JP2582032B2 - Equivalent non-polar bidirectional linear solenoid with permanent magnet - Google Patents

Equivalent non-polar bidirectional linear solenoid with permanent magnet

Info

Publication number
JP2582032B2
JP2582032B2 JP5203557A JP20355793A JP2582032B2 JP 2582032 B2 JP2582032 B2 JP 2582032B2 JP 5203557 A JP5203557 A JP 5203557A JP 20355793 A JP20355793 A JP 20355793A JP 2582032 B2 JP2582032 B2 JP 2582032B2
Authority
JP
Japan
Prior art keywords
cylindrical
polar
plunger
magnetic
linear solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5203557A
Other languages
Japanese (ja)
Other versions
JPH0794323A (en
Inventor
正次 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takano Corp
Original Assignee
Takano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takano Corp filed Critical Takano Corp
Priority to JP5203557A priority Critical patent/JP2582032B2/en
Publication of JPH0794323A publication Critical patent/JPH0794323A/en
Application granted granted Critical
Publication of JP2582032B2 publication Critical patent/JP2582032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、等価的に無極と同様な
動作をする、永久磁石を持つ、双方向リニヤーソレノイ
ドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bidirectional linear solenoid having a permanent magnet which operates equivalently to non-polarity.

【0002】[0002]

【従来の技術】従来、双方向リニヤーソレノイドで、コ
イルへの通電方向を変換し、プランジャを左右に移動さ
せ、通電を切ったとき、プランジャに保持力を持たせ
ず、自由な状態にする無極双方向リニヤーソレノイドと
しては、特開平4−287902号(特願平2−327
635号)の無極双方向リニヤーソレノイドがあった。
2. Description of the Related Art Conventionally, a bidirectional linear solenoid changes the direction of energization to a coil, moves a plunger to the left and right, and when the energization is cut off, the plunger has no holding force and is free. Japanese Patent Application Laid-Open No. 4-287902 (Japanese Patent Application No. 2-327) discloses a non-polar bidirectional linear solenoid.
No. 635).

【0003】[0003]

【発明が解決しようとする課題】しかし、これは永久磁
石を使用しないで無極にしたことを特徴としているの
で、永久磁石を用いてもなお、等価的に無極となるよう
な双方向リニヤーソレノイドは未だ実現されていない。
However, this is characterized in that it is non-polar without using a permanent magnet, so that even if a permanent magnet is used, the bidirectional linear solenoid is equivalently non-polar. Has not yet been realized.

【0004】[0004]

【課題を解決するための手段】本発明は、永久磁石を用
いた、双方向リニヤーソレノイドで、等価的に無極とな
る、双方向リニヤーソレノイドを提供するためになされ
たもので、その特徴とするところは、左右に移動可能な
シャフト12のほぼ中央部に、半径方向にN,S極に着
磁された円筒形磁石11を固着して、プランジャ部10
を構成し、該プランジャ部10の外周に、夫々円筒形ポ
ール15及び16を突出して対向させた、軟磁性材より
なるサイドヨーク13及び14の外周を、軟磁性材より
なるヨーク20で固着する。而して、円筒形ポール15
及び16の突出端面間に空隙長lの空隙19を構成し、
円筒形ポール15及び16の内周と、プランジャ部10
の外周との間に空隙長δの磁気空隙17及び18を構成
したことにある。
SUMMARY OF THE INVENTION The present invention has been made to provide a bidirectional linear solenoid using a permanent magnet, which is equivalently non-polar, and has a characteristic feature. A cylindrical magnet 11 magnetized in the N and S poles in the radial direction is fixed to a substantially central portion of a shaft 12 movable left and right, and a plunger portion 10 is fixed.
And the outer peripheries of the side yokes 13 and 14 made of a soft magnetic material and having the cylindrical poles 15 and 16 protrudingly opposed to the outer perimeter of the plunger portion 10 are fixed by a yoke 20 made of a soft magnetic material. . Thus, the cylindrical pole 15
And a gap 19 having a gap length l between the protruding end faces of
The inner circumference of the cylindrical poles 15 and 16 and the plunger 10
Magnetic gaps 17 and 18 having a gap length δ are formed between the magnetic gaps 17 and 18.

