JP2591057B2 - Precise measurement method by robot - Google Patents

Precise measurement method by robot

Info

Publication number
JP2591057B2
JP2591057B2 JP9563288A JP9563288A JP2591057B2 JP 2591057 B2 JP2591057 B2 JP 2591057B2 JP 9563288 A JP9563288 A JP 9563288A JP 9563288 A JP9563288 A JP 9563288A JP 2591057 B2 JP2591057 B2 JP 2591057B2
Authority
JP
Japan
Prior art keywords
robot
measurement
arm
servo system
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9563288A
Other languages
Japanese (ja)
Other versions
JPH01269004A (en
Inventor
登美男 細野
努 井沢
俊幸 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP9563288A priority Critical patent/JP2591057B2/en
Publication of JPH01269004A publication Critical patent/JPH01269004A/en
Application granted granted Critical
Publication of JP2591057B2 publication Critical patent/JP2591057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 A. 産業上の利用分野 本発明はロボットによる精密測定方法に関し、汎用の
ロボットにより被測定物の諸元を測定する場合に用いて
有用なものである。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of the Invention The present invention relates to a precision measurement method using a robot, and is useful when a general-purpose robot measures the specifications of an object to be measured.

B. 発明の概要 本発明は、サーボ系である制御部を有するロボットの
腕の先端部に取付けた測定器により被測定物の諸元を測
定する場合において、ロボットの腕の位置決め完了後に
全軸の動きを機械的にロックするとともにサーボ系の電
源をOFFとし、この状態で所定の測定を行なうことによ
り、精度の良い測定を行ない得るようにしたものであ
る。
B. Summary of the Invention The present invention relates to a method for measuring the specifications of an object to be measured by a measuring device attached to a tip of a robot arm having a control unit which is a servo system, and in which all axes are set after positioning of the robot arm is completed. Is mechanically locked and the power of the servo system is turned off, and a predetermined measurement is performed in this state, so that accurate measurement can be performed.

C. 従来の技術 被測定物の静的な寸法変化、例えばフライホイールの
振れ量、偏心量を多くの被測定物に関して測定する場
合、その測定の際の測定ポイントが多くなると測定器の
設置替え等の段取りに多大の労力を要するため、サーボ
系である制御部を有するロボットの腕に測定器を取付
け、所定の測定位置にティーチング・プレイバックさせ
て測定する方法が採用されている。この測定方法は、腕
の先端に測定器を取付けた状態のロボットを、制御部に
より所定位置へ位置決めし、この位置決めによる位置決
め完了信号によりサーボロックを行ない、この状態で測
定器により所定の測定を行なうというものである。
C. Conventional technology When measuring static dimensional changes of an object to be measured, for example, the amount of run-out and eccentricity of a flywheel, for many objects to be measured, the measuring instrument is replaced when the number of measurement points increases. Since a great deal of labor is required for setting up such a method, a method is adopted in which a measuring device is attached to the arm of a robot having a control unit serving as a servo system, and teaching and playback are performed at a predetermined measurement position for measurement. In this measurement method, the robot with the measuring device attached to the tip of the arm is positioned to a predetermined position by the control unit, servo lock is performed by a positioning completion signal by this positioning, and in this state, predetermined measurement is performed by the measuring device. It is to do.

D. 発明が解決しようとする課題 上述の如き測定を汎用のロボットで行なった場合に
は、測定時におけるロボットの腕の位置が不安定である
ため、その測定精度に限界がある。
D. Problems to be Solved by the Invention When the above-described measurement is performed by a general-purpose robot, the position of the arm of the robot at the time of measurement is unstable, so that the measurement accuracy is limited.

一方、測定精度を上げるため、ロボットの腕の各軸を
駆動するサーボモータの分解能を上げることが考えられ
るが、例えばサーボモータ1回転11bitの分解能で減速
比158、腕長1mとしても(360×π×1000/158×2048×18
0)=0.019(mm)で0.01(mm)以上の精度は得られない
ばかりでなく、例え分解能を向上させたとしてもロボッ
トの腕の構成上、剛性が低く一定以上の精度の向上は望
めない。したがって分解能を上げることのみによって精
度を、例えば10μm以上に向上せしめることは困難であ
る。
On the other hand, in order to increase the measurement accuracy, it is conceivable to increase the resolution of a servomotor that drives each axis of the robot arm. For example, if the servomotor has a resolution of 11 bits per rotation and a reduction ratio of 158 and an arm length of 1 m (360 × π × 1000/158 × 2048 × 18
0) = 0.019 (mm), not only cannot obtain an accuracy of 0.01 (mm) or more, but even if the resolution is improved, the rigidity is low due to the structure of the robot arm, and an improvement in accuracy over a certain level cannot be expected. . Therefore, it is difficult to improve the accuracy to, for example, 10 μm or more only by increasing the resolution.

更に、ロボットの腕の各軸を駆動するサーボモータに
は減速機が連結されており、この減速機のギヤのバック
クラッシュにより腕が振れるため、自重により一方向へ
偏位して安定する関節軸の場合は格別、自重の影響を受
けない旋回軸では腕の停止位置が非常に不安定となる。
Further, a speed reducer is connected to the servo motor that drives each axis of the robot arm, and the arm swings due to the back crash of the gear of the speed reducer. In the case of, the stop position of the arm becomes extremely unstable on the pivot axis which is not affected by its own weight.

本発明は、上記従来技術に鑑み、測定時の全ての不安
定要素を排除し、精度の良い測定を行なうことができる
ロボットによる精密測定方法を提供することを目的とす
る。
The present invention has been made in view of the above-described conventional technology, and has as its object to provide a precise measurement method using a robot that can perform accurate measurement by eliminating all unstable elements during measurement.

E. 課題を解決するための手段 上記目的を達成する本発明の構成は、サーボ系である
制御部を有するロボットの腕の先端部に取付けた測定器
により被測定物の諸元を測定する場合において、制御部
によりロボットの所定位置への位置決めを行ない、この
位置決めによる位置決め完了信号によりサーボロックを
行ない、その後ロボットの腕の全軸の動きを機械的にロ
ックするとともにサーボ系の電源をOFF状態とし、かか
る状態で測定器により所定の測定を行ない、測定の完了
に伴なう測定完了信号によりサーボ系の電源をONにする
とともにロボットの腕の全軸の機械的なロックを解除す
ることを特徴とする。
E. Means for Solving the Problems The configuration of the present invention that achieves the above object is to measure the specifications of an object to be measured by a measuring device attached to a tip of a robot arm having a control unit that is a servo system. In, the controller performs positioning of the robot to a predetermined position, performs servo lock by the positioning completion signal by this positioning, then mechanically locks the movement of all axes of the robot arm and turns off the servo system power In this state, perform a predetermined measurement with a measuring instrument, turn on the servo system power by the measurement completion signal accompanying the completion of the measurement, and release the mechanical lock of all axes of the robot arm. Features.

F. 作用 上記構成の本発明によれば、被測定物の測定時にはロ
ボットの腕は機械的にロックされ、サーボ系の電源もOF
F状態となっているので、その位置が動くことはなく、
したがって測定器も一定位置に固定される。
F. Function According to the present invention having the above-described configuration, the arm of the robot is mechanically locked when measuring the object to be measured, and the power supply of the servo system is also turned off.
Because it is in the F state, its position does not move,
Therefore, the measuring instrument is also fixed at a fixed position.

G. 実 施 例 以下本発明の実施例を図面に基づき詳細に説明する。
図は本発明の実施例を実現するロボットの腕を被測定物
とともに示す説明図である。この場合の被測定物は例え
ば軸受1に支承された回転軸2に固着されているフライ
ホイール3であり、このフライホイール3の静止状態で
の振れ量、偏心量等を多点(例えば50点)において測定
するものである。この測定は、予め定められた基準位置
に対する各点の位置の座標を測定器4により検出した
後、従来と同様の所定の計算をロボットの制御部(図示
せず)で行なうことにより行なわれる。このとき測定器
4はロボットの腕5の先端に取付けられている。
G. Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram showing an arm of a robot that realizes an embodiment of the present invention, together with an object to be measured. The object to be measured in this case is, for example, a flywheel 3 fixed to a rotating shaft 2 supported by a bearing 1, and the amount of deflection and eccentricity of the flywheel 3 in a stationary state is measured at multiple points (for example, 50 points). ). This measurement is performed by detecting the coordinates of the position of each point with respect to a predetermined reference position by the measuring device 4 and then performing a predetermined calculation similar to the conventional one by the control unit (not shown) of the robot. At this time, the measuring device 4 is attached to the tip of the arm 5 of the robot.

上述の如く腕5の先端に取付けられている測定器4に
よる本実施例の精密測定方法においては、先ずロボット
の所定位置への位置決めが行なわれる。この位置決めに
よる位置決め完了信号によりサーボロックを行ない、そ
の後ロボットの腕5の全軸5a〜5fの動きを機械的にロッ
クし、例えばその0.5秒後にサーボ系の電源をOFF状態に
する(このときでも制御電源はONのままである)。この
ことにより腕5の位置は固定されて不安定に動くことは
ない。かかる状態で測定器4により所定の測定が行なわ
れ、データの取込み及び座標計算が行なわれる。所定の
測定動作の完了に伴ない測定完了信号が発せられ、この
測定完了信号によりサーボ系の電源をONにするとともに
腕5の機械的なロックを解除する。このことにより一点
での測定が完了する。
As described above, in the precision measuring method of the present embodiment using the measuring device 4 attached to the tip of the arm 5, the robot is first positioned at a predetermined position. Servo lock is performed by a positioning completion signal by this positioning, and thereafter, the movements of all axes 5a to 5f of the robot arm 5 are mechanically locked. For example, 0.5 seconds after that, the power supply of the servo system is turned off (even in this case) The control power remains ON). As a result, the position of the arm 5 is fixed and does not move erratically. In this state, predetermined measurement is performed by the measuring device 4, and data is taken in and coordinate calculation is performed. Upon completion of the predetermined measurement operation, a measurement completion signal is issued, and the power of the servo system is turned on and the mechanical lock of the arm 5 is released by the measurement completion signal. This completes the measurement at one point.

続いて、次の測定点への位置決めを行ない、同様の動
作を繰り返すことによりこの点に関する所定の測定を行
なう。各点に関しても同様の動作を繰り返すことにより
所定の測定を行なう。
Subsequently, positioning to the next measurement point is performed, and the same operation is repeated to perform predetermined measurement on this point. A predetermined measurement is performed by repeating the same operation for each point.

H. 発明の効果 以上実施例とともに具体的に説明したように、本発明
によれば、被測定物の測定時にはロボットの腕は機械的
にロックされ、サーボ系の電源もOFF状態となっている
ので、その位置が動くことはない。したがって測定器も
一定位置に固定され精度の良い測定を行なうことができ
る。また、測定中に測定器が一定位置から動くことはな
いので、接触、非接触の何れの場合でも測定器が被測定
物に衝突して損傷するという事故を防止し得る。
H. Advantageous Effects of the Invention As described above in detail with the embodiments, according to the present invention, the arm of the robot is mechanically locked and the power supply of the servo system is in the OFF state at the time of measuring the object to be measured. So its position does not move. Therefore, the measuring device is also fixed at a fixed position, so that accurate measurement can be performed. Further, since the measuring instrument does not move from a fixed position during the measurement, it is possible to prevent an accident that the measuring instrument collides with the object to be measured and is damaged in both cases of contact and non-contact.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を実現するロボットの腕を測定
器及び被測定物とともに示す説明図である。 図面中、 3はフライホイール、 4は測定器、 5は腕、 5a〜5fは軸である。
FIG. 1 is an explanatory view showing a robot arm for realizing an embodiment of the present invention, together with a measuring instrument and a device to be measured. In the drawing, 3 is a flywheel, 4 is a measuring instrument, 5 is an arm, and 5a to 5f are axes.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】サーボ系である制御部を有するロボットの
腕の先端部に取付けた測定器により被測定物の諸元を測
定する場合において、制御部によりロボットの所定位置
への位置決めを行ない、この位置決めによる位置決め完
了信号によりサーボロックを行ない、その後ロボットの
腕の全軸の動きを機械的にロックするとともにサーボ系
の電源をOFF状態とし、かかる状態で測定器により所定
の測定を行ない、測定の完了に伴なう測定完了信号によ
りサーボ系の電源をONにするとともにロボットの腕の全
軸の機械的なロックを解除することを特徴とするロボッ
トによる精密測定方法。
When measuring the specifications of an object to be measured by a measuring device attached to the tip of a robot arm having a control unit which is a servo system, the control unit performs positioning of the robot at a predetermined position. Servo lock is performed by the positioning completion signal by this positioning, then the movement of all axes of the robot arm is mechanically locked, and the power supply of the servo system is turned off. A precise measurement method using a robot, characterized in that the servo system power is turned on and a mechanical lock on all axes of the robot arm is released by a measurement completion signal accompanying the completion of the measurement.
JP9563288A 1988-04-20 1988-04-20 Precise measurement method by robot Expired - Lifetime JP2591057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9563288A JP2591057B2 (en) 1988-04-20 1988-04-20 Precise measurement method by robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9563288A JP2591057B2 (en) 1988-04-20 1988-04-20 Precise measurement method by robot

Publications (2)

Publication Number Publication Date
JPH01269004A JPH01269004A (en) 1989-10-26
JP2591057B2 true JP2591057B2 (en) 1997-03-19

Family

ID=14142899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9563288A Expired - Lifetime JP2591057B2 (en) 1988-04-20 1988-04-20 Precise measurement method by robot

Country Status (1)

Country Link
JP (1) JP2591057B2 (en)

Also Published As

Publication number Publication date
JPH01269004A (en) 1989-10-26

Similar Documents

Publication Publication Date Title
US3727119A (en) Servo controlled automatic inspection apparatus
JPS58193411A (en) Indexing mechanism
EP0304460B2 (en) Method of and apparatus for calibration of machines
US4132937A (en) Programmable manipulator with dynamic feedback apparatus for stabilization
JPH03504278A (en) How to scan the surface of a workpiece and its equipment
CN104729438A (en) Motorized inclinable measuring head
JPH06213653A (en) Measurement for workpiece using surface contact measuring probe
JP2591057B2 (en) Precise measurement method by robot
US4500182A (en) Photoplotter
JPH0317082B2 (en)
JPH0778683B2 (en) Mechanical origin position correction method for articulated robots
JPS6110715A (en) Absolute-position detecting system
US3532863A (en) Dynamic cam tester
JP3042157U (en) Three-dimensional coordinate measuring machine
JP2651151B2 (en) Tool diameter measurement method
JPH04250950A (en) Numerical control unit having automatic measurement function of back lash quantity and lost motion quantity
US3700993A (en) Apparatus for controlling relative motion between gage jaws on a contacting gage
JPS6318684B2 (en)
JPH0743606Y2 (en) Equipment for measuring internal gears
JP2713656B2 (en) Synchronous conveyor data input method for industrial robots
JPH038689B2 (en)
JPS62274202A (en) Laser measuring instrument for nc lathe
JPS6315114A (en) Rotary encoder
JPH06194139A (en) Shape measuring method
JPH0718698B2 (en) Automatic dimension measurement method using non-contact type displacement gauge