JP2585681B2 - Metal thin film resistive strain gauge - Google Patents

Metal thin film resistive strain gauge

Info

Publication number
JP2585681B2
JP2585681B2 JP63026987A JP2698788A JP2585681B2 JP 2585681 B2 JP2585681 B2 JP 2585681B2 JP 63026987 A JP63026987 A JP 63026987A JP 2698788 A JP2698788 A JP 2698788A JP 2585681 B2 JP2585681 B2 JP 2585681B2
Authority
JP
Japan
Prior art keywords
thin film
strain gauge
metal thin
resistor
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63026987A
Other languages
Japanese (ja)
Other versions
JPH01202601A (en
Inventor
勝 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEI KOKI KK
Original Assignee
TAISEI KOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEI KOKI KK filed Critical TAISEI KOKI KK
Priority to JP63026987A priority Critical patent/JP2585681B2/en
Publication of JPH01202601A publication Critical patent/JPH01202601A/en
Application granted granted Critical
Publication of JP2585681B2 publication Critical patent/JP2585681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はひずみゲージに係り特に金属薄膜抵抗ひずみ
ゲージに関する。
Description: TECHNICAL FIELD The present invention relates to a strain gauge, and more particularly to a metal thin film resistance strain gauge.

[従来の技術] 金属抵抗体に外部より力を加えると、抵抗体の伸縮に
ともない抵抗値もある範囲内で変化する。この原理を利
用して、測定体の外力によるひずみ量を抵抗値の変化と
して測定するものが金属抵抗ひずみゲージである。近年
では、ひずみ測定の手段としての使用はもとより、力、
圧力、加速度、変位、トルクなど各種の物理量を測定す
るセンサの素子として広く普及している。
[Prior Art] When an external force is applied to a metal resistor, the resistance value changes within a certain range as the resistor expands and contracts. Using this principle, a metal resistance strain gauge measures the amount of strain due to an external force of a measuring object as a change in resistance value. In recent years, in addition to use as a means of strain measurement, force,
It is widely used as a sensor element for measuring various physical quantities such as pressure, acceleration, displacement, and torque.

金属抵抗ひずみゲージとしては、線ゲージおよび箔ゲ
ージが、現在一般的である。
As metal resistance strain gauges, wire gauges and foil gauges are currently common.

線ゲージは、線径10〜30μm程度の抵抗線を受感部に
用いたもので、金属抵抗ひずみゲージ普及の初期に多用
された。しかし、グリッド形成時の残留ひずみの影響、
加工した線材と基板を密着させるために用いる接着剤の
影響などで諸特性のばらつきが大きく、またグリッドの
形成、線材−基板の接着といった特殊技術が必要なた
め、生産効率も悪くコスト高となっている。
The wire gauge uses a resistance wire having a wire diameter of about 10 to 30 μm as a sensing part, and was frequently used in the early stage of spread of a metal resistance strain gauge. However, the effect of residual strain during grid formation,
Variations in characteristics are large due to the effect of the adhesive used to adhere the processed wire and substrate, and special techniques such as grid formation and wire-substrate bonding are required, resulting in poor production efficiency and high costs. ing.

箔ゲージは、数μm厚の抵抗箔を基板上に接着し、エ
ッチングにより抵抗パターンを形成したもであるため、
加工時の残留ひずみの影響はないが、接着剤の影響につ
いては線ゲージと同様である。
Since the foil gauge is formed by bonding a resistance foil of several μm thickness on the substrate and forming a resistance pattern by etching,
Although there is no effect of residual strain during processing, the effect of the adhesive is the same as that of the wire gauge.

金属薄膜抵抗びずみゲージは、線ゲージおよび箔ゲー
ジのこれらの欠点を補うものとして開発された。抵抗材
料を蒸着、スパッタリング等により絶縁性の基板上に成
膜したもので、絶縁性被膜を介して直接ひずみ測定対象
物上への形成も可能である。接着剤を使用しないため、
諸特性への悪影響がないばかりか、高温環境での使用が
可能となる。
Metal thin film resistance gauges have been developed to compensate for these shortcomings of wire and foil gauges. A resistance material is formed on an insulating substrate by vapor deposition, sputtering, or the like, and can be directly formed on a strain measurement object via an insulating film. Because no adhesive is used,
Not only does it have no adverse effect on various properties, but it can be used in high-temperature environments.

[発明が解決しようとする課題] ところでこの金属薄膜抵抗ひずみゲージの抵抗体とし
ては、Ni−Cr、Cu−Niなどが一般的であるが、長期安定
性、信頼性の面では実用上不十分であった。
[Problems to be Solved by the Invention] Ni-Cr, Cu-Ni and the like are generally used as resistors in the metal thin film resistance strain gauge, but are not practically sufficient in terms of long-term stability and reliability. Met.

[発明の目的] 本発明は、上記のような点に鑑みてなされたもので、
金属薄膜抵抗ひずみゲージの抵抗体として高融点金属で
あるTa−Si合金薄膜を用いて、安定性を向上させ、信頼
性の高い金属薄膜抵抗ひずみゲージを提供することを目
的とするものである。
[Object of the Invention] The present invention has been made in view of the above points,
It is an object of the present invention to provide a highly reliable metal thin film resistance strain gauge with improved stability by using a Ta-Si alloy thin film which is a high melting point metal as a resistor of the metal thin film resistance strain gauge.

[課題を解決するための手段] 上記の目的を達成するために、本発明の金属薄膜抵抗
ひずみゲージは、基板として絶縁性基板を用い、該絶縁
性基板上にTa−Si合金薄膜の抵抗体を設け、該Ta−Si合
金薄膜の抵抗体に金属電極を形成したことを特徴とす
る。あるいはひずみ測定対象物上に直接絶縁性被膜を施
し、該ひずみ測定対象物上にTa−Si合金薄膜の抵抗体を
設け、該Ta−Si合金薄膜の抵抗体に金属電極を形成した
ことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, a metal thin film resistance strain gauge of the present invention uses an insulating substrate as a substrate, and forms a Ta-Si alloy thin film resistor on the insulating substrate. And a metal electrode is formed on the resistor of the Ta-Si alloy thin film. Alternatively, an insulating coating is applied directly on the strain measurement object, a Ta-Si alloy thin film resistor is provided on the strain measurement object, and a metal electrode is formed on the Ta-Si alloy thin film resistor. It is assumed that.

[実施例] 本発明の好ましい一実施例を図面を用いて以下に説明
する。
Embodiment A preferred embodiment of the present invention will be described below with reference to the drawings.

第1図に示す固定治具2により取付けられる基板1と
しては、アルミナ基板(純度99.6%、板厚0.25mm)を、
ターゲット5としてはTa−Siをそれぞれ用いた(ターゲ
ット面積比=2:7)。
As the substrate 1 attached by the fixing jig 2 shown in FIG. 1, an alumina substrate (purity 99.6%, plate thickness 0.25 mm) is used.
Ta—Si was used as each of the targets 5 (target area ratio = 2: 7).

直流2極スパッタリング装置のベルジャー3内を3×
106torrまで真空引きし、次いでArガス導入口4よりAr
ガスを導入し、圧力2×102torr程度まで高くした。
3 × inside the bell jar 3 of the DC bipolar sputtering device
Vacuum down to 10 6 torr, then Ar through Ar gas inlet 4
Gas was introduced and the pressure was increased to about 2 × 10 2 torr.

その後、直流高圧電源6によりターゲット5と基板1
間に放電を発生させ、上記ターゲット5をスパッタリン
グして、アルミナ基板1に約500ÅのTa−Si薄膜を付着
させた。この操作を2度行い、基板両面に上記薄膜を形
成した。
After that, the target 5 and the substrate 1 are
During this time, a discharge was generated, and the target 5 was sputtered to deposit a Ta-Si thin film of about 500 ° on the alumina substrate 1. This operation was performed twice to form the above thin film on both surfaces of the substrate.

本発明の金属薄膜抵抗ひずみゲージの断面の一部を第
2図に示すが、薄膜形成済基板に大気中600℃5分間の
熱処理を施し、Ta−Si薄膜7の膜の安定化および抵抗温
度係数(TCR)の調整を行った。
FIG. 2 shows a part of the cross section of the metal thin film resistance strain gauge according to the present invention. The substrate on which the thin film has been formed is subjected to a heat treatment at 600 ° C. for 5 minutes in the air to stabilize the film of the Ta—Si thin film 7 and the resistance temperature. Adjustment of coefficient (TCR) was performed.

次いで、金属電極8としてNiをスパッタリングにより
上記薄膜形成済基板両面に付着させた。さらにNiの電気
メッキを施し、金属電極8としての総厚を2〜3μmと
した。
Next, Ni as a metal electrode 8 was attached to both surfaces of the substrate on which the thin film had been formed by sputtering. Further, electroplating of Ni was performed so that the total thickness of the metal electrode 8 was 2 to 3 μm.

その後、フォトリソグラフィ法により抵抗パターンを
形成し、次いでレーザートリミングにより抵抗値調整を
行った。ゲージ抵抗を350Ωとして1素子内に4ゲージ
を形成(基板表面裏に各2ゲージずつ)、ホイートスト
ーンブリッジが構成できるようにした。抵抗パターン上
に二酸化ケイ素の保護膜9を高周波スパッタリングによ
り形成した後、リード線を接続して素子を完成させた。
Thereafter, a resistance pattern was formed by a photolithography method, and then the resistance value was adjusted by laser trimming. Four gauges were formed in one element with a gauge resistance of 350Ω (two gauges each on the back surface of the substrate) so that a Wheatstone bridge could be formed. After a silicon dioxide protective film 9 was formed on the resistance pattern by high frequency sputtering, leads were connected to complete the device.

本実施例の金属薄膜抵抗ひずみゲージの抵抗パターン
11は、第3図に示すようにジグザグを繰り返し両端に電
極パッド10を備えている。
Resistance pattern of metal thin film resistance strain gauge of this embodiment
11 has electrode pads 10 at both ends by repeating zigzag as shown in FIG.

上記のようにして得られた金属薄膜抵抗ひずみゲージ
を固定治具に取り付け、諸特性を測定した結果は以下の
通りである。
The metal thin film resistance strain gauge obtained as described above was attached to a fixture and the results of measuring various characteristics are as follows.

第4図に示すようにホイートストーンブリッジの入力
端子にDC12Vを付加し、荷重による金属薄膜抵抗ひずみ
ゲージの抵抗値変化を出力電圧ΔEとして取り出した。
なおここでR1とR3、およびR2とR4はそれぞれ基板同一面
である。
As shown in FIG. 4, 12 V DC was applied to the input terminal of the Wheatstone bridge, and the change in the resistance value of the metal thin film resistance strain gauge due to the load was taken out as the output voltage ΔE.
Incidentally wherein R 1 and R 3, and R 2 and R 4 are the substrate the same plane.

本発明になる金属薄膜抵抗ひずみゲージによる出力−
負荷の関係の一例を第5図に示す。なおここでは、定格
負荷50g、定格出力0.42mv/Vで、非直線性は0.21%であ
り、またこのヒステリシスは第6図に示すように、定格
負荷50g、定格出力0.42mv/Vで、0.28%であり、いずれ
も非常に良好であった。
Output by the metal thin film resistance strain gauge according to the present invention-
An example of the load relationship is shown in FIG. Here, the rated load is 50 g, the rated output is 0.42 mv / V, the nonlinearity is 0.21%, and the hysteresis is 0.28% at the rated load of 50 g and the rated output of 0.42 mv / V as shown in FIG. %, Which were all very good.

初期定格出力0.42mv/Vの上記素子を、155℃の高温雰
囲気下に1000時間放置した際の、ホイートストーンブリ
ッジ出力の零点移動は第7図に示すように0.3%であ
り、また同様に初期定格出力0.42mv/Vの上記素子を、15
5℃の高温雰囲気下に1000時間放置した際の、ホイート
ストーンブリッジ定格出力の変化は第8図に示すように
1.0%であり、この素子の安定性が非常に高いことが証
明された。
When the above-mentioned device having an initial rated output of 0.42 mv / V was left in a high-temperature atmosphere at 155 ° C. for 1000 hours, the zero point shift of the Wheatstone bridge output was 0.3% as shown in FIG. The above element with an initial rated output of 0.42mv / V
The change in the rated output of the Wheatstone bridge when left in a high temperature atmosphere of 5 ° C for 1000 hours is shown in Fig. 8.
1.0%, which proved that the stability of this device was very high.

[発明の効果] 以上の説明からも明らかなように、本発明の金属薄膜
抵抗ひずみゲージによると、Ta−Si合金薄膜を使用する
ことにより、とくに高温下で安定性の向上した、信頼性
の高い金属薄膜抵抗ひずみゲージを提供できるようにな
った。
[Effects of the Invention] As is clear from the above description, according to the metal thin film resistance strain gauge of the present invention, by using a Ta-Si alloy thin film, the stability is improved especially at high temperatures, and the reliability is improved. It has become possible to provide a high metal thin film resistance strain gauge.

なお、ここでは絶縁性基板上にTa−Si合金薄膜の抵抗
体を設け、該Ta−Si合金薄膜の抵抗体に金属電極を形成
したが、ひずみ測定対象物上に直接絶縁性被膜を施し、
該絶縁性被膜上にTa−Si合金薄膜の抵抗体を設け、該Ta
−Si合金薄膜の抵抗体に金属電極を形成した金属薄膜抵
抗ひずみゲージを用いても同様の効果が得られる。
Here, a resistor of a Ta-Si alloy thin film was provided on an insulating substrate, and a metal electrode was formed on the resistor of the Ta-Si alloy thin film.
A resistor of a Ta-Si alloy thin film is provided on the insulating film,
The same effect can be obtained by using a metal thin film resistance strain gauge in which a metal electrode is formed on a resistor made of a Si alloy thin film.

また、以上の実施例では、金属薄膜の抵抗体としてTa
−Si合金を用いた例について述べたが、Ta−Si−Tiなど
の合金を含めて三元以上の合金或いは、Ta−Si−N2など
の気体を含めて三元以上の合金を用いることもできる。
Further, in the above embodiment, Ta was used as the resistor of the metal thin film.
Example has been described with -Si alloy, the use of a Ta-Si-Ti alloy alloy of ternary or higher, including such or ternary or higher alloy, including a gas such as Ta-Si-N 2 Can also.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明で使用した直流2極スパッタリング装置
の概略図、第2図は本発明の金属薄膜抵抗ひずみゲージ
の断面図、第3図は本発明の金属薄膜抵抗ひずみゲージ
の抵抗パターンの部分図、第4図は本発明の金属薄膜抵
抗ひずみゲージの評価に利用したホイートストーンブリ
ッジの回路図、第5図および第6図はそれぞれ本発明の
金属薄膜抵抗ひずみゲージの負荷−出力特性図およびヒ
ステリシス特性図、第7図および第8図はそれぞれ本発
明の金属薄膜抵抗ひずみゲージを155℃下に高温放置し
た際の出力の零点移動および定格出力の変化を示す図で
ある。 1……基板 2……固定治具 3……ベルジャー 4……Arガス導入口 5……ターゲット 6……直流高圧電源 7……抵抗体 8……金属電極 9……保護膜 10……電極パッド 11……抵抗パターン
FIG. 1 is a schematic diagram of a DC bipolar sputtering apparatus used in the present invention, FIG. 2 is a cross-sectional view of a metal thin film resistance strain gauge of the present invention, and FIG. 3 is a resistance pattern of the metal thin film resistance strain gauge of the present invention. FIG. 4 is a partial diagram, FIG. 4 is a circuit diagram of a Wheatstone bridge used for evaluation of the metal thin film resistance strain gauge of the present invention, and FIGS. 5 and 6 are load-output characteristics of the metal thin film resistance strain gauge of the present invention, respectively. FIG. 7 and FIG. 8 show hysteresis characteristic diagrams, and FIG. 7 and FIG. 8 show the zero point shift of the output and the change in the rated output when the metal thin film resistance strain gauge of the present invention is left at a high temperature of 155 ° C., respectively. DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Fixing jig 3 ... Bell jar 4 ... Ar gas inlet 5 ... Target 6 ... DC high voltage power supply 7 ... Resistor 8 ... Metal electrode 9 ... Protective film 10 ... Electrode Pad 11: Resistor pattern

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板として絶縁性基板を用い、前記絶縁性
基板上にTa−Si合金薄膜の抵抗体を設け、前記Ta−Si合
金薄膜の抵抗体に金属電極を形成したことを特徴とする
金属薄膜抵抗ひずみゲージ。
An insulating substrate is used as a substrate, a resistor of a Ta-Si alloy thin film is provided on the insulating substrate, and a metal electrode is formed on the resistor of the Ta-Si alloy thin film. Metal thin film resistance strain gauge.
【請求項2】ひずみ測定対象物上に直接絶縁性被膜を施
し、前記絶縁性被膜上にTa−Si合金薄膜の抵抗体を設
け、前記Ta−Si合金薄膜の抵抗体に金属電極を形成した
ことを特徴とする金属薄膜抵抗ひずみゲージ。
2. An insulative coating is directly applied on an object to be strain-measured, a resistor of a Ta-Si alloy thin film is provided on the insulating coating, and a metal electrode is formed on the resistor of the Ta-Si alloy thin film. A metal thin film resistance strain gauge characterized by the following:
JP63026987A 1988-02-08 1988-02-08 Metal thin film resistive strain gauge Expired - Lifetime JP2585681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026987A JP2585681B2 (en) 1988-02-08 1988-02-08 Metal thin film resistive strain gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026987A JP2585681B2 (en) 1988-02-08 1988-02-08 Metal thin film resistive strain gauge

Publications (2)

Publication Number Publication Date
JPH01202601A JPH01202601A (en) 1989-08-15
JP2585681B2 true JP2585681B2 (en) 1997-02-26

Family

ID=12208516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026987A Expired - Lifetime JP2585681B2 (en) 1988-02-08 1988-02-08 Metal thin film resistive strain gauge

Country Status (1)

Country Link
JP (1) JP2585681B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066312A (en) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP2019066453A (en) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP2019066454A (en) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge and sensor module
JP6793103B2 (en) 2017-09-29 2020-12-02 ミネベアミツミ株式会社 Strain gauge
WO2019065841A1 (en) * 2017-09-29 2019-04-04 ミネベアミツミ株式会社 Strain gauge
JP2019082424A (en) 2017-10-31 2019-05-30 ミネベアミツミ株式会社 Strain gauge
JP2019113411A (en) 2017-12-22 2019-07-11 ミネベアミツミ株式会社 Strain gauge and sensor module
JP2019184344A (en) 2018-04-05 2019-10-24 ミネベアミツミ株式会社 Strain gauge and manufacturing method therefor
EP3855148A4 (en) 2018-10-23 2022-10-26 Minebea Mitsumi Inc. Accelerator pedal, steering apparatus, 6-axis sensor, engine, bumper, and the like

Also Published As

Publication number Publication date
JPH01202601A (en) 1989-08-15

Similar Documents

Publication Publication Date Title
US4500864A (en) Pressure sensor
JPH11326090A (en) Thick-film piezo-resistor detecting device
US5508676A (en) Strain gauge on a flexible support and transducer equipped with said gauge
JP5796360B2 (en) Thermistor material, temperature sensor, and manufacturing method thereof
US6729187B1 (en) Self-compensated ceramic strain gage for use at high temperatures
JPS60181602A (en) Thin-film strain gage device and manufacture thereof
JP2585681B2 (en) Metal thin film resistive strain gauge
JPS63165725A (en) Strain gauge for pressure sensor
US4932265A (en) Pressure transducer using thick film resistor
CN109825809A (en) A kind of polyimide-based resistance-type thin film strain sensors and the preparation method and application thereof
JPH03210443A (en) Load detector and method for compensating temperature of load detector
Prudenziati et al. Piezoresistive Properties of Thick‐film Resistors An Overview
US4100524A (en) Electrical transducer and method of making
US5306873A (en) Load cell with strain gauges having low temperature dependent coefficient of resistance
JP2001221696A (en) Temperature-sensitive and strain-sensitive composite sensor
JP3913526B2 (en) Displacement sensor, manufacturing method thereof and positioning stage
Bethe et al. Thin-film strain-gage transducers
JP2022074104A (en) Strain gauge and manufacturing method thereof
JPS6334414B2 (en)
US3305816A (en) Ternary alloy strain gauge
JPS6225977B2 (en)
JPS5942402A (en) Production of strain sensor
JP2004512515A (en) Self-compensating ceramic strain gauge for use at high temperatures
JP2001110602A (en) Thin-film resistor forming method and sensor
JPS6212458B2 (en)