JP2567818Y2 - Phase adjustment transformer - Google Patents

Phase adjustment transformer

Info

Publication number
JP2567818Y2
JP2567818Y2 JP3037692U JP3037692U JP2567818Y2 JP 2567818 Y2 JP2567818 Y2 JP 2567818Y2 JP 3037692 U JP3037692 U JP 3037692U JP 3037692 U JP3037692 U JP 3037692U JP 2567818 Y2 JP2567818 Y2 JP 2567818Y2
Authority
JP
Japan
Prior art keywords
transformer
phase
winding
output
transformers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3037692U
Other languages
Japanese (ja)
Other versions
JPH0582033U (en
Inventor
秀明 永吉
栄博 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Electric Mfg Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP3037692U priority Critical patent/JP2567818Y2/en
Publication of JPH0582033U publication Critical patent/JPH0582033U/en
Application granted granted Critical
Publication of JP2567818Y2 publication Critical patent/JP2567818Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、三相入力より単相出力
の電圧位相を調整する位相調整変圧器に関すものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase adjusting transformer for adjusting a voltage phase of a single-phase output from a three-phase input.

【0002】[0002]

【従来の技術】3相を入力して、単相出力の位相を調整
する位相調整変圧器の従来例を図2および図3に示す。
図2は三角結線を用いた場合の結線および電圧ベクトル
図であり、一次巻線1、2を三角結線とし、基準とする
相の一次巻線1と同相の二次巻線3に、他の2相の二次
位相調整用巻線4を直列に接続する。この結線により二
次端子に出力される電圧ベクトルは、位相角θずれた電
圧ベクトル5のようになり、2次側端子より出力され
る。図3は星形結線を用いた場合の結線および電圧ベク
トル図であり、一次巻線1、2を星形結線とし、基準と
する2相の二次巻線3に他の1相の二次位相調整用巻線
4を直列に接続する。また、この場合磁界のバランスを
保つために、各相を三角結線した安定巻線6が必要であ
る。この結線により基準とする2相の線間電圧ベクトル
7は位相角θずれた電圧ベクトル5のようになり、2次
側端子より出力される。
2. Description of the Related Art FIGS. 2 and 3 show a conventional example of a phase adjusting transformer for inputting three phases and adjusting the phase of a single-phase output.
FIG. 2 is a connection diagram and a voltage vector diagram in the case of using the triangular connection. Two-phase secondary phase adjusting windings 4 are connected in series. The voltage vector output to the secondary terminal by this connection becomes like the voltage vector 5 shifted in phase angle θ, and is output from the secondary terminal. FIG. 3 is a connection diagram and a voltage vector diagram in the case of using the star connection, in which the primary windings 1 and 2 are formed in a star connection, and the reference two-phase secondary winding 3 is connected to another one-phase secondary The phase adjustment windings 4 are connected in series. In this case, in order to maintain the balance of the magnetic field, a stable winding 6 in which each phase is triangularly connected is required. With this connection, the reference two-phase line voltage vector 7 becomes like the voltage vector 5 shifted in phase angle θ, and is output from the secondary terminal.

【0003】[0003]

【考案が解決しようとする課題】図2に示した三角結線
を用いた場合と、図3に示した星形結線を用いた場合の
いずれかにおいても単相変圧器が3台必要となる。この
ため、位相調整変圧器としては巻線容量が大きくなり、
重量、体積が大きくなるため大きな設置スペースを必要
とした。さらに電線などの材料費も大きく、不経済であ
った。そこで、本考案は、位相調整変圧器において、巻
線容量が小さくなるように結線したものである。
The three single-phase transformers are required in either the case where the triangular connection shown in FIG. 2 is used or the case where the star connection shown in FIG. 3 is used. For this reason, the winding capacity becomes large as a phase adjustment transformer,
Since the weight and volume are large, a large installation space is required. In addition, the cost of materials such as electric wires was large and uneconomical. Therefore, in the present invention, the phase adjustment transformer is connected so that the winding capacity is reduced.

【0004】[0004]

【課題を解決するための手段】本考案は、2台の変圧器
を使用して、このうち1台の変圧器(以下A変圧器とい
う)の3相側巻線は入力回路電圧の100%を印加で
き、その50%に相当する箇所に口出しを設け、他の1
台の変圧器(以下B変圧器という)の3相側巻線は入力
回路電圧の√3/2を印加でき、該2台の変圧器の3相
側の接続は、A変圧器の50%の口出しと、B変圧器の
3相側巻線の一端を接続し、B変圧器の他端およびA変
圧器の両端を3相電源に接続する。また、単相側巻線は
必要な位相角度に応じて複数の口出しを設けると共に、
単相側はA、B双方の変圧器の巻線の一部もしくは全部
が直列接続されるように、A変圧器の一端とB変圧器の
口出し1つを接続し、B変圧器の残りの口出し、あるい
は一端のいずれか1つとA変圧器の他端を出力端とし
て、入力側の単相と出力側の位相を変換させるようにし
た。
According to the present invention, two transformers are used, and a three-phase winding of one transformer (hereinafter, referred to as an A transformer) has 100% of the input circuit voltage. Can be applied, and a lead is provided at a position corresponding to 50% of the
The three-phase winding of two transformers (hereinafter referred to as B transformer) can apply で き 3/2 of the input circuit voltage, and the three-phase connection of the two transformers is 50% of the A transformer. And one end of the three-phase winding of the B transformer are connected, and the other end of the B transformer and both ends of the A transformer are connected to a three-phase power supply. In addition, the single-phase side winding is provided with a plurality of leads according to the required phase angle,
On the single-phase side, one end of the A transformer and one lead of the B transformer are connected so that a part or all of the windings of both the A and B transformers are connected in series, and the other end of the B transformer is connected. A single phase on the input side and a phase on the output side are converted by using one of the output or one end and the other end of the A transformer as an output end.

【0005】[0005]

【作用】この考案の結線を用いて構成された位相調整器
は、巻線容量が小さくなるため、重量、体積が小さくな
り、設置スペースの縮小化が図れる。また材料費の節減
もできるため、経済的になる。
The phase adjuster constructed by using the connection according to the present invention has a small winding capacity, so that the weight and volume are reduced, and the installation space can be reduced. In addition, the material cost can be reduced, so that it is economical.

【0006】[0006]

【実施例】図1は本考案の一実施例を示し、3相入力よ
り単相出力の位相を調整する、2台の変圧器の結線図で
ある。三相入力側はA変圧器9の一次巻線1とB変圧器
10の一次巻線2を従来のスコット結線と同様に接続す
る。すなわち、入力回路電圧の100%を印加できる、
A変圧器の一次巻線1の50%の中間口出し11と、入
力回路電圧の86.6%に相当する巻線を有する、B変
圧器の一次巻線2の一端を接続する。そして、B変圧器
の一次巻線2の他端と、A変圧器の一次巻線1の両端を
3相電源8に接続する。単相出力側は、基準とするA変
圧器の二次巻線3に、これに対して電圧ベクトルが直角
となる、B変圧器の二次位相調整用巻線4の一部或いは
全部を直列に接続することにより、位相の調整を行なう
ことができる。その結線は、B変圧器の二次位相調整用
巻線4に、必要な位相角に応じて複数の口出しを設け、
その口出しのうちの一つ12とA変圧器の二次巻線3の
一端を接続する。そして、B変圧器の二次位相調整用巻
線4の残りの口出し13、あるいは一端のいずれか一つ
と、A変圧器の二次巻線3の他端を出力端とする。
1 shows an embodiment of the present invention, and is a connection diagram of two transformers for adjusting the phase of a single-phase output from a three-phase input. On the three-phase input side, the primary winding 1 of the A transformer 9 and the primary winding 2 of the B transformer 10 are connected in the same manner as the conventional Scott connection. That is, 100% of the input circuit voltage can be applied.
A 50% intermediate lead 11 of the primary winding 1 of the A transformer is connected to one end of a primary winding 2 of the B transformer having a winding corresponding to 86.6% of the input circuit voltage. Then, the other end of the primary winding 2 of the B transformer and both ends of the primary winding 1 of the A transformer are connected to the three-phase power supply 8. The single-phase output side is connected in series to the secondary winding 3 of the A transformer as a reference, and part or all of the secondary phase adjusting winding 4 of the B transformer, the voltage vector of which is perpendicular to the secondary winding 3. , The phase can be adjusted. In the connection, a plurality of leads are provided on the secondary phase adjusting winding 4 of the B transformer according to a required phase angle,
One of the leads 12 is connected to one end of the secondary winding 3 of the A transformer. Then, one of the remaining lead 13 or one end of the secondary phase adjusting winding 4 of the B transformer and one end of the secondary winding 3 of the A transformer are set as output terminals.

【0007】[0007]

【考案の効果】位相調整変圧器としての重量、大きさ、
材料費は、巻線容量に左右されるので、本考案の効果
を、従来品との巻線容量の比較で示す。3相入力およ
び、単相出力の電圧をVとし、電流をIとする。また、
位相調整角度の最大値をθとし、以下に、従来品と本考
案の巻線容量の比較を示す。まず、本考案の巻線容量
は、図1における各部についての容量の和より求める。
各部の巻線容量は、 二次巻線3:VI・・・(1) 二次巻線4:VItanθ・・・(2) 一次巻線2:VItanθ・・・(3) 一次巻線1:VI√(1+tan2θ/3)・・・(4) であり、(1)から(4)の合計より全体の巻線容量
は、 P1=VI(1+2tanθ+√(1tan2θ/3)・・・(5) で表される。次に従来品のうち、三角結線を用いたもの
の巻線容量は、図2における各部の容量の和より求め
る。各部の巻線容量は、 一次巻線1、二次巻線3:VI×2・・・(6) 一次巻線2、二次巻線4:VItanθ×4・・・(7) であり、(6)、(7)の合計より全体の巻線容量は、 P2=VI(2+4tanθ)・・・(8) で表される。また、従来品のうち星形結線を用いたもの
の巻線容量は、図3における各部の容量の和より求め
る。各部の巻線容量は、 二次巻線3:VI/√3×2=2VI/√3・・・(9) 二次巻線4:VItanθ・・・(10) 安定巻線6:VItanθ/3×3=VItanθ・・・(11) 一次巻線1:2VItanθ/3・・・(12) 一次巻線2:VI/√3×√(1+tan2θ/3)×2 =2VI/√3×√(1+tan2θ/3)・・・(13) であり、(9)から(14)の合計より全体の巻線容量
は、 P3=VI(2/√3+8tanθ/3+2/√3×√(1+tan2θ/3) )・・・(14) で表される。ここで、例として位相調整角度の最大値θ
=30°とした場合の各タイプの巻線容量は、本考案の
巻線容量P1=3.21VI、三角結線の巻線容量P2
4.31VI(P1の1.34倍)、星形結線の巻線容
量P3=3.75VI(P1の1.17倍)である。こ
のように、変圧器容量が同等の場合、本考案のように結
線することにより巻線容量を小さくすることができる。
したがって、重量、大きさ、材料費いずれも従来より小
さくなるため、省スペースができ、また経済的になる。
[Effect of the invention] Weight and size as a phase adjustment transformer
Since the material cost depends on the winding capacity, the effect of the present invention is shown by comparing the winding capacity with the conventional product. The voltage of the three-phase input and the single-phase output is V, and the current is I. Also,
The maximum value of the phase adjustment angle is defined as θ, and the comparison between the conventional product and the winding capacity of the present invention is shown below. First, the winding capacity of the present invention is obtained from the sum of the capacities of the respective parts in FIG.
The winding capacity of each part is as follows: Secondary winding 3: VI (1) Secondary winding 4: VItan θ (2) Primary winding 2: VItan θ (3) Primary winding 1: VI√ (1 + tan 2 θ / 3) (4), and the total winding capacity from the sum of (1) to (4) is P 1 = VI (1 + 2 tan θ + √ (1 tan 2 θ / 3) · (5) Next, among the conventional products, the winding capacitance of the one using the triangular connection is obtained from the sum of the capacitances of the respective parts in FIG. , Secondary winding 3: VI × 2 (6) primary winding 2, secondary winding 4: VItanθ × 4 (7), and the total is obtained from the sum of (6) and (7). the winding capacity, is expressed by P 2 = VI (2 + 4tanθ ) ··· (8). Further, the winding capacity despite using a star connection of the conventional products, put 3 (9) Secondary winding 3: VItan θ (10) Secondary winding 3: VI / √3 × 2 = 2 VI / √3 (9) Secondary winding 4: VItan θ (10) Stable winding 6: VItan θ / 3 × 3 = VItan θ (11) Primary winding 1: 2 VItan θ / 3 (12) Primary winding 2: VI / {3 × √ (1 + tan 2 θ / 3) ) × 2 = 2 VI / √3 × √ (1 + tan 2 θ / 3) (13), and the total winding capacity is obtained from the sum of (9) to (14) as P 3 = VI (2 / √3 + 8tan θ / 3 + 2 / √3 × √ (1 + tan 2 θ / 3)) (14) Here, as an example, the maximum value θ of the phase adjustment angle
= 30 °, the winding capacity of each type is the winding capacity P 1 of the present invention = 3.21 VI, and the winding capacity of triangular connection P 2 =
(1.34 times the P 1) 4.31VI, which is a star-connected winding capacity P 3 = 3.75VI (1.17 fold P1). As described above, when the transformer capacities are the same, the winding capacity can be reduced by connecting as in the present invention.
Therefore, the weight, size, and material cost are all smaller than before, so that space can be saved and the cost is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の実施例を示す結線図である。FIG. 1 is a connection diagram showing an embodiment of the present invention.

【図2】従来の位相調整変圧器の結線図である。FIG. 2 is a connection diagram of a conventional phase adjustment transformer.

【図3】従来の位相調整変圧器の結線図である。FIG. 3 is a connection diagram of a conventional phase adjustment transformer.

【符号の説明】 1 (基準とする相の)一次巻線 2 一次巻線 3 二次巻線 4 二次位相調整用巻線 5 (位相角θずれた)電圧ベクトル 6 安定巻線 7 線間電圧ベクトル 8 3相電源 9 A変圧器 10 B変圧器 11 中間口出し 12 口出しのうち1つ 13 残りの口出し[Description of Signs] 1 Primary winding (of reference phase) 2 Primary winding 3 Secondary winding 4 Secondary phase adjustment winding 5 Voltage vector (shifted in phase angle θ) 6 Stable winding 7 Line-to-line Voltage vector 8 Three-phase power supply 9 A transformer 10 B transformer 11 Intermediate tap 12 One of taps 13 Remaining taps

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 3相を入力して単相を出力する変圧器の
組み合わせにおいて、2台の変圧器により構成され1台
の変圧器(以下A変圧器という)の3相側巻線は入力回
路電圧の100%を印加でき、その50%に相当する箇
所に口出しを設け、他の1台の変圧器(以下B変圧器と
いう)の3相側巻線は入力回路電圧の√3/2を印加で
き、該2台の変圧器の3相側の接続は、A変圧器の50
%の口出しと、B変圧器の3相側巻線の一端を接続し、
B変圧器の他端およびA変圧器の両端を3相電源に接続
し、また、単相側巻線は必要な位相角度に応じて複数の
口出しを設けると共に、単相側はA、B双方の変圧器の
巻線の一部もしくは全部が直列接続されるように、A変
圧器の一端とB変圧器の口出し1つを接続し、B変圧器
の残りの口出し、あるいは、一端のいずれか1つとA変
圧器の他端を出力端として、入力側の単相と出力側の位
相を変換されるようにしたことを特長とする位相調整変
圧器。
In a combination of transformers that input three phases and output a single phase, a three-phase winding of one transformer (hereinafter, referred to as an A transformer) constituted by two transformers is an input. 100% of the circuit voltage can be applied, and a lead is provided at a position corresponding to 50% of the circuit voltage. The three-phase winding of another transformer (hereinafter referred to as a B transformer) is √3 / 2 of the input circuit voltage And the connection on the three-phase side of the two transformers is 50 A of the A transformer.
% And one end of the three-phase winding of the B transformer are connected,
The other end of the B transformer and both ends of the A transformer are connected to a three-phase power source. The single-phase winding is provided with a plurality of leads according to the required phase angle. One end of the A transformer is connected to one end of the B transformer so that a part or all of the windings of the transformer are connected in series, and the other end of the B transformer is connected to either end. A phase adjustment transformer characterized in that a single phase on the input side and a phase on the output side are converted by using one and the other end of the A transformer as output ends.
JP3037692U 1992-04-10 1992-04-10 Phase adjustment transformer Expired - Lifetime JP2567818Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037692U JP2567818Y2 (en) 1992-04-10 1992-04-10 Phase adjustment transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037692U JP2567818Y2 (en) 1992-04-10 1992-04-10 Phase adjustment transformer

Publications (2)

Publication Number Publication Date
JPH0582033U JPH0582033U (en) 1993-11-05
JP2567818Y2 true JP2567818Y2 (en) 1998-04-08

Family

ID=12302165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037692U Expired - Lifetime JP2567818Y2 (en) 1992-04-10 1992-04-10 Phase adjustment transformer

Country Status (1)

Country Link
JP (1) JP2567818Y2 (en)

Also Published As

Publication number Publication date
JPH0582033U (en) 1993-11-05

Similar Documents

Publication Publication Date Title
US6335872B1 (en) Nine-phase transformer
US6249443B1 (en) Nine-phase transformer
US5781428A (en) Transformer for 12-pulse series connection of converters
US4792740A (en) Three-phase induction motor with single phase power supply
JP2536813B2 (en) Three-phase autotransformer
JP3192168B2 (en) Optimized 18-pulse AC / DC or DC / AC converter device
JP3598126B2 (en) Three-phase load voltage phase adjustment transformer
JP2567818Y2 (en) Phase adjustment transformer
JP5026029B2 (en) Current balancer and low voltage distribution system
JPH07106066B2 (en) Parallel connection circuit of single-phase inverter
US4236108A (en) Variable phase-shifting transformer network
US3440516A (en) Transformer and capacitor apparatus for three-phase electrical systems
JPH0462444B2 (en)
JPS5834922B2 (en) Tansoutanmakihen Atsukino Denatsuchiyouseihoshiki
JP3071787B1 (en) Three-phase to single-phase converter.
JP2646744B2 (en) Wiring of phase adjustment transformer
JPH08335520A (en) Scott connected transformer
JP2591843Y2 (en) Single-phase transformer and mobile power generator using the transformer
US2667617A (en) Polyphase transformer system with grounded neutral
JPS6244029A (en) Balancer circuit for parallel operation of transformer
JPH087613Y2 (en) Transformer equipment
JP3171488B2 (en) Transformer for cyclo converter
JPH0739212Y2 (en) Autotransformer
JP2773096B2 (en) Power distribution equipment
JPH0744828B2 (en) Two-phase power load balancer