【0005】[0005]

【作用】コイル24に通電しないとき、円筒形ポール1
5及び16と、プランジャ部10の間に作用する吸引力
は、夫々プランジャ部10を円筒形ポール15及び16
内に吸引するように作用する。
When the coil 24 is not energized, the cylindrical pole 1
The suction force acting between the plungers 10 and 5 and the plunger 10 causes the plungers 10 to move into cylindrical poles 15 and 16 respectively.
Acts to suck into.

【0006】[0006]

【実施例】以下図面について詳細に説明する。図1は、
本発明の永久磁石を持つ、等価無極双方向リニヤーソレ
ノイドの側断面図、図2は図1A−A断面矢視図であ
る。図1及び図2において、11は例えばネオジム(N
d)、鉄(Fe)及び硼素(B)を主成分とする異方性
焼結磁石のように、特に抗磁力の比較的大きい円筒形磁
石で、半径方向に異方性とし、着磁してある。即ちN,
Sがその磁極である。12は、非磁性材又は磁性材より
なるシャフトで、円筒形磁石11をそのほぼ中央部外周
に接着等の手段で固着し、プランジャ部10を構成して
いる。13及び14は、軟磁性材よりなるサイドヨーク
で、夫々円筒形ポール15及び16を対向して突出さ
せ、その突出端面間に空隙長lの空隙19を構成してい
る。円筒形ポール15及び16の内周は、プランジャ部
10の円筒形磁石11と夫々磁気空隙17及び18を介
して対向させ、夫々磁気空隙長δを構成している。20
は軟磁性材よりなるヨークで、サイドヨーク13及び1
4の外周をかしめ等の手段で固着してある。21,21
は非磁性材よりなるベアリングケース、22,22はリ
ニヤーボールベアリングで、シャフト12の両端部2
3,23を支持し、磁気空隙長δを維持しながらシャフ
ト12が滑動し得るように構成してある。24は、円筒
形ポール15及び16を周回して捲かれたコイル、25
は、コイル24のリード線である。図3は、シヤフト1
2が非磁性材のときの、各部の磁力線の通過する状況を
示した図で、各部の符号は、図1及び図2と同様であ
る。図3で、実線矢印は、円筒形磁石11によって発生
する磁力線の通過する模様を、点線矢印は、コイル24
に図1及び図3で示す方向に直流を通電したとき発生す
る磁力線の通過する模様を示したものである。図3の状
態で、円筒形磁石11の外周の磁位をΦとすれば、磁気
空隙17及び18の円筒形磁石11による磁束密度B
は、数1の通りである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG.
FIG. 2 is a sectional side view of an equivalent non-polar bidirectional linear solenoid having a permanent magnet of the present invention, and FIG. 1 and 2, reference numeral 11 denotes, for example, neodymium (N
d) A cylindrical magnet having a relatively large coercive force, such as an anisotropic sintered magnet containing iron (Fe) and boron (B) as main components. It is. That is, N,
S is the magnetic pole. Reference numeral 12 denotes a shaft made of a non-magnetic material or a magnetic material. Reference numerals 13 and 14 denote side yokes made of a soft magnetic material. The cylindrical poles 15 and 16 are protruded so as to face each other, and a gap 19 having a gap length l is formed between the protruding end faces. The inner circumferences of the cylindrical poles 15 and 16 are opposed to the cylindrical magnet 11 of the plunger section 10 via magnetic gaps 17 and 18, respectively, to form a magnetic gap length δ. 20
Is a yoke made of a soft magnetic material.
The outer periphery of 4 is fixed by caulking or the like. 21,21
Is a bearing case made of a non-magnetic material, and 22 and 22 are linear ball bearings.
3 and 23, so that the shaft 12 can slide while maintaining the magnetic gap length δ. 24 is a coil wound around the cylindrical poles 15 and 16, 25
Is a lead wire of the coil 24. FIG. 3 shows the shaft 1
FIG. 3 is a diagram showing a situation where magnetic lines of force pass through each part when 2 is a non-magnetic material, and reference numerals of each part are the same as those in FIGS. 1 and 2. In FIG. 3, solid arrows indicate patterns through which magnetic lines of force generated by the cylindrical magnet 11 pass, and dotted arrows indicate coils 24.
FIG. 3 shows a pattern of passing magnetic lines generated when a direct current is supplied in the directions shown in FIGS. 1 and 3. In the state of FIG. 3, if the magnetic potential on the outer periphery of the cylindrical magnet 11 is Φ, the magnetic flux density B of the magnetic gaps 17 and 18 due to the cylindrical magnet 11 is
Is as shown in Equation 1.

【0007】[0007]

【数1】 (Equation 1)

【0008】プランジャ部10の円筒形磁石11に働く
吸引力は、円筒形ポール15及び16の先端と円筒形磁
石11との間の磁気空隙31及び32での磁束密度を夫
々B31及びB32とし、プランジャ部10の外径即
ち、円筒形磁石11の外径をD(D≧δ)、比例常数を
として、磁気空隙31では、Φ31を磁気空隙31
での円筒形磁石11の磁位として、数2の力がプランジ
ャ部10を円筒形ポール15内に吸引する(図3で左方
向)ように働き、磁気空隙32では、Φ32を磁気空隙
32での円筒形磁石11の磁位として、数3の力がプラ
ンジャ部10を円筒形ポール16内に吸引する(図3で
右方向)ように働く。
The attractive force acting on the cylindrical magnet 11 of the plunger part 10 changes the magnetic flux density in the magnetic gaps 31 and 32 between the tips of the cylindrical poles 15 and 16 and the cylindrical magnet 11 by B 31 and B 32, respectively. Assuming that the outer diameter of the plunger 10, that is, the outer diameter of the cylindrical magnet 11 is D (D ≧ δ) and the proportional constant is K 1 , Φ 31 is defined as the magnetic air gap 31 in the magnetic air gap 31.
As magnetic potential of the cylindrical magnet 11, the number 2 of the force to suck the plunger portion 10 to the cylindrical pole 15 serves as (leftward in FIG. 3), the magnetic gap 32, the [Phi 32 magnetic gap 32 The force of Equation 3 acts to attract the plunger portion 10 into the cylindrical pole 16 (to the right in FIG. 3) as the magnetic potential of the cylindrical magnet 11 at.

【0009】[0009]

【数2】 (Equation 2)

【0010】[0010]

【数3】 (Equation 3)

【0011】次に図1及び図3で、コイル24に図に示
す方向に直流電流iを通電すると、コイル24の捲回数
をNとして数4で示す起磁力Hが発生する。
[0011] Next, in FIGS. 1 and 3, when passing a direct current i in the direction shown in the coil 24, magnetomotive force H i indicated by the number 4 the winding number of the coil 24 as N occurs.

【0012】[0012]

【数4】 (Equation 4)

【0013】ヨーク20、サイドヨーク13及び14の
透磁率が空気のそれに比べて十分大きいとし、円筒形ポ
ール16から15に至る磁気回路の磁気抵抗をRとす
ると、円筒形磁石11のリコイル透磁率が前掲の材料で
はμ≒1.05で、殆ど空気と同じであるから、円筒
形磁石11の位置に無関係にRが一定であると見倣せ
る。磁気空隙31及び32における直流電流iによる磁
束密度を夫々b31及びb32とすれば、比例常数をK
として共に数5の通りである。
[0013] yoke 20, than that the permeability of the side yokes 13 and 14 is air and sufficiently large, the magnetic resistance of the magnetic circuit extending from 15 to a cylindrical pole 16 and R i, recoil permeability of the cylindrical magnet 11 in mu r ≒ 1.05 is permeability supra material, since it is almost the same as air, when the independent R i to the position of the cylindrical magnet 11 is constant regarded. Assuming that the magnetic flux density due to the DC current i in the magnetic air gaps 31 and 32 is b 31 and b 32 respectively, the proportional constant is K
They are both as number 5 as 2.

【0014】[0014]

【数5】 (Equation 5)

【0015】磁気空隙31では、B31とb31は加算
され、磁気空隙32では、B32とb32は減算される
ので、プランジャ部10を図で左方向に移動させるよう
に働く力を正として全吸引力Fは数6の通りになる。
In the magnetic air gap 31, B 31 and b 31 are added, and in the magnetic air gap 32, B 32 and b 32 are subtracted. Therefore, the force acting to move the plunger 10 to the left in the drawing is positive. And the total suction force Ft is as shown in Equation 6.

【0016】[0016]

【数6】 (Equation 6)

【0017】直流電流iの方向を変換すると、磁気空隙
31では、B31とb31が減算され、磁気空隙32で
は、B32とb32が加算され、プランジャ部10を図
で右方向に移動させようとする数7で示す力−Fが働
く。
When the direction of the DC current i is changed, B 31 and b 31 are subtracted in the magnetic gap 31, and B 32 and b 32 are added in the magnetic gap 32, and the plunger 10 is moved rightward in the figure. force -F t indicated by the number 7 to try to work.

【0018】[0018]

【数7】 (Equation 7)

【0019】即ち図1で示すソレノイドは双方向リニヤ
ーソレノイドとして動作する。図4は、プランジャ部1
0の他の実施例を示す正面図で、符号は図1と同じであ
る。図では、プランジャ部10の円筒形磁石11を円周
方向で4等分、一般にn(n≧2)等分して構成してい
る。図5及び図6は、プランジャ部10の他の実施例を
示す側断面図及び正面図である。図で、12はシャフ
ト、41は円筒形磁石、42は軟磁性材よりなる円筒
で、円筒形磁石41の外周に接着等の手段で固着し、プ
ランジャ部10を構成している。又図5及び図6の構造
で円筒形磁石41を円周方向でn(n≧2)等分した構
造にしてもよい。
That is, the solenoid shown in FIG. 1 operates as a bidirectional linear solenoid. FIG. 4 shows the plunger unit 1
0 is a front view showing another embodiment of the present invention, in which reference numerals are the same as those in FIG. In the drawing, the cylindrical magnet 11 of the plunger portion 10 is configured to be equally divided into four in the circumferential direction, generally n (n ≧ 2). 5 and 6 are a side sectional view and a front view showing another embodiment of the plunger portion 10. In the figure, reference numeral 12 denotes a shaft, 41 denotes a cylindrical magnet, and 42 denotes a cylinder made of a soft magnetic material. The cylinder is fixed to the outer periphery of the cylindrical magnet 41 by means such as adhesion or the like to form the plunger portion 10. Alternatively, the structure shown in FIGS. 5 and 6 may be such that the cylindrical magnet 41 is equally divided into n (n ≧ 2) in the circumferential direction.

【0020】[0020]

【発明の効果】円筒形磁石11の外周の磁位Φは、着磁
方法を適当に選択すれば、その両端面付近を除いてほぼ
一定に着磁することができる。円筒形磁石11の長さを
L、円筒形ポール15及び16の中心面Y−Yから円筒
形磁石11の右端までの距離をxとすれば、x≒l/2
及びx≒(L−l/2)付近を除いてx>l/2からx
<(L−l/2)まで移動してもB31≒B32であ
る。従ってこの間では数2で表される吸引力F31と数
3で表される吸引力F32とが釣合い、プランジャ部1
0には何ら吸引力が働かないことになる。即ちプランジ
ャ部10が等価的に無極状態となる効果がある。円筒形
磁石11がx≦l/2特にx≒l/2では、円筒形磁石
11を図1及び図3で右方向に移動させようとする力が
異常に大きくなり、x≧(L−l/2)特にx≒(L−
l/2)では、円筒形磁石11を図1及び図3で左方向
に移動させようとする力が異常に大きくなる。図7は、
横軸をx、縦軸をFとして、Fとxの関係を示す図
で、Fの正方向は、プランジャ部10を図1及び図3
で左方向に移動させるように働く力である。図7で実線
で示したFは、コイル24に通電しないとき即ち円筒
形磁石11のみによって発生する吸引力を表している。
又図7には、コイル24に夫々+i及び−iの直流を通
電したときの吸引力も点線で併記してある。円筒形磁石
11が図2で示すように、リング状になっているとき、
図のように着磁するためには、特殊な着磁治具を必要と
するが、図4のようにn(n≧2)分割してあると、通
常の着磁器で容易に着磁できる効果がある。円筒形磁石
11の外周の磁位Φは、着磁方法を適当に選択して、そ
の両端面付近を除いてほぼ一定に着磁することができる
が、磁石内部の材質のばらつき等により磁位Φのばらつ
きを完全に無くすことが難しい場合がある。このような
とき図5及び図6のように円筒形磁石41の外周を、透
磁率の大きい軟磁性材の円筒42で被覆すると円筒42
の表面磁位が、その両端面付近を除いて一定になる効果
がある。
According to the present invention, the magnetic potential Φ on the outer periphery of the cylindrical magnet 11 can be magnetized to be substantially constant except for the vicinity of both end faces thereof by appropriately selecting the magnetizing method. Assuming that the length of the cylindrical magnet 11 is L and the distance from the center plane YY of the cylindrical poles 15 and 16 to the right end of the cylindrical magnet 11 is x, x ≒ 1/2
And x> l / 2 except for x ≒ (L-l / 2)
B 31ま で B 32 even if it moves to <(L−1 / 2). Thus the suction force F 32 In the meantime represented by suction force F 31 with the number 3 represented by the number 2 is the balance, plunger unit 1
No suction force works for 0. That is, there is an effect that the plunger unit 10 becomes equivalently in the non-polar state. When the cylindrical magnet 11 is x ≦ l / 2, particularly, x ≒ l / 2, the force for moving the cylindrical magnet 11 to the right in FIGS. 1 and 3 becomes abnormally large, and x ≧ (L−1 / 2) In particular, x ≒ (L−
1/2), the force for moving the cylindrical magnet 11 to the left in FIGS. 1 and 3 becomes abnormally large. FIG.
The horizontal axis x, vertical axis as F t, a diagram illustrating a relationship F t and x, the positive direction of F t is 1 and 3 the plunger portion 10
Is the force that works to move to the left. F t indicated by the solid line in FIG. 7 represents i.e. suction force generated only by the cylindrical magnet 11 when not energized to the coil 24.
In FIG. 7, the attraction force when + i and -i direct currents are supplied to the coil 24 is also indicated by dotted lines. When the cylindrical magnet 11 has a ring shape as shown in FIG.
As shown in the drawing, a special magnetizing jig is required, but if it is divided into n (n ≧ 2) as shown in FIG. 4, it can be easily magnetized with a normal magnetizer. effective. The magnetic potential Φ on the outer periphery of the cylindrical magnet 11 can be magnetized almost uniformly except for the vicinity of both end surfaces by appropriately selecting a magnetizing method. It may be difficult to completely eliminate the variation in Φ. In such a case, when the outer periphery of the cylindrical magnet 41 is covered with a cylinder 42 of a soft magnetic material having a high magnetic permeability as shown in FIGS.
Has an effect that the surface magnetic potential becomes constant except for the vicinity of both end surfaces thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の永久磁石を持つ、等価無極双方向リニ
ヤーソレノイドの側断面図
FIG. 1 is a side sectional view of an equivalent non-polar bidirectional linear solenoid having a permanent magnet of the present invention.

【図2】図1A−A断面矢視図FIG. 2 is a sectional view taken in the direction of arrows in FIG. 1A-A.

【図3】シャフト12が非磁性材のときの、各部の磁力
線の通過する状況を示した図
FIG. 3 is a diagram showing a situation in which magnetic lines of force of respective parts pass when the shaft 12 is made of a non-magnetic material.

【図4】プランジャ部10の他の実施例を示す正面図FIG. 4 is a front view showing another embodiment of the plunger unit 10.

【図5】プランジャ部10の他の実施例を示す側断面図FIG. 5 is a side sectional view showing another embodiment of the plunger section 10;

【図6】プランジャ部10の他の実施例を示す正面図FIG. 6 is a front view showing another embodiment of the plunger unit 10.

【図7】Fとxの関係を示した図FIG. 7 is a diagram showing a relationship between Ft and x.

【符号の説明】[Explanation of symbols]

10 プランジャ部 11 円筒形磁石 12 シャフト 13,14 サイドヨーク 15,16 円筒形ポール 17,18 磁気空隙 19 空隙 20 ヨーク 22,22 リニヤーボールベアリング 24 コイル 31,32 磁気空隙 41 円筒形磁石 42 円筒 DESCRIPTION OF SYMBOLS 10 Plunger part 11 Cylindrical magnet 12 Shaft 13, 14 Side yoke 15, 16 Cylindrical pole 17, 18 Magnetic gap 19 Air gap 20 Yoke 22, 22, Linear ball bearing 24 Coil 31, 32 Magnetic gap 41 Cylindrical magnet 42 Cylindrical

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 左右に移動可能なシャフト12のほぼ中
央部に、半怪方向にN,S極に着磁された円筒形磁石1
1を固着して、プランジャ部10を構成し、該プランジ
ャ部10の外周に、夫々円筒形ポール15及び16を突
出して対向させた、軟磁性材よりなるサイドヨーク13
及び14の外周を軟磁性材よりなるヨーク20で固着す
る。而して、円筒形ポール15及び16の突出端面間に
空隙長lの空隙19を構成し、円筒形ポール15及び1
6の内周と、プランジャ部10の外周との間に空隙長δ
の磁気空隙17及び18を構成したことを特徴とする、
永久磁石を持つ、等価無極双方向リニヤーソレノイド。
1. A cylindrical magnet 1 magnetized in N and S poles in a semi-monitoring direction at a substantially central portion of a shaft 12 movable left and right.
1 is fixed to form a plunger portion 10, and a side yoke 13 made of a soft magnetic material and having cylindrical poles 15 and 16 protrudingly opposed to the outer periphery of the plunger portion 10, respectively.
And 14 are fixed by a yoke 20 made of a soft magnetic material. Thus, a gap 19 having a gap length l is formed between the protruding end surfaces of the cylindrical poles 15 and 16, and the cylindrical poles 15 and 1 are formed.
6 and the outer circumference of the plunger portion 10
Characterized in that the magnetic gaps 17 and 18 are configured,
Equivalent non-polar bidirectional linear solenoid with permanent magnet.
【請求項2】 プランジャ部10の円筒形磁石11を円
周方向でn(n≧2)等分して構成したことを特徴とす
る特許請求の範囲請求項1に記載された、永久磁石を持
つ、等価無極双方向リニヤーソレノイド。
2. The permanent magnet according to claim 1, wherein the cylindrical magnet 11 of the plunger portion 10 is equally divided into n (n ≧ 2) in the circumferential direction. Has an equivalent non-polar bidirectional linear solenoid.
【請求項3】 プランジャ部10を円筒形磁石41の外
周に軟磁性材よりなる円筒42を固着して構成したこと
を特徴とする特許請求の範囲請求項1に記載された、永
久磁石を持つ、等価無極双方向リニヤーソレノイド。
3. The plunger section 10 is constructed by fixing a cylinder 42 made of a soft magnetic material to an outer periphery of a cylindrical magnet 41. The plunger section 10 has a permanent magnet according to claim 1. , Equivalent non-polar bidirectional linear solenoid.
JP5203557A 1993-06-25 1993-06-25 Equivalent non-polar bidirectional linear solenoid with permanent magnet Expired - Lifetime JP2582032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5203557A JP2582032B2 (en) 1993-06-25 1993-06-25 Equivalent non-polar bidirectional linear solenoid with permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5203557A JP2582032B2 (en) 1993-06-25 1993-06-25 Equivalent non-polar bidirectional linear solenoid with permanent magnet

Publications (2)

Publication Number Publication Date
JPH0794323A JPH0794323A (en) 1995-04-07
JP2582032B2 true JP2582032B2 (en) 1997-02-19

Family

ID=16476115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5203557A Expired - Lifetime JP2582032B2 (en) 1993-06-25 1993-06-25 Equivalent non-polar bidirectional linear solenoid with permanent magnet

Country Status (1)

Country Link
JP (1) JP2582032B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734766B2 (en) * 2000-07-18 2011-07-27 Smc株式会社 Magnet movable electromagnetic actuator
JP2005150305A (en) * 2003-11-13 2005-06-09 Smc Corp Electromagnetic actuator

Also Published As

Publication number Publication date
JPH0794323A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
JPH0134326Y2 (en)
US5081388A (en) Magnetic induction motor
CA1135761A (en) Permanent magnet motor armature
EP1198055A3 (en) Linear motor, driving and control system thereof and manufacturing method thereof
US20050104456A1 (en) Electromagnetic actuator
EP0215441B2 (en) Miniature electric rotating machine
EP1091477A3 (en) Vibration generator
JP2582032B2 (en) Equivalent non-polar bidirectional linear solenoid with permanent magnet
KR100440514B1 (en) Axial Core Type Brushless DC Motor
JP3904663B2 (en) Magnetic adsorption holding device
JP3664271B2 (en) Multipolar magnetizing yoke
JPH05300691A (en) Small-size motor
JPH0244703A (en) Electromagnetic driving device
JPS63213453A (en) Rotating noise attenuating mechanism for dc motor of magnet rotor type
JPH0729726A (en) Manufacture of magnet roll
WO2023027127A1 (en) Rotor and motor
JPH10225084A (en) Voice-coil type linear motor
JP2000331821A (en) Radially anisotropic magnet
JPS6348090Y2 (en)
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JP2000032730A (en) Electromagnetic actuator
JP2771780B2 (en) electromagnet
JP2601240Y2 (en) Vibration actuator
JPH0246707A (en) Electromagnet
JP2002176751A (en) Magnetizing method for permanent magnet vibrator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 17

EXPY Cancellation because of completion of term