JP2603290B2 - Color video signal processing method - Google Patents

Color video signal processing method

Info

Publication number
JP2603290B2
JP2603290B2 JP63090106A JP9010688A JP2603290B2 JP 2603290 B2 JP2603290 B2 JP 2603290B2 JP 63090106 A JP63090106 A JP 63090106A JP 9010688 A JP9010688 A JP 9010688A JP 2603290 B2 JP2603290 B2 JP 2603290B2
Authority
JP
Japan
Prior art keywords
signal
block
color difference
line
luminance signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63090106A
Other languages
Japanese (ja)
Other versions
JPH01260991A (en
Inventor
芳季 石井
信 下郡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63090106A priority Critical patent/JP2603290B2/en
Priority to US07/334,196 priority patent/US5067010A/en
Publication of JPH01260991A publication Critical patent/JPH01260991A/en
Application granted granted Critical
Publication of JP2603290B2 publication Critical patent/JP2603290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はカラービデオ信号処理方法に関し、特に高能
率符号化を行うカラービデオ信号処理方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color video signal processing method, and more particularly to a color video signal processing method for performing high-efficiency encoding.

[従来の技術] 一般に輝度信号と2種の色差信号とよりなるカラービ
デオ信号にあっては輝度信号の帯域に対して色差信号の
帯域は狭く、デジタル化する際の標本化周波数について
も輝度信号の標本化周波数の1/4程度に設定されること
になる。
[Related Art] Generally, in a color video signal including a luminance signal and two kinds of color difference signals, the band of the color difference signal is narrower than the band of the luminance signal, and the sampling frequency at the time of digitization is also the luminance signal. Will be set to about 1/4 of the sampling frequency of

更に画面上に於ける視覚特性を考慮すると、輝度信号
の情報量に対して色信号の情報量を更に圧縮しても目立
たない。しかし、かといって単純に色差信号の標本化周
波数を更に低下させたのでは水平方向の解像度の低下が
目立ってしまう結果となる。
Further, considering the visual characteristics on the screen, even if the information amount of the chrominance signal is further compressed with respect to the information amount of the luminance signal, it is inconspicuous. However, simply lowering the sampling frequency of the chrominance signal further results in a noticeable decrease in the resolution in the horizontal direction.

そこで、従来より2種類の色差信号(CN,CW)を線順
次化して情報量を1/2としたり、ライン間またはフイー
ルド間でシフトした画素を伝送し他の画素を間引くオフ
セツトサブサンプリングにより情報量を1/2とすること
が提案されている。
Therefore, two types of color difference signals (C N , C W ) are line-sequentially reduced to 1/2 the amount of information, or an offset sub-pixel that transmits pixels shifted between lines or between fields and thins out other pixels. It has been proposed to reduce the information amount by half by sampling.

他方、近年ビデオ信号は更に高精細化し、走査線数が
1000本以上の所謂高品位(Hi Definition)テレビジヨ
ン信号の試験も行われている。そのためビデオ信号の情
報量は更に増大する傾向にあり、伝送路の伝送速度の限
界を考慮した場合、更に情報量を圧縮しなければなら
ず、様々な高能率符号化方式が提案されている。
On the other hand, in recent years, video signals have become higher definition and the number of scanning lines has been reduced.
Testing of more than 1000 so-called high definition television signals has also been performed. Therefore, the amount of information of a video signal tends to further increase, and in consideration of the limit of the transmission speed of a transmission line, the amount of information must be further compressed, and various high-efficiency coding methods have been proposed.

この高能率符号化方式の1つの例として1画面を(n
×m)個の標本点からなる符号化ブロツクに分割し、各
ブロツク内の各画素の相関を用いて画質劣化を伴わずに
情報の圧縮を行うブロツク符号化がある。このブロツク
符号化は最も相関の高い画素を用いて符号化を行えるの
で画質の劣化も小さく、かつ符号誤りの伝搬が各ブロツ
ク内のみに抑えられるという点で有利である。
As one example of this high efficiency coding method, one screen is represented by (n
There is a block coding that divides the data into coding blocks consisting of (xm) sample points and compresses information without deteriorating the image quality by using the correlation of each pixel in each block. This block coding is advantageous in that the coding can be performed using the pixels having the highest correlation, so that the deterioration of the image quality is small and the propagation of code errors is suppressed only within each block.

[発明が解決しようとする問題点] そこで、本発明は2種の色差信号と輝度信号とよりな
るコンポーネントビデオ信号を伝送または記録再生する
場合に、2種の色差信号についても効率よくブロツク符
号化を行い得る新規なカラービデオ信号処理方法を提示
せんとするものである。
[Problems to be Solved by the Invention] Accordingly, in the present invention, when a component video signal composed of two types of color difference signals and a luminance signal is transmitted or recorded / reproduced, block coding is efficiently performed on the two types of color difference signals. To provide a new color video signal processing method capable of performing the following.

[問題点を解決するための手段] かかる目的下に於いて、本発明のカラービデオ信号処
理方法によれば、デジタル輝度信号と線順次化された2
種類のデジタル色差信号とを入力し、前記入力されたデ
ジタル輝度信号を(n×m)サンプル(n,mは夫々2以
上の整数)のブロック毎に符号化し、前記入力されたデ
ジタル色差信号を互いに異なる色差信号が配されたライ
ンに跨る(n×m)サンプルのブロック毎に符号化し、
前記符号化されたデジタル輝度信号とデジタル色差信号
とを時間軸多重化して伝送することを特徴とする。
[Means for Solving the Problems] Under such a purpose, according to the color video signal processing method of the present invention, the digital luminance signal and the line-sequential 2
Digital chrominance signals are input, and the input digital luminance signal is encoded for each block of (n × m) samples (n and m are each an integer of 2 or more). Encoding for each block of (n × m) samples straddling a line on which different color difference signals are arranged,
The encoded digital luminance signal and digital chrominance signal are time-division multiplexed and transmitted.

[作用] 上記のように構成することにより、圧縮率を極めて高
く、かつ大きな画質劣化を伴うことなく輝度信号及び色
差信号を符号化することが可能となる。
[Operation] With the above-described configuration, it is possible to encode a luminance signal and a color difference signal with an extremely high compression rate and without significant image quality deterioration.

また、符号化した輝度信号と色差信号とを時間軸多重
化して伝送しているので、伝送路の取り回しを容易にで
きる。
Further, since the encoded luminance signal and color difference signal are transmitted in a time-division multiplexed manner, it is possible to easily manage the transmission path.

[実施例] 以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

第1図は本発明の方法の一実施例としてのカラービデ
オ信号の伝送システムの概略構成を示す図である。図中
2は輝度信号(Y)の入力端子、4,6は夫々色差信号(C
N,CW)の入力端子である。入力された輝度信号はA/D変
換器8で標本化され、ブロツク化回路10に入力される。
ブロツク化回路10はラスター走査順のデジタル輝度信号
を(4×4)画素のブロツク毎に読み出す回路である。
FIG. 1 is a diagram showing a schematic configuration of a color video signal transmission system as one embodiment of the method of the present invention. In the figure, 2 is an input terminal of a luminance signal (Y), and 4 and 6 are color difference signals (C
N , C W ) input terminals. The input luminance signal is sampled by the A / D converter 8 and input to the block forming circuit 10.
The block forming circuit 10 is a circuit for reading a digital luminance signal in a raster scanning order for each block of (4 × 4) pixels.

