JP2569087B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2569087B2
JP2569087B2 JP62297547A JP29754787A JP2569087B2 JP 2569087 B2 JP2569087 B2 JP 2569087B2 JP 62297547 A JP62297547 A JP 62297547A JP 29754787 A JP29754787 A JP 29754787A JP 2569087 B2 JP2569087 B2 JP 2569087B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor laser
laser device
layer
convex shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62297547A
Other languages
Japanese (ja)
Other versions
JPH01140787A (en
Inventor
茂雄 山下
俊 梶村
賢治 平嶋
研一 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17847951&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2569087(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62297547A priority Critical patent/JP2569087B2/en
Publication of JPH01140787A publication Critical patent/JPH01140787A/en
Application granted granted Critical
Publication of JP2569087B2 publication Critical patent/JP2569087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビデオデイスク等,光デイスク用ピツクア
ツプに用いる半導体レーザ素子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device used for pickup of an optical disk such as a video disk.

〔従来の技術〕[Conventional technology]

半導体レーザをビデオデイスク等,光デイスク用ピツ
クアツプに用いる場合、例えば発振スペクトル(横モー
ド)が単一波長で発振する、いわゆるシングルモード半
導体レーザでは、コヒーレンシーが良好であることが逆
に障害となつて、半導体レーザへの戻り光によつて光出
力が不安定になり、ノイズを発生することが知られてい
る。したがつて、光デイスク用ピツクアツプとして用い
る半導体レーザとしては、コヒーレンシーの比較的悪い
ものが望まれる。
When a semiconductor laser is used as a pickup for an optical disk such as a video disk, for example, in a so-called single mode semiconductor laser in which an oscillation spectrum (transverse mode) oscillates at a single wavelength, good coherency is an obstacle. It is known that the optical output becomes unstable due to the return light to the semiconductor laser and noise is generated. Therefore, a semiconductor laser having relatively poor coherency is desired as a semiconductor laser used as an optical disk pickup.

上記の特性を実現している半導体レーザの例として
は、応用物理学会講演会予稿集9P−K−7p.170(1981年
秋)において論じられている形のもので、構造パラメー
タを適切に設定することにより、自励発振(パルセーシ
ヨン)現象が発生し、マルチ軸モード発振で、かつ、各
スペクトル線幅の広い、すなわち、コヒーレンシーの適
度に悪いものが得られている。
An example of a semiconductor laser that achieves the above characteristics is the one discussed in the Proceedings of the Japan Society of Applied Physics 9P-K-7p.170 (Autumn 1981), and sets the structural parameters appropriately. As a result, a self-excited oscillation (pulsation) phenomenon occurs, and a multi-axial mode oscillation having a wide spectral line width, that is, a modestly poor coherency is obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記従来技術は半導体レーザの光放出
角、特に活性層に水平な方向については配慮がなされて
おらず、光デイスクピツクアツプ光学系との結合上で問
題があつた。光デイスクピツクアツプ光学系では、レン
ズの開口角等の関係より、活性層に水平方向のビーム広
がり角が12度程度以下の半導体レーザ素子が要求されて
いる。半導体レーザのビーム広がり角は、半導体レーザ
のスポツトサイズ、したがつて光導波路の形状や屈折率
分布に密接に関連している。しかしながら上記従来構造
の半導体レーザ素子では、ビーム広がり角を狭めようと
して構造パラメータを設定すると、パルセーシヨン現象
が抑制されてしまい、結果的には半導体レーザのノイズ
が大きくなつてしまうという問題があつた。
However, the above prior art does not take into consideration the light emission angle of the semiconductor laser, particularly the direction horizontal to the active layer, and has a problem in connection with an optical disk pickup optical system. In the optical disk pickup optical system, a semiconductor laser device having a horizontal beam divergence angle of about 12 degrees or less in the active layer is required for the active layer due to the relationship between the lens opening angle and the like. The beam divergence angle of a semiconductor laser is closely related to the spot size of the semiconductor laser, and therefore to the shape and refractive index distribution of the optical waveguide. However, in the above-described conventional semiconductor laser device, when the structural parameters are set to narrow the beam divergence angle, the pulsation phenomenon is suppressed, and as a result, the noise of the semiconductor laser increases.

本発明の目的は、上記従来技術の問題を解決し、パル
セーシヨン動作して、コヒーレンシーが適度に悪く、か
つ水平方向のビーム広がり角の狭い、低ノイズ半導体レ
ーザを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a low-noise semiconductor laser which solves the above-mentioned problems of the prior art and performs a pulsation operation, has a moderately poor coherency, and has a narrow beam divergence angle in the horizontal direction.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明は以下のような半
導体レーザの構造を提供する。
In order to achieve the above object, the present invention provides the following semiconductor laser structure.

本発明の半導体レーザは、平坦な半導体活性層の両側
に半導体クラツド層を形成し、該クラツド層のどちらか
一方の厚さが、光導波部において、その外側よりも厚く
なつているような、ストライプ状凸形状、あるいは逆凸
形状を有し、かつ、該光導波部ストライプ状領域に沿つ
て、開口を有するような電流狭窄用半導体層を有し、前
記ストライプ状凸形状、あるいは逆凸形状の幅が、半導
体レーザの少なくとも光ビーム取出側の反射面近傍で広
くなつており、かつその変化がなめらかである構造とす
る。
In the semiconductor laser of the present invention, a semiconductor cladding layer is formed on both sides of a flat semiconductor active layer, and the thickness of one of the cladding layers is thicker in the optical waveguide than in the outside. A semiconductor layer for current constriction having a stripe-shaped convex shape or an inverted convex shape and having an opening along the optical waveguide portion stripe-shaped region; Is wide at least in the vicinity of the reflection surface on the light beam extraction side of the semiconductor laser, and the change is smooth.

本発明の半導体レーザの光導波領域の模式図を第2図
に示す。第2図は平面模式図であり、点線はストライプ
状光導波領域を示す。本発明はレーザの中央部は光導波
部の幅がW1で、この領域をパルセーシヨン現象が効果的
に発生するような構造とし、少なくとも一方の反射面近
傍は幅を広げてW2>W1とし、この領域でビーム広がり角
を補正させる。また、幅W1からW2への遷移はゆるやかに
行う。
FIG. 2 is a schematic view of the optical waveguide region of the semiconductor laser of the present invention. FIG. 2 is a schematic plan view, and a dotted line shows a stripe-shaped optical waveguide region. Central portion of the present invention is a laser in the width W 1 of the optical waveguide section, this region is a structure as Paruseshiyon phenomenon effectively occurs, W 2 at least one of the reflecting surface near widen> W 1 And the beam spread angle is corrected in this area. Also, the transition from width W 1 to W 2 is slowly carried out.

〔作用〕[Action]

本発明の半導体レーザでは、反射面近傍部を除く、内
部領域の構造パラメータを、パルセーシヨン現象が発生
し易いような構造に設定することが可能になり、また、
反射面近傍部は光導波路構造を広げて、導波路内レーザ
スポツトサイズを拡大することが可能になる。反射面近
傍のレーザスポツトサイズ拡大により、反射面より出射
されるビームの広がり角を従来よりも狭くすることがで
きる。ビームの広がり角は、反射面近傍部の光導波路の
幅W2、すなわち、前記半導体クラツド層に設けられてい
るストライプ状凸形状(または逆凸形状)の幅を変える
ことで、任意に設定することが可能である。また、本発
明では、内部と反射面近傍部との該ストライプ状凸形状
(あるいは逆凸形状)の変化をゆるやかにすること、お
よび、全領域にわたつて活性層はほぼ平坦にしておくこ
とにより、この間の光の伝播をなめらかにすることが可
能で、結合部での有害な光の散乱,反射損失等がなく、
発振しきい値の増大等もない。したがつて、本発明によ
り、パルセーシヨン現象が有効に発生して、コヒーレン
シーが適度に悪く、かつ、レーザから出射された光ビー
ムが狭いという両方を満足した、低ノイズの半導体レー
ザ素子が得られる。
In the semiconductor laser of the present invention, it is possible to set the structural parameters of the internal region other than the reflection surface vicinity portion to a structure in which the pulsation phenomenon easily occurs, and
In the vicinity of the reflection surface, the optical waveguide structure can be expanded, and the laser spot size in the waveguide can be increased. By expanding the size of the laser spot near the reflecting surface, the divergence angle of the beam emitted from the reflecting surface can be made narrower than before. The divergence angle of the beam is arbitrarily set by changing the width W 2 of the optical waveguide in the vicinity of the reflection surface, that is, the width of the stripe-shaped convex (or inverted convex) provided in the semiconductor cladding layer. It is possible. Further, in the present invention, the change in the stripe-shaped convex shape (or the reverse convex shape) between the inside and the vicinity of the reflection surface is made gentle, and the active layer is made almost flat over the entire region. , It is possible to smooth the light propagation during this time, there is no harmful light scattering and reflection loss at the joint,
There is no increase in the oscillation threshold. Therefore, according to the present invention, a low-noise semiconductor laser device is obtained in which the pulsation phenomenon is effectively generated, the coherency is moderately low, and the light beam emitted from the laser is both narrow.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第
1図は本発明の実施例であるところの半導体レーザ素子
の構造分解図である。1はp型GaAs基板(Znドープ,p〜
1×1018cm-3)で、この上にn型GaAs電流狭窄層2(Te
ドープ,n〜4×1018cm-3,厚さ約1μm)を液相成長法
により形成した。つぎに、フオトリソグラフイ法とウエ
ツトエツチング法を並用して、前記GaAs電流狭窄層2上
にストライプ状溝3をp型GaAs基板1に達するように形
成した。ここで、本発明の重要な点であるが、該ストラ
イプ状溝3は一方の共振器反射面近傍では出来上がり約
5μm、素子内部では約3.7μmとした。また、その間
の接続部はゆるやかにつなげた。つぎに、再度液相成長
を行つて、p型Ga0.55Al0.45Asクラツド層4(Znドー
プ,p〜6×1017cm-3,厚さ,溝の外側で0.35μm)、ア
ンドープGa0.86Al0.14As活性層5厚さ約0.08μm、全域
にわたつて平坦に形成)、n型Ga0.55Al0.45Asクラツド
層6(Teドープ,n〜8×1017cm-3,厚さ約1.8μm)、n
型GaAsキヤツプ層7(Teドープ,n〜4×1018cm-3,厚さ
約4μm)を形成した。8はn側オーミツク電極で、真
空蒸着法によつて形成した。裏面はGaAs基板1を厚さ約
80μmに研磨、エツチングした後、p側オーミツク電極
9を、真空蒸着法で形成した。電極形成後、共振器長約
250μmにチツプ化し、組立てを行つた。本レーザはし
きい電流値約50mA、波長約780nmで発振し、光出力6mWま
でパルセーシヨン現象が歩留り良く得られ、相対雑音強
度は10-14Hz-1の低ノイズレーザが得られた。また、活
性層に水平方向のビーム広がり角θは約10゜と光デイ
スクピツクアツプ光学系に適したものが得られた。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a structural exploded view of a semiconductor laser device according to an embodiment of the present invention. 1 is a p-type GaAs substrate (Zn doped, p ~
1 × 10 18 cm −3 ) and an n-type GaAs current confinement layer 2 (Te
A dope, n-4 × 10 18 cm −3 , about 1 μm thick) was formed by a liquid phase growth method. Next, a stripe-shaped groove 3 was formed on the GaAs current confinement layer 2 so as to reach the p-type GaAs substrate 1 by using both photolithography and wet etching. Here, it is an important point of the present invention that the stripe-shaped groove 3 is about 5 μm in the vicinity of one resonator reflection surface and about 3.7 μm inside the element. The connection between them was loosely connected. Next, the liquid phase growth is performed again, and the p-type Ga 0.55 Al 0.45 As cladding layer 4 (Zn doped, p〜6 × 10 17 cm -3 , thickness, 0.35 μm outside the groove), undoped Ga 0.86 Al 0.14 As active layer 5 about 0.08 μm thick, formed flat over the entire area), n-type Ga 0.55 Al 0.45 As clad layer 6 (Te doped, nn8 × 10 17 cm -3 , about 1.8 μm thick) , N
-Type GaAs cap layer 7 (Te-doped, n~4 × 10 18 cm -3, about 4μm thick) were formed. Reference numeral 8 denotes an n-side ohmic electrode formed by a vacuum evaporation method. On the back, GaAs substrate 1 is approximately
After polishing and etching to 80 μm, a p-side ohmic electrode 9 was formed by a vacuum evaporation method. After electrode formation, resonator length approx.
It was chipped to 250 μm and assembled. This laser oscillated at a threshold current value of about 50 mA and a wavelength of about 780 nm, a pulsation phenomenon was obtained with a good yield up to an optical output of 6 mW, and a low-noise laser with a relative noise intensity of 10 -14 Hz -1 was obtained. The beam divergence angle θ in the horizontal direction of the active layer was about 10 °, which was suitable for an optical disc pickup optical system.

第3図は、本発明の半導体レーザで、素子中央部の溝
幅W1(第2図参照)とパルセーシヨン素子の発生率との
関係を示した。本結果は、素子中央部の幅を5μm以上
に広げると、パルセーシヨン素子の発生率が著しく下が
り、低ノイズレーザが得られ難いことを示している。し
たがつて、溝幅W1は3.5±1μm程度にすることが望ま
しい。
FIG. 3 shows the relationship between the groove width W 1 (see FIG. 2) at the center of the device and the incidence of the pulsation device in the semiconductor laser of the present invention. This result indicates that when the width of the central portion of the element is increased to 5 μm or more, the occurrence rate of the pulsation element is remarkably reduced, and it is difficult to obtain a low-noise laser. It was but connexion, the groove width W 1 is preferably set to about 3.5 ± 1 [mu] m.

第4図は、本発明の半導体レーザで、素子の反射面近
傍の溝幅W2(第2図参照)と、活性層に水平方向のビー
ム広がり角θとの相関を示したものである。W2を大と
するに従つて、θが小さくできることがこれより判
る。光デイスクピツクアツプ用として適したθ(12
゜)を得るには、W2を4μm程度以上とすることが望ま
しい。
FIG. 4 shows the correlation between the groove width W 2 (see FIG. 2) near the reflection surface of the device and the beam divergence angle θ in the horizontal direction in the active layer in the semiconductor laser of the present invention. It can be seen from this that the larger the value of W 2 , the smaller θ can be. Θ suitable for optical disk pickup (12
In order to obtain ゜), it is desirable that W 2 be about 4 μm or more.

〔発明の効果〕〔The invention's effect〕

本発明によれば、半導体レーザ素子の内部構造をパル
セーシヨン現象が効果的に発生するような光導波部幅W1
に設計でき、かつ光を取り出す側の反射面近傍の光導波
部の幅W2は、外部光学系に適したビーム広がり角θ
得られるように設計できる。また、光導波部の幅がW1
らW2に変わる領域は、ゆるやかに幅を変化させることに
より、この間での光の伝播における損失を著しく小さく
でき、しきい電流値の上昇等もほとんどない。また、共
振器全域において活性層をほぼ平坦に形成しておくこと
により、同様に光導波部の幅が変わる領域においての光
の伝播損失を著しく低減できる。したがつて、本発明に
よれば、パルセーシヨン現象が効果的に発生して、コヒ
ーレンシーが適度に悪く、かつ、光学系との結合に適し
た、狭いビーム広がり角を持ち、また、しきい電流値も
低い、非常に優れた低ノイル半導体レーザ素子が歩留り
良く得られる。また、本発明はGaAlAs系半導体レーザ素
子のみならず、他の材料系、例えばInGaAsP系にも応用
可能で、その技術的効果は非常に大である。
According to the present invention, the internal structure of the semiconductor laser device is such that the optical waveguide portion width W 1 is such that the pulsation phenomenon effectively occurs.
The width W 2 of the optical waveguide near the reflection surface on the light extraction side can be designed so as to obtain a beam divergence angle θ suitable for the external optical system. region changes from W 1 to W 2, by changing the slowly width, can significantly reduce the loss in light propagation in the meantime, almost no such increase in the threshold current. in addition, active in the resonator entire By forming the layer to be substantially flat, the propagation loss of light in the region where the width of the optical waveguide portion changes can be significantly reduced, and according to the present invention, the pulsation phenomenon effectively occurs. As a result, it is possible to obtain a very excellent low-noil semiconductor laser device having a moderately low coherency, a narrow beam divergence angle suitable for coupling with an optical system, a low threshold current value, and a very excellent low-noil semiconductor laser device. . The present invention not only GaAlAs-based semiconductor laser device, other material systems, for example also be applied to InGaAsP system, the technical effect is very large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例を示す半導体レーザ素子の
構造分解図である。 第2図は、本発明の半導体レーザの光導波領域を示す平
面模式図である。 第3図は、本発明の半導体レーザで、素子中央部の溝幅
W1とパルセーシヨン素子の発生率との関係を示した図で
ある。 第4図は、本発明の半導体レーザで、素子の反射面近傍
の溝幅W2と活性層に水平方向のビーム広がり角θとの
相関を示す図である。 1……p型GaAs基板、2……n型GaAs電流狭窄層、3…
…光導波用ストライプ状溝、4……p型Ga0.55Al0.45As
クラツド層、5……Ga0.86Al0.14As活性層、6……n型
Ga0.55Al0.45Asクラツド層、7……n型GaAsキヤツプ
層、8……n側オーミツク電極。
FIG. 1 is a structural exploded view of a semiconductor laser device showing one embodiment of the present invention. FIG. 2 is a schematic plan view showing an optical waveguide region of the semiconductor laser of the present invention. FIG. 3 shows a semiconductor laser of the present invention, in which a groove width at the center of the device is shown.
Is a diagram showing the relationship between W 1 and Paruseshiyon incidence of elements. Figure 4 is a semiconductor laser of the present invention, showing the correlation between the horizontal beam divergence angle theta "the groove width W 2 and the active layer of the reflective surface near the device. 1 ...... p-type GaAs substrate ..., N-type GaAs current confinement layer, 3.
... Striped groove for optical waveguide, 4 ... P-type Ga 0.55 Al 0.45 As
Clad layer, 5 ... Ga 0.86 Al 0.14 As active layer, 6 ... n-type
Ga 0.55 Al 0.45 As cladding layer, 7 ... n-type GaAs cap layer, 8 ... n-side ohmic electrode.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平坦な形状をもつ半導体活性層の両側を、
活性層よりも禁制帯幅が大きく、かつ屈折率の小さな半
導体クラツド層でサンドウイツチした構造を有し、少な
くとも一方のクラツド層の厚さが、光導波部において、
その外側よりも厚くなつているような、ストライプ状凸
形状、あるいは逆凸形状を有し、かつ該クラツド層のス
トライプ状凸形状、あるいは逆凸形状の外側の領域に該
クラツド層と反対導電型の半導体電流狭窄層を有する半
導体レーザ素子において、該ストライプ状凸形状、ある
いは逆凸形状の幅が半導体レーザ素子の少なくとも光ビ
ーム取出側の反射面近傍で広くなつており、かつ、その
変化がなめらかであることを特徴とする、半導体レーザ
素子。
1. A semiconductor active layer having a flat shape on both sides,
The forbidden band width is larger than the active layer, and it has a structure sandwiched by a semiconductor cladding layer having a small refractive index, and the thickness of at least one of the cladding layers is
It has a stripe-shaped convex shape or an inverted convex shape that is thicker than the outside, and has a conductive type opposite to the clad layer in a region outside the stripe-shaped convex shape or the inverted convex shape of the clad layer. In the semiconductor laser device having the semiconductor current confinement layer of the above, the width of the stripe-shaped convex shape or the reverse convex shape is wide at least near the reflection surface on the light beam extraction side of the semiconductor laser device, and the change is smooth. A semiconductor laser device, characterized in that:
【請求項2】第Iの導電型の半導体基板上に第II導電型
の第1半導体電流狭窄層を形成した後、光導波部となる
べきところに沿つて該半導体基板まで達するような単一
のストライプ状溝を形成し、この上に、第I導電型の第
2半導体クラツド層、第3半導体活性層,第II導電型の
第4半導体を形成した半導体レーザ素子において、該ス
トライプ状溝の幅が、レーザ素子の少なくとも光ビーム
取出側の反射面近傍で広くなつており、かつ活性層は全
域にわたつてほぼ平坦な形状を有しておることを特徴と
する特許請求の範囲第1項記載の半導体レーザ素子。
2. After forming a first semiconductor current confinement layer of the second conductivity type on a semiconductor substrate of the first conductivity type, a single semiconductor current confinement layer reaching the semiconductor substrate along a portion to be an optical waveguide portion. In a semiconductor laser device in which a second semiconductor cladding layer of the first conductivity type, a third semiconductor active layer, and a fourth semiconductor of the second conductivity type are formed thereon, 2. The device according to claim 1, wherein the width is wide at least in the vicinity of the reflection surface on the light beam extraction side of the laser element, and the active layer has a substantially flat shape over the entire area. 14. The semiconductor laser device according to claim 1.
【請求項3】半導体レーザ素子中央部の溝幅が3.5±1
μm、光ビーム取出側の反射面近傍の溝幅が4μm以上
であることを特徴とする特許請求の範囲第2項記載の半
導体レーザ素子。
3. The groove width of the central portion of the semiconductor laser device is 3.5 ± 1.
3. The semiconductor laser device according to claim 2, wherein the groove width in the vicinity of the reflection surface on the light beam extraction side is 4 μm or more.
JP62297547A 1987-11-27 1987-11-27 Semiconductor laser device Expired - Lifetime JP2569087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297547A JP2569087B2 (en) 1987-11-27 1987-11-27 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297547A JP2569087B2 (en) 1987-11-27 1987-11-27 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH01140787A JPH01140787A (en) 1989-06-01
JP2569087B2 true JP2569087B2 (en) 1997-01-08

Family

ID=17847951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297547A Expired - Lifetime JP2569087B2 (en) 1987-11-27 1987-11-27 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2569087B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903391B2 (en) 2003-09-10 2005-06-07 Fuji Photo Film Co., Ltd. Solid state image pickup device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195722A (en) * 1986-02-20 1987-08-28 Hitachi Maxell Ltd Magnetic recording medium
JPH01132191A (en) * 1987-08-04 1989-05-24 Sharp Corp Semiconductor laser element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195722A (en) * 1986-02-20 1987-08-28 Hitachi Maxell Ltd Magnetic recording medium
JPH01132191A (en) * 1987-08-04 1989-05-24 Sharp Corp Semiconductor laser element

Also Published As

Publication number Publication date
JPH01140787A (en) 1989-06-01

Similar Documents

Publication Publication Date Title
JPH0669111B2 (en) Self-aligned rib waveguide high power laser
JP3153727B2 (en) Super luminescent diode
JP2786636B2 (en) Super-light emitting diode with embedded heterogeneous structure
US6606443B2 (en) Optical transmission device
US6088378A (en) Ring cavity type surface emitting semiconductor laser and fabrication method thereof
JPS5940592A (en) Semiconductor laser element
JPH08330671A (en) Semiconductor optical element
JPH0722695A (en) Self-excited oscillation type semiconductor laser element
JP4106210B2 (en) Optical semiconductor device
JP2003133638A (en) Distributed feedback semiconductor laser element and laser module
JPH08220358A (en) Waveguide type optical element
JP2569087B2 (en) Semiconductor laser device
JPH0118591B2 (en)
JP3061169B2 (en) Semiconductor laser
JPH06196810A (en) Semiconductor laser element
JPS5861695A (en) Semiconductor laser element
JPH0671121B2 (en) Semiconductor laser device
JPH0951146A (en) Ridge-type semiconductor optical element and manufacture thereof
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JPH0231476A (en) Semiconductor laser element
JPS59184585A (en) Semiconductor laser of single axial mode
JPH0252869B2 (en)
JPH1079555A (en) Surface-emitting laser
JPH02213186A (en) Semiconductor laser device
JPH01132189A (en) Semiconductor laser element and manufacture thereof