JP2556350B2 - Method for manufacturing NA conversion optical fiber - Google Patents

Method for manufacturing NA conversion optical fiber

Info

Publication number
JP2556350B2
JP2556350B2 JP63126925A JP12692588A JP2556350B2 JP 2556350 B2 JP2556350 B2 JP 2556350B2 JP 63126925 A JP63126925 A JP 63126925A JP 12692588 A JP12692588 A JP 12692588A JP 2556350 B2 JP2556350 B2 JP 2556350B2
Authority
JP
Japan
Prior art keywords
core
fiber
optical fiber
refractive index
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63126925A
Other languages
Japanese (ja)
Other versions
JPH01298037A (en
Inventor
末広 宮本
長 福田
大一郎 田中
克之 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63126925A priority Critical patent/JP2556350B2/en
Publication of JPH01298037A publication Critical patent/JPH01298037A/en
Application granted granted Critical
Publication of JP2556350B2 publication Critical patent/JP2556350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/18Axial perturbations, e.g. in refractive index or composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/40Monitoring or regulating the draw tension or draw rate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/72Controlling or measuring the draw furnace temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、コアの屈折率が長さ方向に変化してなる
NA変換型の光ファイバの製造方法に関するもので、異NA
の光部品や光導波路およびファイバとの結合用として好
適な長さ数百cm程度のものを提供する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention comprises a core having a refractive index changed in the longitudinal direction.
It relates to the manufacturing method of NA conversion type optical fiber.
Provided is one having a length of about several hundred cm, which is suitable for coupling with the optical component, the optical waveguide, and the fiber.

(従来の技術) この種の光ファイバの製法としては、主原料ガスとし
てのSiCl4とドーパントガスとしてのGeCl4とを酸水素炎
内に供給して火炎加水分解させてGeをドーパントとして
含むSiO2ガラス微粒子を生成させて、これを棒状ロッド
の先端に多孔質ガラスプリフォームとして堆積させる際
に、所定時間毎にドーパントガスとしてのGeCl4の量を
変えることにより長さ方向に屈折率が変化する多孔質ガ
ラスプリフォームとなし、このプリフォームを透明ガラ
ス化した後線引きして長さ方向に屈折率が変化するNA変
換型ファイバとしていた。
(Prior Art) As a manufacturing method of this kind of optical fiber, SiCl 4 as a main raw material gas and GeCl 4 as a dopant gas are supplied into an oxyhydrogen flame to be flame-hydrolyzed and SiO containing Ge as a dopant. (2) When fine glass particles are generated and deposited as a porous glass preform on the tip of a rod-shaped rod, the refractive index changes in the lengthwise direction by changing the amount of GeCl 4 as a dopant gas at predetermined time intervals. The porous glass preform was prepared, and this preform was made into transparent glass and then drawn to obtain an NA conversion fiber whose refractive index changed in the length direction.

(発明が解決しょうとする課題) しかしこのような方法では、NAの変化はプリフォーム
段階であって、その後線引きしてファイバ化してしまう
と屈折率差を長さ方向で0.3〜1%変化させるためには1
0km位の長さが必要であり、短いものを得ることができ
なかった。
(Problems to be solved by the invention) However, in such a method, the change in NA is at the preform stage, and if the fiber is drawn by drawing it, the refractive index difference is changed by 0.3 to 1% in the length direction. For 1
I needed a length of about 0km, so I could not get a short one.

(課題を解決するための手段) この発明は、以上の観点からコア用ガラスの外側にそ
れよりも低い軟化温度のクラッド用ガラスが形成されて
なる光ファイバ用プリフォームを用意し、これを線引き
張力を所定周期で変えつつ線引きするようにしたもので
ある。線引き張力を変える手段としては、具体的には例
えば線引き速度一定の下に線引き温度を変えることがあ
げられる。
(Means for Solving the Problem) From the above viewpoints, the present invention provides an optical fiber preform in which a glass for cladding having a softening temperature lower than that of the glass for core is formed, and draws this. The drawing is performed while changing the tension in a predetermined cycle. As a means for changing the drawing tension, specifically, for example, changing the drawing temperature while keeping the drawing speed constant.

(作用) 一般に媒質の屈折率は応力によって変化するものであ
り、コアの軟化温度に比べてクラッドのそれをかなり低
くなるような組成にし、かつ線引き温度をコアの軟化温
度と等しいかその前後の温度にして線引きすると、クラ
ッドガラスは完全に軟化しているので張力は全てコアに
かかることになる。そしてコアに応力が加わったままで
クラッドが冷却するとコアの応力が残留する。その結果
コアは引張られた状態のままであるのでその屈折率は下
がる。線引き温度がコアとクラッドの双方の軟化温度よ
りも高い場合にはコアにも応力はかからないので屈折率
は変わらない。かくしてコアに応力がかかり、クラッド
に応力がかからない温度で線引きしてやればコアの屈折
率が長さ方法に変化するファイバが得られる。
(Operation) Generally, the refractive index of the medium changes with stress, and the composition is such that the cladding is much lower than the softening temperature of the core, and the drawing temperature is equal to or around the softening temperature of the core. When the wire is drawn at a temperature, the clad glass is completely softened and all the tension is applied to the core. When the clad is cooled with the stress applied to the core, the stress of the core remains. As a result, the core remains in its tensioned state and its refractive index decreases. When the drawing temperature is higher than the softening temperatures of both the core and the clad, no stress is applied to the core and the refractive index does not change. Thus, if a fiber is drawn at a temperature at which stress is applied to the core and stress is not applied to the clad, a fiber whose refractive index changes according to the length method can be obtained.

因みにコア材が純粋シリカ、クラッド材がFドープシ
リカ(Δ=0.7%)からなるプリフォームを用意し、そ
の線引き温度とコア/クラッドの比屈折率差Δの関係を
調べたところ第3図に示すグラフのごとくであった。こ
のグラフから明らかなように線引き温度が高まるにつれ
てコア/クラッドの比屈折率差は大きくなり、100℃の
変化に対しΔが0.2%変化していることがわかる。
Incidentally, a preform made of pure silica as the core material and F-doped silica as the clad material (Δ = 0.7%) was prepared, and the relationship between the drawing temperature and the relative refractive index difference Δ of the core / clad was examined. It was like a graph. As is clear from this graph, the relative refractive index difference between the core and the clad increases as the drawing temperature increases, and Δ changes by 0.2% with respect to a change of 100 ° C.

(実施例) 第1図は、この発明方法に用いられる装置の概略図で
ある。図において1は回転かつ上下動自在に支承された
コア、クラッド型の光ファイバ用プリフォームで、コア
の軟化温度の方がクラッドのそれよりも高くなされてい
る。2はこのプリフォーム1の下端を照射してプリフォ
ームをファイバ化するための熱源で、CO2レーザ3、CO2
レーザ3の光パワーを制御するためのAO変換器4、コリ
メータレンズ5、フォーカシングレンズ6からなってい
る。7はプロフォーム1をファイバ10に線引きするため
のキャプスタン、8はファイバ10を被覆するための熱硬
化型樹脂や紫外線硬化型樹脂が入れられたポット、9は
ファイバ10上に被覆された樹脂を硬化させるための装置
で抵抗加熱炉や紫外線ランプ等からなる。なお11はファ
イバ10を巻きとるためのボビンである。以上の構成にお
いて、プリフォーム1としてVAD法で作成したGeO2ドー
プ石英ロッド(Δ=1.0%)にパイレックスガラスをジ
ャケットして、コア用ロッド径1mm,クラッド用外径12.5
mmとしたプリフォーム1の下端にCO2レーザ3を照射し
てキャプスタン7により線引き速度1m/分で引きとりボ
ビン8に巻きとった。その際変換器4を動作させて線引
き温度を10分周期で2200〜1900℃(線引き張力に換算す
ると10分周期で1g〜20g)まで変化させた。なおポット
8には紫外線硬化型樹脂を入れ、硬化装置9には紫外線
ランプを用いた。かくして得られたファイバは、コア径
10μm、クラッド径125μm、被覆厚37.5μm、長さ方
向の屈折率変化が第2図に示すように10m周期で0.3〜1.
0%変化したものであった。このファイバを10m毎に切断
し、半導体レーザ用のピッグテールとして用いたところ
結合効率が約55%であり優れたものであった。
(Example) FIG. 1 is a schematic view of an apparatus used in the method of the present invention. In the figure, reference numeral 1 denotes a core-clad type optical fiber preform that is rotatably and vertically movable, and the softening temperature of the core is higher than that of the clad. 2 is a heat source for the fiber of the preform by irradiating the lower end of the preform 1, CO 2 lasers 3, CO 2
It is composed of an AO converter 4 for controlling the optical power of the laser 3, a collimator lens 5, and a focusing lens 6. 7 is a capstan for drawing the proform 1 onto the fiber 10, 8 is a pot containing a thermosetting resin or an ultraviolet curable resin for coating the fiber 10, and 9 is a resin coated on the fiber 10. This is a device for curing the resin and is composed of a resistance heating furnace, an ultraviolet lamp, and the like. Reference numeral 11 is a bobbin for winding the fiber 10. In the above configuration, a GeO 2 -doped quartz rod (Δ = 1.0%) made by the VAD method as Preform 1 was jacketed with Pyrex glass, and the core rod diameter was 1 mm and the cladding outer diameter was 12.5.
The lower end of the preform 1 having a size of mm was irradiated with a CO 2 laser 3 and was taken up by a capstan 7 at a drawing speed of 1 m / min and wound on a bobbin 8. At that time, the converter 4 was operated to change the drawing temperature to 2200 to 1900 ° C. in a 10-minute cycle (converted to a drawing tension, 1 g to 20 g in a 10-minute cycle). An ultraviolet curable resin was put in the pot 8 and an ultraviolet lamp was used as the curing device 9. The fiber thus obtained has a core diameter
10 μm, clad diameter 125 μm, coating thickness 37.5 μm, change in refractive index in the length direction is 0.3-1 in 10 m cycle as shown in FIG.
It was a 0% change. When this fiber was cut every 10 m and used as a pigtail for a semiconductor laser, the coupling efficiency was about 55%, which was excellent.

(効果) この発明は、以上のようにコア用ガラスロッドの上に
このコアの軟化温度よりも低い軟化温度のクラッディン
グ用ガラス層を設けたプリフォームを線引き張力を変え
つつファイバ化するものであるから、コアに応力が加わ
った状態のままのものを得ることができ、以ってコアの
屈折率が長さ方向に周期的に変化するファイバを得るこ
とができる。
(Effect) As described above, the present invention forms a preform having a glass layer for cladding having a softening temperature lower than the softening temperature of the core on the glass rod for core into a fiber while changing the drawing tension. Therefore, it is possible to obtain a fiber in which the stress is applied to the core, and thus a fiber in which the refractive index of the core periodically changes in the length direction can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明方法に用いられる装置の概略図、第
2図は、この発明方法によって得られるファイバの長さ
方向における比屈折率差を示すグラフ、第3図は、線引
き温度に対する比屈折率差を示すグラフである。 図において、1:光ファイバプリフォーム、3:CO2レー
ザ、4:AO変換器。
FIG. 1 is a schematic view of an apparatus used in the method of the present invention, FIG. 2 is a graph showing a relative refractive index difference in the length direction of a fiber obtained by the method of the present invention, and FIG. 3 is a ratio with respect to a drawing temperature. It is a graph which shows a refractive index difference. In the figure, 1: optical fiber preform, 3: CO 2 laser, 4: AO converter.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コア用ガラスの外側にそれよりも低い軟化
温度のクラッド用ガラスが形成されてなる光ファイバ用
プリフォームを、線引き張力を所定周期で変えつつ線引
きすることを特徴とするNA変換光ファイバの製造方法。
1. An NA conversion, wherein an optical fiber preform having a glass for cladding having a softening temperature lower than that of the glass for core is formed on the outside of the core glass while changing the drawing tension at a predetermined cycle. Optical fiber manufacturing method.
JP63126925A 1988-05-26 1988-05-26 Method for manufacturing NA conversion optical fiber Expired - Lifetime JP2556350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63126925A JP2556350B2 (en) 1988-05-26 1988-05-26 Method for manufacturing NA conversion optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63126925A JP2556350B2 (en) 1988-05-26 1988-05-26 Method for manufacturing NA conversion optical fiber

Publications (2)

Publication Number Publication Date
JPH01298037A JPH01298037A (en) 1989-12-01
JP2556350B2 true JP2556350B2 (en) 1996-11-20

Family

ID=14947295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63126925A Expired - Lifetime JP2556350B2 (en) 1988-05-26 1988-05-26 Method for manufacturing NA conversion optical fiber

Country Status (1)

Country Link
JP (1) JP2556350B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993002018A1 (en) * 1991-07-15 1993-02-04 The University Of Sydney Light transmitting device having regions of differing refractive index
AUPM547194A0 (en) * 1994-05-06 1994-06-02 University Of Sydney, The Variable property light transmitting device
US5851259A (en) * 1996-10-30 1998-12-22 Lucent Technologies Inc. Method for making Ge-Doped optical fibers having reduced brillouin scattering
EP1239312A4 (en) * 1999-09-27 2005-09-21 Sumitomo Electric Industries Distribution management optical fiber, its manufacturing method, optical communication system employing the optical fiber and optical fiber base material
KR100438348B1 (en) * 2001-12-28 2004-07-02 주식회사 머큐리 Optical fiber having different refractive index directed to the length and to be fitted manufacturing method
JP2003337232A (en) * 2002-05-17 2003-11-28 Fuji Photo Film Co Ltd Optical transmitter and method and device for manufacturing the same

Also Published As

Publication number Publication date
JPH01298037A (en) 1989-12-01

Similar Documents

Publication Publication Date Title
US5647040A (en) Tunable optical coupler using photosensitive glass
JP2903185B2 (en) Achromatic fiber optic coupler and method of manufacturing the same
Schultz Fabrication of optical waveguides by the outside vapor deposition process
JP3263711B2 (en) Passive optical component and manufacturing method thereof
DE69805934D1 (en) Process for the production of preforms for optical waveguides with a segment core
JPH0447285B2 (en)
US6542690B1 (en) Chalcogenide doping of oxide glasses
JP2556350B2 (en) Method for manufacturing NA conversion optical fiber
JPWO2005049516A1 (en) Optical fiber bare wire drawing method, optical fiber strand manufacturing method, optical fiber strand
JPH06194540A (en) Fiber optic coupler and formation thereof
EP1183560A1 (en) Chalcogenide doping of oxide glasses
JP3745895B2 (en) Manufacturing method of base material for polarization optical fiber
JPH0310204A (en) Nonlinear optical fiber and its manufacture
JP2616087B2 (en) Manufacturing method of elliptical core type polarization maintaining optical fiber
Pal Optical communication fiber waveguide fabrication: A review
JPH01222206A (en) Production of functional optical fiber
CN112520999B (en) Method for preparing graded-index optical fiber by selectively volatilizing fiber core components
JPS6243932B2 (en)
JPH02145448A (en) Production of preform of optical fiber
JPH02275732A (en) As-s glass fiber having core clad structure
JP2002356343A (en) Optical fiber, method for producing the same and long- period fiber grating
JPH04342427A (en) Production of high-level oh group-containing silica glass
JPH038742A (en) Ge-as-s glass fiber having core-clad structure
JPH01215738A (en) Production of optical glass fiber having core-clad structure
JPH0532430A (en) Production of silica-based tapered light-guiding passage