第2図はブロツク化回路の動作を説明するための図
で、図中実線は第1フイールドの走査線、破線は第2フ
イールドの走査線を夫々示し、一点鎖線はブロツクの境
界を示す。即ちブロツク化回路10は○内に示す画素番号
で1→2→3→4→17→18→19→20→…→9→10→11→
12→25→26→27→28→…の順で入力されたデータを1→
2→3→4→5→6→7→8→9→…の順で出力する。
FIG. 2 is a diagram for explaining the operation of the blocking circuit. In the drawing, solid lines indicate scanning lines of the first field, broken lines indicate scanning lines of the second field, and dashed lines indicate boundaries of the blocks. That is, the block forming circuit 10 uses the pixel numbers shown in circles to indicate 1 → 2 → 3 → 4 → 17 → 18 → 19 → 20 → ... → 9 → 10 → 11 →
Data entered in the order of 12 → 25 → 26 → 27 → 28 →… is 1 →
Output in the order of 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 →.

符号化回路12ではブロツク化回路10から読み出された
データをブロツク符号化して、情報量(1画素当りのビ
ツト数)を削減した後、出力する。
The encoding circuit 12 performs block encoding on the data read from the block encoding circuit 10 to reduce the amount of information (the number of bits per pixel) and then outputs the data.

他方、入力端子4,6から入力された色差信号CN,CWは夫
々A/D変換器14,16で輝度信号の1/4の周波数のサンプリ
ングクロツクでデジタル信号に変換される。デジタル化
された色差信号CN,CWは次段の前置きフイルタ15,17に供
給され、垂直方向の周波数が制限される。前置きフイル
タ15,17から出力される色差信号CN,CWはスイツチング制
御回路19からの1水平走査期間毎に反転する矩形波に応
じてスイツチ21で線順次化される。この線順次化された
信号に於ける画面上の色差信号CN,CWの配置を第3図に
て示す。図中実線は第1フイールド、破線は第2フイー
ルドの走査線を示し、図示の如く各フレームに於て2ラ
イン単位でCN,CWが配置されることになる。
On the other hand, the color difference signals C N and C W input from the input terminals 4 and 6 are converted into digital signals by the A / D converters 14 and 16 by a sampling clock having a frequency 1/4 of the luminance signal. The digitized color difference signals C N and C W are supplied to the pre-filters 15 and 17 at the next stage, and the frequency in the vertical direction is limited. The color difference signals C N and C W output from the pre-filters 15 and 17 are line-sequentialized by the switch 21 in accordance with the rectangular wave inverted from the switching control circuit 19 every horizontal scanning period. FIG. 3 shows the arrangement of the color difference signals C N and C W on the screen in the line-sequentialized signal. In the figure, the solid line indicates the first field and the broken line indicates the second field, and C N and C W are arranged in units of two lines in each frame as shown in the figure.

線順次化された色差信号CN,CWはブロツク化回路23に
供給され、ブロツク化回路の場合と同様にブロツク毎に
配列交換されて符号化回路25に供給される。この符号化
回路25に於ても水平方向の画素間隔が輝度信号の場合と
は異なっているが(4×4)画素の符号化ブロツク内で
の相関を利用した符号化が行なわれる。この時第2図の
如きブロツクのとり方をすると画素1,5を含むラインの
各画素がCWであれば画素9,13を含むラインの各画素がCN
となる。
The line-sequentialized color difference signals C N and C W are supplied to a block forming circuit 23, where they are rearranged for each block and supplied to an encoding circuit 25 as in the case of the block forming circuit. In the encoding circuit 25, the pixel interval in the horizontal direction is different from that in the case of the luminance signal, but the encoding is performed using the correlation in the encoding block of (4 × 4) pixels. At this time, when the block shown in FIG. 2 is taken, if each pixel on the line including pixels 1 and 5 is CW , then each pixel on the line including pixels 9 and 13 is C N
Becomes

符号化回路25でブロツク符号化された線順次色差信号
はブロツク符号化された輝度信号と多重化回路30で時間
軸多重され端子32を介して通信機、磁気録再機等の伝送
路34へ送出される。
The line-sequential chrominance signal block-encoded by the encoding circuit 25 is time-multiplexed by the multiplexing circuit 30 with the block-encoded luminance signal, and is transmitted to a transmission line 34 such as a communication device or a magnetic recording / reproducing device via a terminal 32. Sent out.

上記システムに於ける前置フイルタの構成例を第4図
に示す。図中101は入力端子、102,103は1水平走査期間
(1H)遅延回路、104,105,107は1/2係数器、106は加算
器、108は出力端子である。この前置フイルタにより垂
直方向の最高周波数が1/2程度に制限される。
FIG. 4 shows an example of the configuration of the pre-filter in the above system. In the figure, 101 is an input terminal, 102 and 103 are one horizontal scanning period (1H) delay circuits, 104, 105, and 107 are 1/2 coefficient units, 106 is an adder, and 108 is an output terminal. This pre-filter limits the maximum frequency in the vertical direction to about 1/2.

尚、ブロツク符号化の方式としては、例えば直交変換
符号化、ベクトル量子化、及びブロツク内の最大値及び
最小値と各画素毎これらの間を線形量子化した量子化イ
ンデツクスを伝送する符号化等、ブロツク内の相関を利
用した符号化方式を適用できる。
Examples of the block coding method include orthogonal transform coding, vector quantization, and coding for transmitting a quantization index obtained by linearly quantizing the maximum and minimum values in a block and between each pixel. , A coding method using the correlation in the block can be applied.

上述の如き構成によれば、線順次化した色差信号をブ
ロツク符号化したので、高い圧縮率の情報圧縮が可能で
ある。また、一般に2種類の色差信号CN,CW間には高い
相関があることが知られており、符号化ブロツクの大き
さが小さく抑えられることによって高能率の符号化が可
能である。更に1つの符号化ブロツクを再生することが
できれば2種の色差信号CN,CWのいずれも復元できるの
で、この符号化処理をデイジタルVTRに適用した場合、
所謂高速サーチを行なった場合でも色復元が可能である
のでこの様なデイジタルVTRに非常に適した処理である
といえる。
According to the configuration as described above, since the color difference signals that have been line-sequentialized are block-coded, it is possible to compress information at a high compression rate. It is generally known that there is a high correlation between the two types of color difference signals C N and C W , and high-efficiency encoding is possible by suppressing the size of the encoding block to a small value. Further, if one encoding block can be reproduced, both of the two types of color difference signals C N and C W can be restored. Therefore, when this encoding process is applied to a digital VTR,
Since color restoration is possible even when a so-called high-speed search is performed, it can be said that the processing is very suitable for such a digital VTR.

次に復号系について説明する。 Next, the decoding system will be described.

伝送路34を介したカラービデオ信号は端子36を介して
分離化回路38に供給され輝度信号と、線順次色差信号に
分離される。これらは夫々ブロツク復号化回路40,43に
供給され、符号化回路12,25,と逆の処理により復号さ
れ、情報量を元に戻す。復号された輝度信号,線順次色
差信号は夫々ラスター化回路でブロツク順から走査線順
へと配列変換される。
The color video signal via the transmission path 34 is supplied to a separation circuit 38 via a terminal 36, and is separated into a luminance signal and a line-sequential color difference signal. These are supplied to block decoding circuits 40 and 43, respectively, and are decoded by the reverse processing of the coding circuits 12 and 25 to restore the information amount. The decoded luminance signal and line-sequential chrominance signal are array-converted from a block order to a scanning line order by a rasterization circuit.

ラスター化された線順次色差信号はスイツチ53のB入
力、スイツチ55のA入力に供給される。スイツチング制
御回路50は1水平走査期間毎に反転する矩形波をスイツ
チ53,55に供給し、ラスター化回路49から出力される線
順次色差信号のCNを補間フイルタ57に、CWを補間フイル
タ59に供給される。この時、補間フイルタ57にはCNが存
在しない水平走査期間に0レベルに対応するオール“0"
のデータが供給され、補間フイルタ59にはCWが存在しな
い水平走査期間に0レベルに対応するオール“0"のデー
タが供給されている。
The rasterized line-sequential color difference signal is supplied to the B input of the switch 53 and the A input of the switch 55. Switching-control circuit 50 supplies a rectangular wave is inverted every 1 horizontal scanning period to switch 53 and 55, the C N line-sequential color difference signal outputted from the rasterizer 49 to the interpolation filter 57, interpolation and C W filter Supplied to 59. At this time, all corresponding to the zero level in the horizontal scanning period in which no C N is the interpolation filter 57 "0"
Are supplied to the interpolation filter 59, and all "0" data corresponding to the 0 level is supplied to the interpolation filter 59 in the horizontal scanning period in which CW does not exist.

補間フイルタ57,59の構成は第4図のフイルタと同様
であるが、2ライン中1ラインのデータが0レベルに対
応するデータと置換されているのでこの時点で平均レベ
ルが1/2に減衰していることになり、係数器107が不要と
なる。該補間フイルタ57,59により線順次化信号が2種
の色差信号CN,CWとされる。これらは夫々D/A変換器58,6
0に入力され、輝度信号についてはラスター化回路46の
出力がそのままD/A変換器56に供給される。この時、D/A
変換器56の動作周波数はD/A変換器58,60の4倍であり、
これらのD/A変換器56,58,60でアナログ化された輝度信
号、色差信号CN,CWはコンポーネントカラービデオ信号
として端子62,64,66から出力される。
The structure of the interpolation filters 57 and 59 is the same as that of the filter of FIG. 4, but the data of one line out of two lines is replaced with the data corresponding to the zero level, so that the average level is reduced to half at this point. As a result, the coefficient unit 107 becomes unnecessary. The interpolation filters 57 and 59 convert the line sequential signals into two types of color difference signals C N and C W. These are the D / A converters 58 and 6, respectively.
The output of the rasterization circuit 46 is directly supplied to the D / A converter 56 for the luminance signal. At this time, D / A
The operating frequency of the converter 56 is four times that of the D / A converters 58 and 60,
The luminance signals and color difference signals C N and C W converted into analog signals by these D / A converters 56, 58 and 60 are output from terminals 62, 64 and 66 as component color video signals.

尚、上述実施例に於ける符号化ブロツクのサイズは
(4×4)画素の場合を説明したが、一般に(n×m)
画素(n≧2,m≧2)であれば同様の効果が得られ、こ
れらn,mの値は符号化方式、データ圧縮率の要求等によ
って任意に決定できるものである。
Although the size of the coding block in the above embodiment has been described as being (4 × 4) pixels, it is generally (n × m).
The same effect can be obtained if the pixel (n ≧ 2, m ≧ 2), and the values of n and m can be arbitrarily determined according to the coding system, data compression rate requirement, and the like.

[発明の効果] 以上説明したように本発明によれば、輝度信号及び色
差信号に対して画質劣化をさせずに極めて高い圧縮率で
の情報圧縮が可能となる。
[Effects of the Invention] As described above, according to the present invention, it is possible to compress information at an extremely high compression rate without deteriorating the image quality of the luminance signal and the color difference signal.

また、符号化した輝度信号と色差信号とを時間軸多重
化して伝送しているので、伝送路の取り回しを容易にで
きる。
Further, since the encoded luminance signal and color difference signal are transmitted in a time-division multiplexed manner, it is possible to easily manage the transmission path.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法の一実施例としてのカラービデオ
信号伝送システムの概略構成を示す図、 第2図は第1図中のブロツク化回路の動作を説明するた
めの図、 第3図は線順次された信号の画面上の各色差信号の配置
を示す図、 第4図は第1図中の前置フイルタの構成を示す図であ
る。 図中 4,6……色差信号入力端子 21……スイツチ 23……ブロツク化回路 25……ブロツク符号化回路
FIG. 1 is a diagram showing a schematic configuration of a color video signal transmission system as one embodiment of the method of the present invention, FIG. 2 is a diagram for explaining the operation of a block circuit in FIG. 1, FIG. FIG. 4 is a diagram showing an arrangement of each color difference signal on a screen of a line-sequential signal, and FIG. 4 is a diagram showing a configuration of a pre-filter in FIG. In the figure, 4,6 ... color difference signal input terminal 21 ... switch 23 ... blocking circuit 25 ... block coding circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】デジタル輝度信号と線順次化された2種類
のデジタル色差信号とを入力し、 前記入力されたデジタル輝度信号を(n×m)サンプル
(n,mは夫々2以上の整数)のブロック毎に符号化し、 前記入力されたデジタル色差信号を互いに異なる色差信
号が配されたラインに跨る(n×m)サンプルのブロッ
ク毎に符号化し、 前記符号化されたデジタル輝度信号とデジタル色差信号
とを時間軸多重化して伝送することを特徴とするカラー
ビデオ信号処理方法。
1. A digital luminance signal and two kinds of line-sequential digital color difference signals are inputted, and the inputted digital luminance signal is sampled by (n × m) samples (n and m are each an integer of 2 or more). The input digital chrominance signal is coded for each block of (n × m) samples straddling a line on which different chrominance signals are arranged, and the coded digital luminance signal and the digital chrominance signal are coded. A color video signal processing method, wherein a signal is time-multiplexed and transmitted.
JP63090106A 1988-04-11 1988-04-11 Color video signal processing method Expired - Fee Related JP2603290B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63090106A JP2603290B2 (en) 1988-04-11 1988-04-11 Color video signal processing method
US07/334,196 US5067010A (en) 1988-04-11 1989-04-06 Color video signal processing device with encoding and compression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63090106A JP2603290B2 (en) 1988-04-11 1988-04-11 Color video signal processing method

Publications (2)

Publication Number Publication Date
JPH01260991A JPH01260991A (en) 1989-10-18
JP2603290B2 true JP2603290B2 (en) 1997-04-23

Family

ID=13989268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090106A Expired - Fee Related JP2603290B2 (en) 1988-04-11 1988-04-11 Color video signal processing method

Country Status (1)

Country Link
JP (1) JP2603290B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550573B2 (en) * 1987-04-28 1996-11-06 ソニー株式会社 High-efficiency encoder for color television signals.

Also Published As

Publication number Publication date
JPH01260991A (en) 1989-10-18

Similar Documents

Publication Publication Date Title
EP0396360B1 (en) Apparatus for inter-frame predictive encoding of video signal
EP0899959B1 (en) Image data coding and restoring method and apparatus for coding and restoring the same
US5802213A (en) Encoding video signals using local quantization levels
US6222881B1 (en) Using numbers of non-zero quantized transform signals and signal differences to determine when to encode video signals using inter-frame or intra-frame encoding
US5557330A (en) Encoding video signals using selective pre-filtering
US5590064A (en) Post-filtering for decoded video signals
US6587509B1 (en) Reducing undesirable effects of an emphasis processing operation performed on a moving image by adding a noise signal to a decoded uncompressed signal
US5589829A (en) Decoding variable-length encoded signals
US5748243A (en) Method for encoding and decoding motion picture as a function of its non-linear characteristic
US5067010A (en) Color video signal processing device with encoding and compression
KR100359671B1 (en) Encoder and decoder
JP2603290B2 (en) Color video signal processing method
JPH01261989A (en) Method for processing color video signal
JP3153950B2 (en) Image compression encoding device and image compression decoding device
US6233281B1 (en) Video signal processing apparatus, and video signal processing method
JPH05153550A (en) Recorder and reproducing device for video signal
JPH01260992A (en) Color video signal processing method
KR960013232B1 (en) Fixed rate video signal compressing encoding/decoding method
JPH01260990A (en) Color video signal processing method
JPS6146684A (en) System and device for inter-frame encoding/decoding
KR950008640B1 (en) Image compression coding method and decoding method for bit fixation
JPH01261096A (en) Color video signal processing method
JP2917436B2 (en) High-efficiency coding device for image signals
JPH01260986A (en) Color video signal processing method
JPS59178886A (en) Coding system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees