JP2591746B2 - Positioning method in exposure apparatus - Google Patents

Positioning method in exposure apparatus

Info

Publication number
JP2591746B2
JP2591746B2 JP62125133A JP12513387A JP2591746B2 JP 2591746 B2 JP2591746 B2 JP 2591746B2 JP 62125133 A JP62125133 A JP 62125133A JP 12513387 A JP12513387 A JP 12513387A JP 2591746 B2 JP2591746 B2 JP 2591746B2
Authority
JP
Japan
Prior art keywords
layer
signal processing
pattern layer
detector
dimensional coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62125133A
Other languages
Japanese (ja)
Other versions
JPS63290901A (en
Inventor
裕之 田中
宏 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62125133A priority Critical patent/JP2591746B2/en
Publication of JPS63290901A publication Critical patent/JPS63290901A/en
Application granted granted Critical
Publication of JP2591746B2 publication Critical patent/JP2591746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【発明の詳細な説明】 〔概要〕 本発明は光源を用いてマスクのパターンを試料上に塗
布したレジストに転写するなどの露光装置において、 試料面上の互いに直角方向(X方向及びY方向)のビ
ームと試料との相対的な位置検出信号の処理を互いに独
立に行なうと共に位置合わせ用ターゲットと検査用バー
ニヤをX方向及びY方向夫々独立に入れることにより、 最適な位置合わせができるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to an exposure apparatus for transferring a mask pattern to a resist applied on a sample by using a light source, in a direction perpendicular to each other (X direction and Y direction) on the sample surface. Processing of the relative position detection signal between the beam and the sample is performed independently of each other, and the positioning target and the vernier for inspection are inserted independently in the X direction and the Y direction, respectively. Things.

〔産業上の利用分野〕[Industrial applications]

本発明は露光装置における位置合わせ方法に係り、特
に複数の層が積層されてなる試料に対して各層毎にビー
ムとの相対的位置関係を求めて層同士の重ね合わせを行
なう位置合わせ方法に関する。
The present invention relates to an alignment method in an exposure apparatus, and more particularly, to an alignment method for obtaining a relative positional relationship with a beam for each layer of a sample in which a plurality of layers are stacked and superposing the layers.

〔従来の技術〕[Conventional technology]

第4図に示すように、従来の位置合わせの方法は、1
層目をA層、2層目をB層、3層目をC層としたとき
に、これからC層を位置合わせする場合に、X方向、Y
方向共に同一の層に対して位置合わせしていた。
As shown in FIG. 4, the conventional alignment method is as follows.
When the layer is the A layer, the second layer is the B layer, and the third layer is the C layer.
Both directions were aligned with respect to the same layer.

つまり、C層のX方向をA層に合わせると、C層のY
方向もA層に合わせていた。
That is, when the X direction of the C layer is adjusted to the A layer, the Y direction of the C layer is obtained.
The direction was also adjusted to the layer A.

又は、C層のX方向をB層に合わせる場合、C層のY
方向もB層に合わせていた。
Alternatively, when the X direction of the C layer is aligned with the B layer, the Y direction of the C layer
The direction was also adjusted to the B layer.

第3図は従来の露光装置における位置合わせ方法の一
例のブロック図を示す。図中、1はディテクタで、複数
の層が積層されてなる試料面上にターゲット検出用プロ
ーブ光が照射され、試料面上から反射されたその反射光
(回折光)を受光し、光電変換する。ディテクタ1より
取り出された信号はAGC回路(自動利得回路)2、AD変
換器3及びメモリ4を通して高速プロセッサ5に供給さ
れ、ここで演算された後マイクロCPU(中央処理装置)
6に供給される。
FIG. 3 is a block diagram showing an example of a positioning method in a conventional exposure apparatus. In the figure, reference numeral 1 denotes a detector, which is irradiated with a target detection probe light on a sample surface on which a plurality of layers are stacked, receives the reflected light (diffraction light) reflected from the sample surface, and performs photoelectric conversion. . The signal extracted from the detector 1 is supplied to a high-speed processor 5 through an AGC circuit (automatic gain circuit) 2, an AD converter 3 and a memory 4, where the signal is calculated and then a micro CPU (central processing unit)
6.

マイクロCPU6は所定の信号処理アルゴリズムに従っ
て、メインプロセッサ7との間で双方向のデータ転送を
行なう。メインプロセッサ7は露光装置の動きをつかさ
どるコンピュータで、位置ずれがあるときはマイクロCP
U6の出力信号に基づき試料が載置されているステージを
微小移動制御する。なお、マイクロCPU6はAGC回路を制
御してAGC回路2の出力信号レベルが所要の一定レベル
となるようにする。
The micro CPU 6 performs bidirectional data transfer with the main processor 7 according to a predetermined signal processing algorithm. The main processor 7 is a computer that controls the movement of the exposure device.
Based on the output signal of U6, the stage on which the sample is mounted is minutely moved. The micro CPU 6 controls the AGC circuit so that the output signal level of the AGC circuit 2 becomes a required constant level.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第5図に示すように、A層はY方向に伸びた回路パタ
ーン、B層はX方向に伸びた回路パターンの場合に、C
層のホールパターンを重ねたい場合には、X,Y共にA又
はBにしか合わしておらず、一方向は間接的である。
As shown in FIG. 5, layer A has a circuit pattern extending in the Y direction, and layer B has a circuit pattern extending in the X direction.
When it is desired to overlap the hole patterns of the layers, both X and Y match only A or B, and one direction is indirect.

試料が例えば、A,B及びCの計3層からなり、最上層
のC層露光時に、C層のX方向はA層に位置合わせを行
ない、C層のY方向はB層に位置合わせを行なう場合を
考えてみる。
The sample is composed of a total of three layers, for example, A, B and C. When the uppermost layer is exposed to the C layer, the X direction of the C layer is aligned with the A layer, and the Y direction of the C layer is aligned with the B layer. Consider the case.

従来はX方向用とY方向用でマイクロCPU6の信号処理
アルゴリズムが同一である。
Conventionally, the signal processing algorithm of the micro CPU 6 is the same for the X direction and the Y direction.

従って、第6図に示すように、C層の位置合わせ時に
X方向はA層のX用ターゲットを用い、Y方向はB層の
Y方向ターゲットを用いるとすると、A層とB層では通
常、材料、プロセスが異なるため、ターゲットの線幅、
断面形状、反射率等が違うのでA層のX用、B層のY用
のいづれにしか最適な信号処理を施せず、片方の位置合
わせ精度が悪くなってしまう。従って、XとYで異なる
層のターゲットを用いるということは出来なかった。
Accordingly, as shown in FIG. 6, when the X direction uses the X target of the A layer and the Y direction uses the Y direction target of the B layer when aligning the C layer, as shown in FIG. Due to different materials and processes, the target line width,
Since the cross-sectional shape, the reflectivity, and the like are different, optimal signal processing is performed only for the X of the A layer and for the Y of the B layer, and the alignment accuracy of one of them is deteriorated. Therefore, it was not possible to use targets of different layers for X and Y.

このため、C層は上記の場合、例えばA層に位置合わ
せを行なうようにしたときはA層とB層との間の位置合
わせ精度σABとA層とC層の位置合わせ精度σACとを共
にσとすると、B層とC層との間の位置合わせ精度σBC
が、 となり、C層はA層に対しては位置ずれがσ程度である
が、B層に対しては位置ずれが 倍大きくなるという問題点があった。
For this reason, in the above-described case, for example, when the positioning is performed on the A layer, the positioning accuracy σ AB between the A layer and the B layer and the positioning accuracy σ AC of the A layer and the C layer are obtained. Are both σ, the alignment accuracy σ BC between the B layer and the C layer
But, Thus, the displacement of the layer C is about σ with respect to the layer A, but the displacement of the layer B is about σ. There was a problem that it became twice as large.

本発明は上記の点に鑑みて創作されたもので、最適位
置合わせを行なうことができる露光装置における位置合
わせ方法を提供することを目的とする。
The present invention has been made in view of the above points, and has as its object to provide a positioning method in an exposure apparatus that can perform optimum positioning.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は、基板上の第1のパターン層に形成されたX
方向用位置合わせターゲットを、一次元方向座標検出信
号光を光電変換するディテクタにて検知し、該ディテク
タが出力する一次元座標検出信号を一次元座標用信号処
理手段に供給し、該一次元座標用信号処理手段にて信号
処理アルゴリズムでX方向の位置ずれ量を演算算出し、
該第1のパターン層に第3のパターン層を位置合わせす
る工程と、 該第1のパターン層の上、又は下に形成した第2のパ
ターン層に形成されたY方向用位置合わせターゲット
を、前記ディテクタにて検知し、該ディテクタが出力す
る前記一次元座標検出信号を前記一次元座標用信号処理
手段に供給し、該一次元座標用信号処理手段にて信号処
理アルゴリズムでY方向の位置ずれ量を演算算出し、該
第2のパターン層に該第3のパターン層を位置合わせす
る工程とを有し、 前記演算算出で求めたX方向データとY方向データに
基づいてステージを所定の移動位置に移動させるよう構
成したものである。
The present invention relates to a method for forming X on a first pattern layer on a substrate.
The direction alignment target is detected by a detector that photoelectrically converts the one-dimensional coordinate detection signal light, and the one-dimensional coordinate detection signal output by the detector is supplied to a one-dimensional coordinate signal processing unit. The position deviation amount in the X direction is calculated and calculated by the signal processing algorithm by the signal processing means for
Aligning a third pattern layer with the first pattern layer; and aligning a Y-direction alignment target formed on the second pattern layer formed above or below the first pattern layer with: The one-dimensional coordinate detection signal detected by the detector and output by the detector is supplied to the one-dimensional coordinate signal processing means, and the one-dimensional coordinate signal processing means performs a displacement in the Y direction by a signal processing algorithm. Calculating the amount and aligning the third pattern layer with the second pattern layer, and moving the stage by a predetermined amount based on the X-direction data and the Y-direction data obtained by the calculation. It is configured to be moved to a position.

〔作用〕[Action]

第1及び第2の位置合せターゲットへのプローブ光に
より得られたX方向座標検出信号光及びY方向座標検出
信号光はディテクタにより別々に光電変換された後、X
方向用とY方向用の信号処理手段に別々に供給され、こ
こで位置ずれ量及び位置ずれ方向を示すデータとして演
算算出される。この演算算出結果に基づいてX方向及び
Y方向別に位置合わせが行なわれる。
The X-direction coordinate detection signal light and the Y-direction coordinate detection signal light obtained by the probe light to the first and second alignment targets are separately photoelectrically converted by the detector, and then X
The signals are separately supplied to the signal processing means for the direction and the signal processing means for the Y direction, where they are calculated and calculated as data indicating the amount of displacement and the direction of displacement. Positioning is performed for each of the X and Y directions based on the calculation result.

〔実施例〕〔Example〕

第1図は本発明の一実施例のブロック図、第2図は本
発明の一実施例の要部説明図を示す。第1図において、
ディテクタ1X及び1Yは夫々第2図に示すウェーハ11から
の回折光を光電変換する。第2図において、ウェーハ11
上に適宜の位置に、X方向の座標を検出するための第1
の位置合わせ用ターゲット12と、Y方向の座標を検出す
るための第2の位置合わせ用ターゲット13とが設けられ
ている。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a main part of the embodiment of the present invention. In FIG.
The detectors 1X and 1Y photoelectrically convert the diffracted light from the wafer 11 shown in FIG. In FIG. 2, the wafer 11
A first position for detecting coordinates in the X direction at an appropriate position
And a second alignment target 13 for detecting the coordinates in the Y direction.

ターゲット12は長手方向がY方向である長方形状であ
り、またターゲット13は長手方向がX方向である長方形
状をしている。
The target 12 has a rectangular shape whose longitudinal direction is the Y direction, and the target 13 has a rectangular shape whose longitudinal direction is the X direction.

図示しない光源からのターゲット検出用プローブ光は
第2図に14及び15で夫々示す如く、ターゲット12及び13
に別々に照射され、ここで反射され、第2図に16及び17
で示す如きX方向座標検出信号光及びY方向座標検出信
号光とされて第1図に示すディテクタ1X及び1Yに夫々入
射される。
As shown by 14 and 15 in FIG. 2, target detection probe light from a light source (not shown)
Are separately illuminated, where they are reflected and shown in FIG.
The X-direction coordinate detection signal light and the Y-direction coordinate detection signal light as shown by are respectively incident on the detectors 1X and 1Y shown in FIG.

ディテクタ1X,1Yにより光源変換して得られた検出信
号は、X方向のみの検出信号と、Y方向のみの検出信号
であり、AGC回路2X,2Y,AD変換器3X,3Y、メモリ4X,4Yを
別々に経て、対応する高速プロセッサ5X,5Yに供給さ
れ、ここでX方向,Y方向各々の位置ずれ量等のデータが
演算算出される。このとき、高速プロセッサ5X,5Yでは
異なる信号処理アルゴリズムで処理を行なう。
The detection signals obtained by light source conversion by the detectors 1X and 1Y are a detection signal only in the X direction and a detection signal only in the Y direction, and are AGC circuits 2X, 2Y, AD converters 3X, 3Y, memories 4X, 4Y. Are separately supplied to the corresponding high-speed processors 5X and 5Y, where data such as the amount of displacement in each of the X and Y directions is calculated and calculated. At this time, the high-speed processors 5X and 5Y perform processing using different signal processing algorithms.

高速プロセッサ5X,5Yの各出力データはX方向用マイ
クロCPU6X,Y方向用マイクロCPU6Yに別々に供給され、AG
C回路2X,2Yの制御信号に変換されると共に、共通のメイ
ンプロセッサ10との間で、双方向データ転送を行なわれ
る。
The output data of the high-speed processors 5X and 5Y are separately supplied to the micro CPU 6X for the X direction and the micro CPU 6Y for the Y direction.
The signals are converted into control signals of the C circuits 2X and 2Y, and bidirectional data transfer is performed with the common main processor 10.

これにより、メインプロセッサ10はマイクロCPU6Xよ
りのX方向の検出座標と、マイクロCPU6YよりのY方向
の検出座標とに基づいて、ウェーハ11が載置されている
ステージを所定の座標位置に微小移動させる。
Accordingly, the main processor 10 slightly moves the stage on which the wafer 11 is mounted to a predetermined coordinate position based on the detected coordinates in the X direction from the micro CPU 6X and the detected coordinates in the Y direction from the micro CPU 6Y. .

このように、X方向、Y方向の位置合わせ時の位置検
出信号の処理を互いに独立に設定でき、例えばウェーハ
11上にトランジスタを形成するために複数の層を順次に
形成するに際し、各層に上記の如き位置合わせ用ターゲ
ットと検査用バーニヤをX方向とY方向の夫々について
互いに異なる層に入れることにより、最適な位置合わせ
ができる。
In this way, the processing of the position detection signals at the time of alignment in the X direction and the Y direction can be set independently of each other.
When a plurality of layers are sequentially formed in order to form a transistor on 11, the positioning target and the inspection vernier as described above are placed in different layers in each of the X direction and the Y direction in each layer. Position can be adjusted.

例えば、図6に示すように、A層及びB層が積層され
るウェーハに、更にC層をそのX方向はA層に合わせ、
かつ、そのY方向はB層に合わせて積層したいような場
合は、A層とC層間にX方向用ターゲットとバーニヤと
を挿入し、B層とC層との間にY方向用ターゲットとバ
ーニヤとを挿入することにより、B層とC層との間及び
A層とC層との間の位置ずれは、A層とB層間のそれと
同じになり、位置ずれのばらつきを小さくできる。
For example, as shown in FIG. 6, on the wafer on which the layer A and the layer B are stacked, the layer C is further aligned with the layer A in the X direction,
If it is desired to stack the layers in the Y direction in accordance with the B layer, an X direction target and a vernier are inserted between the A layer and the C layer, and the Y direction target and the vernier are inserted between the B layer and the C layer. , The displacement between the B layer and the C layer and between the A layer and the C layer becomes the same as that between the A layer and the B layer, and the variation in the displacement can be reduced.

〔発明の効果〕〔The invention's effect〕

上述の如く、本発明によれば、従来にくらべて位置ず
れのばらつきなく最適な位置合わせができるから、位置
ずれによるレジスト再生を減少でき、よってスループッ
ト増大でき、また歩留りも向上でき、更に位置ずれ分の
余裕幅を従来にくらべて少なくできるから、半導体集積
回路を微細化できる等の特長を有するものである
As described above, according to the present invention, optimal alignment can be performed without variation in positional deviation as compared with the related art, so that resist reproduction due to positional deviation can be reduced, thereby increasing throughput, improving yield, and further improving positional deviation. It has features such as miniaturization of semiconductor integrated circuits because the margin of minutes can be reduced compared to the past.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例のブロック図、 第2図は本発明の一実施例の要部説明図、 第3図は従来の一例のブロック図、 第4図は従来例を説明する図、 第5図はA,B,C層の具体例を示す図、 第6図は本発明を説明する図である。 1X,1Y……ディテクタ、5X,5Y……高速ディテクタ、6X,6
Y……マイクロCPU、10……メインプロセッサ、11……ウ
ェーハ、12,13……ターゲット、16……X方向座標検出
信号光、17……Y方向座標検出信号光。
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is an explanatory view of a main part of one embodiment of the present invention, FIG. 3 is a block diagram of one example of the related art, and FIG. FIG. 5 is a diagram showing a specific example of the A, B, and C layers, and FIG. 6 is a diagram for explaining the present invention. 1X, 1Y …… Detector, 5X, 5Y …… High-speed detector, 6X, 6
Y: Micro CPU, 10: Main processor, 11: Wafer, 12, 13: Target, 16: X direction coordinate detection signal light, 17: Y direction coordinate detection signal light.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−222128(JP,A) 特開 昭61−219134(JP,A) 特開 昭61−17904(JP,A) 特開 昭57−101710(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-222128 (JP, A) JP-A-61-219134 (JP, A) JP-A-61-17904 (JP, A) JP-A 57-222 101710 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上の第1のパターン層に形成されたX
方向用位置合せターゲットを、一次元方向座標検出信号
光を光電変換するディテクタにて検知し、該ディテクタ
が出力する一次元座標検出信号を一次元座標用信号処理
手段に供給し、該一次元座標用信号処理手段にて信号処
理アルゴリズムでX方向の位置ずれ量を演算算出し、該
第1のパターン層に第3のパターン層を位置合わせする
工程と、 該第1のパターン層の上、又は下に形成した第2のパタ
ーン層に形成されたY方向用位置合わせターゲットを、
前記ディテクタとは別途設けたディテクタにて検知し、
該ディテクタが出力する一次元座標検出信号を一次元座
標用信号処理手順に供給し、該一次元座標用信号処理手
順にて前記信号処理アルゴリズムとは別の信号処理アル
ゴリズムでY方向の位置ずれ量を演算算出し、該第2の
パターン層に該第3のパターン層を位置合わせする工程
とを有し、 前記演算算出で求めたX方向データとY方向データに基
づいてステージを所定の移動位置に移動させるようにし
たことを特徴とする露光装置における位置合わせ方法。
1. An X-ray formed on a first pattern layer on a substrate.
The direction alignment target is detected by a detector that photoelectrically converts the one-dimensional direction coordinate detection signal light, and the one-dimensional coordinate detection signal output by the detector is supplied to one-dimensional coordinate signal processing means, and the one-dimensional coordinate detection signal is output. Calculating the amount of displacement in the X direction by a signal processing algorithm using a signal processing algorithm, and positioning a third pattern layer on the first pattern layer; or on the first pattern layer or The Y-direction alignment target formed on the second pattern layer formed below is
Detected by a detector provided separately from the detector,
A one-dimensional coordinate detection signal output by the detector is supplied to a one-dimensional coordinate signal processing procedure, and the one-dimensional coordinate signal processing procedure uses a signal processing algorithm other than the signal processing algorithm to shift the position in the Y direction. And calculating the position of the third pattern layer with respect to the second pattern layer, and moving the stage at a predetermined moving position based on the X-direction data and the Y-direction data obtained by the calculation. A positioning method in an exposure apparatus, wherein the position is adjusted.
【請求項2】重ね合わせて露光・現像した後に位置ずれ
量を計測するバーニヤについては、副尺バーニヤは投影
露光した層にいれておき、主尺バーニヤは位置合わせに
使用したターゲットを有する層に入れておくことを特徴
とする特許請求の範囲第1項記載の露光装置における位
置合わせ方法。
2. A vernier for measuring the amount of misregistration after exposing and developing in a superimposed manner, the vernier vernier is placed in the projection-exposed layer, and the main vernier is placed in the layer having the target used for alignment. 2. The method according to claim 1, wherein the positioning is performed.
JP62125133A 1987-05-22 1987-05-22 Positioning method in exposure apparatus Expired - Fee Related JP2591746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125133A JP2591746B2 (en) 1987-05-22 1987-05-22 Positioning method in exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125133A JP2591746B2 (en) 1987-05-22 1987-05-22 Positioning method in exposure apparatus

Publications (2)

Publication Number Publication Date
JPS63290901A JPS63290901A (en) 1988-11-28
JP2591746B2 true JP2591746B2 (en) 1997-03-19

Family

ID=14902673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125133A Expired - Fee Related JP2591746B2 (en) 1987-05-22 1987-05-22 Positioning method in exposure apparatus

Country Status (1)

Country Link
JP (1) JP2591746B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104196A1 (en) * 2004-04-23 2005-11-03 Nikon Corporation Measuring method, measuring equipment, exposing method and exposing equipment
WO2006126569A1 (en) * 2005-05-25 2006-11-30 Nikon Corporation Exposure method and lithography system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240011232A (en) * 2016-09-30 2024-01-25 가부시키가이샤 니콘 Measuring system, substrate processing system, and device manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117904A (en) * 1984-07-04 1986-01-25 Hitachi Ltd Pattern detector

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104196A1 (en) * 2004-04-23 2005-11-03 Nikon Corporation Measuring method, measuring equipment, exposing method and exposing equipment
JPWO2005104196A1 (en) * 2004-04-23 2008-03-13 株式会社ニコン Measuring method, measuring apparatus, exposure method and exposure apparatus
CN100463108C (en) * 2004-04-23 2009-02-18 尼康股份有限公司 Exposing equipment, exposing method, and manufacturing method for element
US8477310B2 (en) 2004-04-23 2013-07-02 Nikon Corporation Measurement method, measurement apparatus, exposure method, and exposure apparatus
US8947665B2 (en) 2004-04-23 2015-02-03 Nikon Corporation Measurement method, measurement apparatus, exposure method, and exposure apparatus
EP3048637A1 (en) 2004-04-23 2016-07-27 Nikon Corporation Measurement method, measurement apparatus, exposure method, and exposure apparatus
WO2006126569A1 (en) * 2005-05-25 2006-11-30 Nikon Corporation Exposure method and lithography system
JP5194791B2 (en) * 2005-05-25 2013-05-08 株式会社ニコン Exposure method and lithography system
KR101274434B1 (en) * 2005-05-25 2013-06-14 가부시키가이샤 니콘 Exposure method and lithography system
US8605248B2 (en) 2005-05-25 2013-12-10 Nikon Corporation Exposure method and lithography system

Also Published As

Publication number Publication date
JPS63290901A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
US7355187B2 (en) Position detection apparatus, position detection method, exposure apparatus, device manufacturing method, and substrate
JP3203719B2 (en) Exposure apparatus, device manufactured by the exposure apparatus, exposure method, and device manufacturing method using the exposure method
US4823012A (en) Step and repeat exposure apparatus having improved system for aligning
US20030053058A1 (en) Alignment mark, alignment apparatus and method, exposure apparatus, and device manufacturing method
JP3002351B2 (en) Positioning method and apparatus
US7336352B2 (en) Position detection apparatus
JPH07335524A (en) Positioning method
JP3501276B2 (en) Semiconductor wafer alignment method
JP3292022B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
EP0468741B1 (en) Position detecting method
US7352891B2 (en) Position detecting method
JP2591746B2 (en) Positioning method in exposure apparatus
US6538260B1 (en) Position measuring method, and semiconductor device manufacturing method and apparatus using the same
US11460765B2 (en) Exposure method, exposure apparatus, and semiconductor device manufacturing method
JP3286124B2 (en) Alignment apparatus and method
EP0807854A1 (en) Exposure method and apparatus
EP1930777B1 (en) Exposure Apparatus
JP3490797B2 (en) Pattern position measuring method and optical device using the same
JPH0443407B2 (en)
JP3571874B2 (en) Positioning method and apparatus
US11927892B2 (en) Alignment method and associated alignment and lithographic apparatuses
JPH0672766B2 (en) Position detector
JP3894505B2 (en) Position detection method, position detection apparatus, semiconductor exposure apparatus, and semiconductor manufacturing method
EP1330681B1 (en) System and method for facilitating wafer alignment by mitigating effects of reticle rotation on overlay
JPH07307269A (en) Aligning method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees