatus according to the present invention, a potential generated on the surface of a living body is measured by a dipole power supply inside the living body. On the other hand, a dipole is set at a specific position in advance, and the inside of the living body is divided into regions according to the magnitude of the electric conductivity, and the potential distribution on the surface is calculated for each of the regions. The potential is calculated, and the position and vector component of the set dipole are corrected so as to minimize the square error between the calculated value and the actually measured value, and the true position and vector component of the dipole are estimated. be able to.

【0007】[0007]

【実施例】以下この発明の一実施例について添付図面を
参照しながら説明する。図1は、この発明に係る頭蓋内
(脳内)における双極子の推定方法を示すものであり、
この双極子の推定方法は、第1ステップS1〜第7ステ
ップS7から構成されている。
An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a method of estimating a dipole in the skull (in the brain) according to the present invention.
The dipole estimating method includes first to seventh steps S1 to S7.

【0008】[0008]

【数1】 (Equation 1)

【0009】[0009]

【数2】 (Equation 2)

【0010】[0010]

【数3】 (Equation 3)

【0011】[0011]

【数4】 (Equation 4)

【0012】[0012]

【数5】 (Equation 5)

【0013】[0013]

【数6】 (Equation 6)

【0014】[0014]

【数7】 (Equation 7)

【0015】[0015]

【数8】 (Equation 8)

【0016】[0016]

【数9】 (Equation 9)

【0017】[0017]

【数10】 (Equation 10)

【0018】[0018]

【数11】 [Equation 11]

【0019】[0019]

【数12】 (Equation 12)

【0020】[0020]

【数13】 (Equation 13)

【0021】[0021]

【数14】 [Equation 14]

【0022】[0022]

【数15】 (Equation 15)

【0023】[0023]

【発明の効果】以上説明してきたように、この発明によ
れば、生体の内部を同一導電率の分布領域に合せて複数
に分割し、求めようとする双極子の仮りの位置及びベク
トル成分に基づいて各領域毎に表面上の電位分布を演算
し、これらの演算値に基づいて生体表面上の電位を算出
し、実測した生体表面上の電位と演算により算出した同
位置での電位との間の2乗誤差を最小にするようにシン
プレックス法を用いて前記双極子の位置及びベクトル成
分を補正し、前記生体内での双極子の真の位置及びベク
トル成分を推定するようになっているので、導電率の異
なる不均一な生体内の双極子の位置又はベクトル成分の
推定が従来の方法に比べ極めて精度良く行うことができ
るようになり、これによって脳に関する病理学的な研究
や臨床学的研究のための有力な手段が提供できる。
As described above, according to the present invention, the inside of a living body is divided into a plurality of parts in accordance with the distribution region of the same conductivity, and the virtual position and vector component of the dipole to be obtained are determined. The potential distribution on the surface is calculated for each region based on the calculated values, the potential on the surface of the living body is calculated based on these calculated values, and the potential measured on the surface of the living body and the potential at the same position calculated by the calculation are calculated. thin to minimize the square error between
The position and vector components of the dipole are corrected using the plex method, and the true position and vector component of the dipole in the living body are estimated. Estimation of the dipole position or vector component of the present invention can be performed with much higher accuracy than conventional methods, thereby providing a powerful means for pathological and clinical studies on the brain. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る双極子の推定方法を示すフロー
チャート。
FIG. 1 is a flowchart showing a dipole estimation method according to the present invention.

【図2】この発明に係る双極子の推定方法において各領
域表面上に形成する三角形を示す説明図。
FIG. 2 is an explanatory diagram showing triangles formed on the surface of each region in the dipole estimation method according to the present invention.

【図3】この発明に係る双極子の推定方法が適用される
頭蓋内の三層モデルを示す模式図。
FIG. 3 is a schematic diagram showing an intracranial three-layer model to which the dipole estimation method according to the present invention is applied;

【図4】この発明に係る双極子の推定方法が適用される
他の三層モデルを示す模式図。
FIG. 4 is a schematic diagram showing another three-layer model to which the dipole estimation method according to the present invention is applied.

【図5】この発明に係る第1,第2層領域における導電
率の分布等を示す説明図。
FIG. 5 is an explanatory diagram showing a distribution of conductivity in first and second layer regions according to the present invention.

フロントページの続き (72)発明者 中島 祥夫 千葉県千葉市中央区旭町4−3 (72)発明者 岡本 良夫 神奈川県川崎市高津区下作延227−7 (72)発明者 中村 仁平 東京都八王子市元本郷町1丁目9番9号 中央電子株式会社内 (72)発明者 渡辺 博元 東京都八王子市元本郷町1丁目9番9号 中央電子株式会社内 (72)発明者 宮本 啓一 東京都八王子市元本郷町1丁目9番9号 中央電子株式会社内 (72)発明者 中川 伸夫 東京都八王子市元本郷町1丁目9番9号 中央電子株式会社内 (72)発明者 菊地 正史 東京都八王子市元本郷町1丁目9番9号 中央電子株式会社内 (56)参考文献 特開 平5−49607(JP,A)Continuation of the front page (72) Inventor Yoshio Nakajima 4-3 Asahimachi, Chuo-ku, Chiba-shi, Chiba Prefecture (72) Inventor Yoshio Okamoto 227-7 Shimosakunobu, Takatsu-ku, Kawasaki-shi, Kanagawa-ken (72) Inventor Hitoda Nakamura Hachioji-shi, Tokyo 1-9-9 Moto-Honcho Chuo Denshi Co., Ltd. (72) Inventor Hiromoto Watanabe 1-9-9 Moto-Hongocho, Hachioji-shi, Tokyo Chuo Denshi Co., Ltd. (72) Inventor Keiichi Miyamoto Hachioji, Tokyo 1-9-9 Motomotocho, Ichimoto Chuo Denshi Co., Ltd. (72) Inventor Nobuo Nakagawa 1-9-9 Motohongocho, Hachioji City, Tokyo Inside Chuo Denshi Co., Ltd. (72) Inventor Masafumi Kikuchi Hachioji, Tokyo 1-9-9 Hongocho, Ichimoto Inside Chuo Denshi Co., Ltd. (56) References JP-A-5-49607 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内部が導電率σの異なる複数種類の層か
らなる生体の表面上に、三角形を複数個隙間なく網状に
配置し、これらの三角形をつなぎ合わせて近似的に多面
体を形成するとともに、前記各三角形の頂点に電極を装
着し、この複数M個の電極により前記生体表面上の電位
uを測定し、この測定値を用いて所定の演算を行い前記
生体内部の双極子dの位置r opt 及びベクトル成分d
opt (d x ,d y ,d z )を推定する双極子推定方法で
あって、生体内部を、それぞれ固有の導電率σ a ,σ b ,σ c
分布する領域Ω1 ,Ω2 ,Ω3 に分けて複数に分割し、 求めようとする双極子d(d x ,d y ,d z )の仮想的
な存在位置を仮位置rとして予め複数個設定し、 その設定された双極子d(d x ,d y ,d z )の仮位置
rに基づいて各領域毎にその表面上の電位分布の各成分
(a 1 ,a 2 ,a 3 )を境界要素法によって演算し、 これらの演算値に基づいて伝達行列A(r)を決定する
とともに、この伝達行列A(r)を用いた次式、u cal
=A(r)dから生体表面の前記各電極点で発生する各
電位u cal を算出し、 実測した生体表面上の各位置rでの電位u meas とそれぞ
れ生体内部の各仮位置rに双極子dがあるとしたときに
その双極子dから発生することが予想される演算により
算出した前記同位置での各電位u cal との間の各2乗誤
差を与える2乗誤差関数S(r,d)=|u meas −u
cal 2 を求め、 これら位置rと電位分布dとからなる2乗誤差関数につ
いて、これら位置rと電位分布dとの各3変数のうち電
位分布についての3変数dを次の変換式、d opt =(A
(r) t A(r)) -1 A(r) t meas 、(但しここ
で、A(r) t は行列A(r)の転置行列)を用いて消
去して双極子の位置rのみについての2乗誤差関数S
(r)=u t meas {E M −A(r)(A(r) t
(r)) -1 A(r) t }u meas 、(但しここで、u t
meas は行列u meas の転置行列、E M は単位行列)に変換
し、 前記これらの2乗誤差関数S(r)について最も小さな
誤差を与えるときの双 極子dの仮位置rをシンプレック
ス法で補正して求め、 この求めた双極子dの仮位置rを生体内での真の双極子
opt の真の位置r opt として推定するとともに、その
推定した真の双極子位置r opt から前記変換式d opt
(A(r) t A(r)) -1 A(r) t meas を用いて双
極子dのベクトル成分を求め、 この求めた双極子dのベクトル成分を双極子の真のベク
トル成分d opt として推定する ことを特徴とする双極子
の推定方法。
1. The inside of a plurality of layers having different conductivity σ
On the surface of a living body consisting of multiple triangles in a mesh without gaps
Arrange them and join these triangles together to approximate polyhedral
And electrodes on the vertices of each triangle.
And the potential on the surface of the living body is determined by the plurality of M electrodes.
u is measured, and a predetermined calculation is performed by using the measured value.
Position r opt and vector component d of dipole d inside living body
This is a dipole estimating method for estimating opt (d x , d y , d z ), in which a specific conductivity σ a , σ b , σ c is set inside a living body.
The virtual region of the dipole d (d x , d y , d z ) to be obtained is divided into a plurality of distribution regions Ω 1, Ω 2 and Ω 3.
Advance configure several Do presence position as the temporary position r, the set dipoles d (d x, d y, d z) temporary position of
Each component of the potential distribution on the surface for each region based on r
(A 1 , a 2 , a 3 ) is calculated by the boundary element method, and a transfer matrix A (r) is determined based on these calculated values.
And the following equation using this transfer matrix A (r): u cal
= A (r) d generated at each of the electrode points on the body surface from A (r) d
Calculating the potential u cal, potential u meas and that in each position r on the measured biometric surface
When there is a dipole d at each temporary position r inside the living body,
By the operation expected to be generated from the dipole d,
Each square error between the calculated potential u cal at the same position and the calculated potential u cal
Square error function S (r, d) = | u meas −u giving the difference
cal | 2 is calculated, and a square error function composed of the position r and the potential distribution d is calculated.
Out of the three variables of the position r and the potential distribution d.
The three variables d for the rank distribution are converted into the following conversion formula, d opt = (A
(R) t A (r)) -1 A (r) t u meas , (however,
Where A (r) t is the inverse of the matrix A (r).
Leaving the squared error function S only for dipole position r
(R) = u t meas { E M -A (r) (A (r) t A
(R)) −1 A (r) t } u meas , (where, u t
meas is the transpose of the matrix u meas , E M is the identity matrix
And the least squared error function S (r)
Simplex the provisional position r of the double-pole d at the time of giving the error
The tentative position r of the obtained dipole d is determined by the correction method using the true dipole in vivo.
Estimate as the true position r opt of d opt and its
From the estimated true dipole position r opt , the conversion formula d opt =
(A (r) t A ( r)) using the -1 A (r) t u meas bi
The vector component of the dipole d is obtained, and the obtained vector component of the dipole d is calculated as the true vector of the dipole.
A method for estimating a dipole, comprising estimating as a tor component d opt .
JP4200426A 1992-07-03 1992-07-03 Dipole estimation method Expired - Fee Related JP2611960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4200426A JP2611960B2 (en) 1992-07-03 1992-07-03 Dipole estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4200426A JP2611960B2 (en) 1992-07-03 1992-07-03 Dipole estimation method

Publications (2)

Publication Number Publication Date
JPH0622916A JPH0622916A (en) 1994-02-01
JP2611960B2 true JP2611960B2 (en) 1997-05-21

Family

ID=16424105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4200426A Expired - Fee Related JP2611960B2 (en) 1992-07-03 1992-07-03 Dipole estimation method

Country Status (1)

Country Link
JP (1) JP2611960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325754A (en) * 2005-05-24 2006-12-07 Brain Research & Development:Kk Electroencephalogram (eeg) dipole tracing apparatus, eeg dipole tracing method, program for eeg dipole tracing, and storage medium storing the program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673658B2 (en) * 1994-02-04 1997-11-05 本間 三郎 Dipole estimation method
JP5308804B2 (en) * 2008-12-25 2013-10-09 有限会社ブレインリサーチ アンド デベロップメント Dipole estimation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218265A (en) * 1990-01-24 1991-09-25 Murata Mfg Co Ltd Multioutput dc power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325754A (en) * 2005-05-24 2006-12-07 Brain Research & Development:Kk Electroencephalogram (eeg) dipole tracing apparatus, eeg dipole tracing method, program for eeg dipole tracing, and storage medium storing the program

Also Published As

Publication number Publication date
JPH0622916A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
US11013444B2 (en) Method and device for determining and presenting surface charge and dipole densities on cardiac walls
Cuffin EEG dipole source localization
CA2094804C (en) Method and apparatus for imaging electrical activity in a biological system
Gençer et al. Forward problem solution of electromagnetic source imaging using a new BEM formulation with high-order elements
JP2611960B2 (en) Dipole estimation method
Greensite Well-posed formulation of the inverse problem of electrocardiography
CN110393522B (en) Non-invasive heart electrophysiological inversion method based on total variation constraint of graph
JP2626712B2 (en) In vivo equivalent current dipole display
JPH0399630A (en) Equivalent dipole measuring apparatus and equivalent dipole estimating method
JP2804961B2 (en) Equivalent current dipole tracking device in the head
Johnston et al. An asymptotic estimate for the effective radius of a concentric bipolar electrode
JP2673658B2 (en) Dipole estimation method
JPH0231736A (en) In vivo equivalent current dipole tracking apparatus
Pullan et al. A computational procedure for modelling electrical activity from heart to body surface
Huang et al. Sensor Weighted Multiple Sphere Head Model for MEG
Svehlikova et al. Inverse localization of the latest-activated areas in the ventricles from body surface potential maps
Van den Broek et al. The influence of holes in a layer with low conductivity on the potential and magnetic field
Takahashi et al. Development of Digital Image Surface and Its Application to Derived 12-Lead ECG
JPH01126949A (en) Intracorporeal equivalent current dipole tracing apparatus and display apparatus thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees