JP2555505B2 - Metal oxide material - Google Patents

Metal oxide material

Info

Publication number
JP2555505B2
JP2555505B2 JP4072994A JP7299492A JP2555505B2 JP 2555505 B2 JP2555505 B2 JP 2555505B2 JP 4072994 A JP4072994 A JP 4072994A JP 7299492 A JP7299492 A JP 7299492A JP 2555505 B2 JP2555505 B2 JP 2555505B2
Authority
JP
Japan
Prior art keywords
metal oxide
present
oxide material
superconducting
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4072994A
Other languages
Japanese (ja)
Other versions
JPH0597435A (en
Inventor
透 田
玉樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP4072994A priority Critical patent/JP2555505B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP92302400A priority patent/EP0510806B1/en
Priority to EP96202762A priority patent/EP0760354B1/en
Priority to DE69219817T priority patent/DE69219817T2/en
Priority to AT92302400T priority patent/ATE153322T1/en
Priority to DE69232051T priority patent/DE69232051T2/en
Priority to AT96202762T priority patent/ATE205172T1/en
Publication of JPH0597435A publication Critical patent/JPH0597435A/en
Priority to US08/266,319 priority patent/US5512538A/en
Priority to US08/473,362 priority patent/US5583093A/en
Application granted granted Critical
Publication of JP2555505B2 publication Critical patent/JP2555505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超伝導を有する新規な金
属酸化物材料に関するものであり、特に、本発明は超伝
導を応用したセンサー、電子素子、コンピューター、医
療機器、マグネット、送電線、エネルギー機器及び電圧
標準等の各種分野で利用可能な金属酸化物材料に関す
る。尚、本発明は特にバルク材として利用する際に有効
であり、又、本発明の材料は、他の酸化物や金属との接
合や分散という形態においても利用することが可能であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel metal oxide material having superconductivity, and in particular, the present invention relates to sensors, electronic devices, computers, medical equipment, magnets, power transmission lines, which use superconductivity. The present invention relates to a metal oxide material that can be used in various fields such as energy equipment and voltage standards. The present invention is particularly effective when used as a bulk material, and the material of the present invention can also be used in the form of bonding or dispersion with another oxide or metal.

【0002】[0002]

【従来の技術】近年、相次いで発見された銅を含む酸化
物超伝導体は、従来知られていたニオブ系等の超伝導臨
界温度(Tc)を大きく上回るTcを持つ為、多くの分
野で応用研究が進められている。この銅を含む酸化物超
伝導体では、Bi系、Tl系、Pb系、Y系及びLa系
等が知られている。この様な銅を含む酸化物超伝導体の
なかで、Sr、Ln(Y又はランタノイド元素)、Cu
及び酸素からなる超伝導体としては、Japanese
Journal AppliedPhysics V
ol.26 L804(1987)、Solid St
ate Communications Vol.63
535(1987)、及び日本物理学会1990年秋
の分科会講演予稿集第3分冊243頁2p−PS−30
にある様にYSrCu超伝導体が知られてい
る。又、Chemistry of Material
s Vol.1331(1989)では、YSrCu
3−xMOy(M=Al、Fe、Co又はPbで、0.
4≦x≦1.0)の組成のものが知られている。
2. Description of the Related Art Oxide superconductors containing copper, which have been discovered one after another in recent years, have a Tc that greatly exceeds the conventionally known superconducting critical temperature (Tc) of niobium and the like. Applied research is underway. Bi-based, Tl-based, Pb-based, Y-based, La-based, and the like are known as the oxide superconductor containing copper. Among such copper-containing oxide superconductors, Sr, Ln (Y or lanthanoid element), Cu
And a superconductor consisting of oxygen, Japanese
Journal Applied Physics V
ol. 26 L804 (1987), Solid St
ate Communications Vol. 63
535 (1987), and Proceedings of the Autumn Meeting of the Physical Society of Japan, 1990, 3rd Volume, 243 pages, 2p-PS-30.
, YSr 2 Cu 3 O y superconductor is known. Also, Chemistry of Material
s Vol. 1331 (1989), YSr 2 Cu
3-x MOy (M = Al, Fe, Co or Pb, 0.
It is known that the composition is 4 ≦ x ≦ 1.0).

【0003】[0003]

【発明が解決しようとしている問題点】しかしながら、
前記Bi系、Tl系及びPb系等の超伝導材料は、比重
が7〜8g/cmと大きい為に、バルク材料としての
応用例(例えば、シールド材)に利用すると全体の重量
が大きくなってしまうという問題がある。又、従来例の
うち、Sr系123相の材料は比重が上記材料に比較し
て小さいが、不純物の多量の混入、合成の困難性及びT
cが低い(せいぜい20K程度)という問題がある。例
えば、Japanese Journal Appli
ed Physics Vol.26 L804(19
87)とSolid StateCommunicat
ions Vol.63 535(1987)の組成で
は、YSrCuで表される単相の良質な試料は
合成することが出来ず、SrCuO、SrCu
、YSrO、YCuO、SrCu
びSr1.75Cu5.13等が不純物として多く
析出し、使用に耐えられるものではなかった。即ち、S
r系123相の場合には、軽量化の点では満足し得て
も、合成物に占める超伝導材料の割合が極めて少なく使
用できないものであった。又、前記した日本物理学会1
990年秋の分科会講演予稿集第3分冊243頁の試料
は、70Kbar及び13800℃という一般的には得
られない特殊な装置により合成しており、応用するには
適さないものであった。又、この様な特殊な装置により
合成しても、抵抗率がゼロになる温度(ゼロ抵抗温度)
は20K程度であった。又、Chemistry of
Materials Vol.1331(1989)
の材料は、M=Co又はFeで超伝導を示すものの、ゼ
ロ抵抗温度も10K程度と低く、超伝導体積分率も2%
程度であり、超伝導材料としては使用に適さないもので
あった。
[Problems to be solved by the invention] However,
Since the Bi-based, Tl-based, and Pb-based superconducting materials have a large specific gravity of 7 to 8 g / cm 3 , the total weight of the superconducting materials increases when they are used in bulk material applications (for example, shield materials). The problem is that Further, among the conventional examples, the Sr-based 123 phase material has a smaller specific gravity than the above materials, but a large amount of impurities are mixed in, the synthesis is difficult, and the T
There is a problem that c is low (at most about 20K). For example, Japanese Journal Appli
Physics Vol. 26 L804 (19
87) and Solid State Communicat
ions Vol. With the composition of 63 535 (1987), a good single-phase sample represented by YSr 2 Cu 3 O y cannot be synthesized, and SrCuO 2 , Sr 2 Cu
O 3 , Y 2 SrO 4 , Y 2 CuO 5 , SrCu 2 O 2, Sr 1.75 Cu 3 O 5.13, and the like were deposited as impurities in large amounts, and were not usable. That is, S
In the case of the r-type 123 phase, although it was satisfactory in terms of weight reduction, the ratio of the superconducting material in the composite was extremely small and it could not be used. Also, the above-mentioned Physical Society of Japan 1
The sample of the 1993 Autumn Subcommittee Lecture Proceedings, Third Volume, page 243, was synthesized by a special apparatus of 70 Kbar and 13800 ° C., which is not generally available, and was not suitable for application. Also, the temperature at which the resistivity becomes zero (zero resistance temperature) even when synthesized with such a special device.
Was about 20K. Also, Chemistry of
Materials Vol. 1331 (1989)
Material has superconductivity when M = Co or Fe, but has a low zero resistance temperature of about 10K and a superconductor volume fraction of 2%.
However, it was not suitable for use as a superconducting material.

【0004】従って、本発明の目的は、この様な超高圧
の特殊な合成装置を用いることなく合成することが出来
る、良質で不純物の少ない超伝導材料を提供することに
ある。本発明の他の目的は、超伝導転移温度が高く、し
かも超伝導体積分率も大きい、超伝導材料として特性の
よい材料を提供することにある。又、前記したYBa
Cuをはじめとする現在安定に得られる銅酸化物
超伝導材料には、Bi系、Tl系及びPb系等が知られ
ているが、いずれの材料も比重が7〜8g/cmの範
囲であり、例えば、バルク材料としての応用例であるシ
ールド材に利用した場合にはかなりの重量になってしま
っていた。従って、本発明の別の目的は、これらの既存
の銅酸化物超伝導体よりも比重の軽い材料を提供するこ
とにある。更に、本発明の別の目的は、Bi系、Tl系
及びPb系等の様に、毒性の強い重金属を多量に含まな
い安全性の高い材料、及び、Y系の様に、原料に炭酸バ
リウム等の毒性のある原料を使用しない材料を提供する
ことにある。又、Y系の代表であるYBaCu
は、水分や水蒸気により容易にY、BaCO
びCuOに分解してしまう為、使用上や薄膜デバイス作
製上大きな問題点となっていた。従って、本発明の他の
目的は、水分や水蒸気により影響を受けにくい耐水性に
優れた材料を提供することにある。更に、YBaCu
では、高温時に酸素が抜けてしまい特性が劣化す
るという問題点があった。例えば、室温におけるYBa
Cuは、900℃ではyで表して1、重量変化
で表して2.4%の酸素が抜けてしまっていた。従っ
て、本発明の他の目的は、高温時に酸素が抜けにくい材
料を提供することにある。
Therefore, an object of the present invention is to provide a superconducting material of good quality and containing few impurities, which can be synthesized without using such a special synthesizer of ultrahigh pressure. Another object of the present invention is to provide a material having a high superconducting transition temperature and a large superconducting volume fraction, and having excellent characteristics as a superconducting material. In addition, the above-mentioned YBa 2
Currently known stable copper oxide superconducting materials such as Cu 3 O y are Bi-based, Tl-based, and Pb-based materials, but all have a specific gravity of 7 to 8 g / cm 3. When used as a shield material, which is an application example as a bulk material, the weight has been considerably increased. Therefore, another object of the present invention is to provide a material having a lower specific gravity than these existing copper oxide superconductors. Another object of the present invention is to provide a highly safe material that does not contain a large amount of highly toxic heavy metals such as Bi-based, Tl-based, and Pb-based materials, and barium carbonate as a raw material such as Y-based material. It is to provide materials that do not use toxic raw materials such as. In addition, YBa 2 Cu 3 O y, which is a representative of Y series,
Is easily decomposed into Y 2 O 3 , BaCO 3 and CuO by water and water vapor, which has been a serious problem in use and in manufacturing a thin film device. Therefore, another object of the present invention is to provide a material having excellent water resistance which is hardly affected by moisture or water vapor. Furthermore, YBa 2 Cu
In the case of 3 O y , there was a problem that oxygen was released at high temperature and the characteristics were deteriorated. For example, YBa at room temperature
2 Cu 3 O y had oxygen depleted at 900 ° C. of 1 in y and 2.4% in weight change. Therefore, another object of the present invention is to provide a material from which oxygen hardly escapes at high temperature.

【0005】[0005]

【問題点を解決する為の手段】上記の目的は以下の本発
明によって達成される。即ち、本発明は、組成式がLn
SrCu3−xReと表される金属酸化物材
料において、2.7≦a+b≦3.3、0.8≦a≦
1.2、6≦c≦9及び0.05≦x≦0.4であり、
且つ、LnがY元素及びランタノイド元素の元素群から
選ばれた1種類以上の元素又は原子団であることを特徴
とする金属酸化物材料であ。
The above objects can be achieved by the present invention described below. That is, in the present invention, the composition formula is Ln.
In the metal oxide material expressed as a Sr b Cu 3-x Re x O c, 2.7 ≦ a + b ≦ 3.3,0.8 ≦ a ≦
1.2, 6 ≦ c ≦ 9 and 0.05 ≦ x ≦ 0.4,
A metal oxide material, wherein Ln is one or more kinds of elements or atomic groups selected from the element group of Y element and lanthanoid element.

【0006】[0006]

【作用】本発明によれば、構成元素の組成比を選択する
ことによって、比重が5〜6g/cmと軽量であり、
しかも超伝導転移温度が20K以上、好ましくは25K
以上の金属酸化物材料が提供される。又、本発明の金属
酸化物材料は、一般的には超高圧下の条件でしか合成出
来なかったYSrCuと同類の構造を有するも
のであるが、1気圧のもとでも合成することが出来、且
つ、超伝導体としての特性をも向上させたものである。
このことは、Cuのサイトに置換する元素に特定の遷移
金属を選択し、且つ、置換量を最適化することによって
達成することが出来る。
According to the present invention, the specific gravity is as light as 5 to 6 g / cm 3 by selecting the composition ratio of the constituent elements,
Moreover, the superconducting transition temperature is 20K or higher, preferably 25K.
The above metal oxide materials are provided. Further, the metal oxide material of the present invention has a structure similar to that of YSr 2 Cu 3 O y which can be generally synthesized only under the condition of ultrahigh pressure, but the metal oxide material can be synthesized even under 1 atmospheric pressure. In addition, the characteristics as a superconductor can be improved.
This can be achieved by selecting a specific transition metal for the element substituting the Cu site and optimizing the substitution amount.

【0007】[0007]

【好ましい実施態様】本発明の金属酸化物材料は、前記
した組成を有する限りいずれのものでもよいが、本発明
において好適な材料としては、前記組成式において、a
=1、b=2であり、且つ、LnがY,Ho,Dy及び
Gdのいずれかである金属酸化物材料である。又、好適
な材料として結晶格子が正方晶若しくは斜方晶であり、
格子定数(c)が11Å以上12Å以下である上記の組
成の金属酸化物材料である。又、好適な材料は20ケル
ビン以上、特に好ましくは、25ケルビン以上の温度で
超伝導性を有する上記の組成の金属酸化物材料である。
BEST MODE FOR CARRYING OUT THE INVENTION The metal oxide material of the present invention may be any one as long as it has the above-mentioned composition, and a preferable material in the present invention is:
= 1 and b = 2, and Ln is a metal oxide material having Y, Ho, Dy, or Gd. Further, as a suitable material, the crystal lattice is tetragonal or orthorhombic,
The metal oxide material has the above-described composition and has a lattice constant (c) of 11 Å or more and 12 Å or less. Suitable materials are also metal oxide materials of the above composition which have superconductivity at temperatures above 20 Kelvin, particularly preferably above 25 Kelvin.

【0008】上記の様な本発明の金属酸化物材料を作成
する方法としては、所謂セラミックス材料で一般に使わ
れている様な、原料粉末からの加熱による反応及び焼結
法をいすれも使用することが出来る。この様な方法の例
としては、Material Research Bu
lletin 第8巻777頁(1973年)、Sol
id State Communication 第1
7巻27頁(1975年)、Zeitschriftf
ur Physik B 第64巻189頁(1986
年)、Physical Review Letter
s 第58巻第9号908頁(1987年)等に示され
ており、これらの方法は現在では定性的には極めて一般
的な方法として知られている。特に、本発明の金属酸化
物材料を超伝導電子素子用の基板として用いる場合は、
原料粉末をフラックス等を用い高温で溶解してから単結
晶成長させる方法も有用である。
As a method for producing the metal oxide material of the present invention as described above, any reaction and sintering method by heating from raw material powder, which is generally used for so-called ceramic materials, is used. You can An example of such a method is Material Research Bu.
lletin vol.8, p.777 (1973), Sol
id State Communication 1st
Volume 7, page 27 (1975), Zeitschriftf
ur Physik B Vol. 64, p. 189 (1986)
Year), Physical Review Letter
s Vol. 58, No. 9, p. 908 (1987) and the like, and these methods are now known as qualitatively extremely general methods. In particular, when using the metal oxide material of the present invention as a substrate for a superconducting electronic device,
A method in which the raw material powder is melted at a high temperature using a flux or the like and then a single crystal is grown is also useful.

【0009】又、本発明の金属酸化物材料を薄膜の電子
素子やシールド材に利用する場合には、原料を含むター
ゲットを用いた高周波スパッタリングやマグネトロンス
パッタリング等のスパッタリング法、電子ビーム蒸着、
MBE法、その他の真空蒸着法或はクラスターイオンビ
ーム法や原料にガスを使うCVD法又はプラズマCVD
法等で、基板上、若しくは超伝導薄膜上に、本発明の金
属酸化物材料を薄膜状に形成することが出来る。この様
にして得られた本発明の銅酸化物材料は特に超伝導転移
温度が高い。このときの超伝導転移温度は、Reのxと
によって違うが、十数K〜70Kにまでなる。よって、
本発明の金属酸化物超伝導体は、液体ヘリウム温度での
利用は勿論、簡単な冷却器によっても利用することが出
来る。
When the metal oxide material of the present invention is used for a thin film electronic element or a shield material, a sputtering method such as high frequency sputtering or magnetron sputtering using a target containing raw materials, electron beam evaporation,
MBE method, other vacuum deposition method or cluster ion beam method, CVD method using gas as a raw material, or plasma CVD
The metal oxide material of the present invention can be formed into a thin film on a substrate or a superconducting thin film by a method or the like. The copper oxide material of the present invention thus obtained has a particularly high superconducting transition temperature. The superconducting transition temperature at this time is up to ten and several K to 70K, although it depends on x of Re. Therefore,
The metal oxide superconductor of the present invention can be used not only at liquid helium temperature but also by a simple cooler.

【0010】又、本発明の金属酸化物材料に使用する原
料は全て安価なものであり、原料コストは低く、本発明
の金属酸化物材料を安価に提供することが可能である。
又、本発明の材料は、空気中において比較的安定で劣化
も少なく、更に、原料に重金属等の毒性のあるものを使
用していない為、安全性が高い。又、本発明の金属酸化
物材料の比重は5〜6g/cmの範囲であり、既存の
銅酸化物超伝導体と比較しても約2〜3割も軽くなって
いる。このことは、特に本発明の金属酸化物材料をシー
ルドや磁気浮上用のバルク材料として利用する場合に有
効である。又、本発明の金属酸化物材料は水分や水蒸気
の影響を受けにくい特性があり、このことにより材料の
使用条件、用途を広げ、耐久性を高くすることが出来、
更にはデバイス作製上も表面状態が安定な為、有利であ
る。又、本発明の金属酸化物材料は高温時に酸素の抜け
が少なく、使用上及び材料作製上有効である。
Further, all the raw materials used for the metal oxide material of the present invention are inexpensive, the raw material cost is low, and the metal oxide material of the present invention can be provided at low cost.
Further, the material of the present invention is relatively stable in the air and less deteriorated, and further, because it does not use a toxic material such as a heavy metal as a raw material, it is highly safe. Further, the specific gravity of the metal oxide material of the present invention is in the range of 5 to 6 g / cm 3 , which is about 20 to 30% lighter than the existing copper oxide superconductor. This is particularly effective when the metal oxide material of the present invention is used as a shield or bulk material for magnetic levitation. Further, the metal oxide material of the present invention has the property of being less susceptible to the effects of moisture and water vapor, which makes it possible to expand the use conditions and applications of the material and increase the durability,
Furthermore, the surface condition is stable in device fabrication, which is advantageous. Further, the metal oxide material of the present invention is less likely to release oxygen at high temperatures, and is effective in use and material preparation.

【0011】[0011]

【実施例】次に、実施例及び比較例を挙げて本発明を更
に具体的に説明する。 実施例1及び比較例1〜6 原料としてY、SrCO、Cuo、ReO
Al、MnO、NiO、Fe及びCo
を用い、これらを適当な組成比に秤量して乾式混合
した。これらの混合物を夫々、φ10mm及び厚み1m
mのペレット状に加圧形成し、形成物を夫々アルミナボ
ート上に置き、950−1100℃の大気中若しくは酸
素中で反応及び焼結させ、本発明の実施例及び比較例の
銅酸化物を夫々調製した。この様にして形成されたこれ
らのサンプルに関し、室温から液体ヘリウム温度の範囲
で、4端子による電気抵抗率測定及びSQUIDによる
磁化率の測定を行った。表1に実施例1の銅酸化物の組
成比と、その転移温度(K)を記した。又、表2には比
較例1〜6の酸化物の仕込み組成と電気的特性を示す。
尚、ここで組成比はEPMAで測定したので、酸素の量
に関しては20%程度の誤差があり得る。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. Example 1 and Comparative Example Y 2 O 3 as a 1-6 material, SrCO 3, Cuo, ReO 3 ,
Al 2 O 3 , MnO 2 , NiO, Fe 2 O 3 and Co 2
Using O 3 , these were weighed to a suitable composition ratio and dry-mixed. Each of these mixtures has a diameter of 10 mm and a thickness of 1 m.
m in the form of pellets, the formed products were placed on alumina boats, respectively, and reacted and sintered in the air or at 950-1100 ° C. in air or oxygen to give the copper oxides of Examples and Comparative Examples of the present invention. Prepared respectively. With respect to these samples thus formed, the electrical resistivity was measured by four terminals and the magnetic susceptibility was measured by SQUID in the temperature range from room temperature to liquid helium temperature. Table 1 shows the composition ratio of the copper oxide of Example 1 and its transition temperature (K). Further, Table 2 shows the charged compositions and electrical characteristics of the oxides of Comparative Examples 1 to 6.
Since the composition ratio was measured by EPMA, there may be an error of about 20% in the amount of oxygen.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】表1から本発明の実施例の材料がTc=2
0K以上の超伝導体となり、特に超伝導体としての特性
が優れている。表2に示した比較例から明らかな様に、
Cuのサイトに置換する元素がRe以外の場合は、形成
される材料は超伝導転移を示さないか、若しくは示して
もTcが10K以下と低いことが分かる。図2に、実施
例1で形成した金属酸化物材料のX線回折パターンを示
す。この図から実施例1のサンプルは、a=b=3.8
3Å、c=11.5Åの格子定数をもつ正方晶であるこ
とが分かる。又、図3に、このサンプルの電気抵抗率の
温度依存性のグラフを示す。この結果、約40Kから超
伝導転移が始まり35Kでゼロ抵抗になっている。この
ことから本発明の金属酸化物材料は、液体ヘリウム温度
よりはるかに高い温度で超伝導体になることが分かる。
From Table 1, the materials of the examples of the present invention have Tc = 2.
It becomes a superconductor having a temperature of 0K or higher, and is particularly excellent in characteristics as a superconductor. As is clear from the comparative example shown in Table 2,
It can be seen that when the element substituting the Cu site is other than Re, the material formed does not show a superconducting transition, or even if it shows, Tc is as low as 10 K or less. FIG. 2 shows an X-ray diffraction pattern of the metal oxide material formed in Example 1. From this figure, the sample of Example 1 has a = b = 3.8.
It can be seen that it is a tetragonal crystal having a lattice constant of 3Å and c = 11.5Å. Further, FIG. 3 shows a graph of temperature dependence of electric resistivity of this sample. As a result, the superconducting transition starts at about 40K and the resistance becomes zero at 35K. This shows that the metal oxide material of the present invention becomes a superconductor at a temperature much higher than the liquid helium temperature.

【0015】又、図4に、実施例1で形成した金属酸化
物材料の磁化率の温度依存性を表す測定結果を示す。こ
れから実施例1のサンプルは、35Kからマイスナー効
果を示し、10Kにおける超伝導体積分率は20%を超
えていることが分かる。これらの結果を、図1に示した
Chemistry of Materials Vo
l.1331(1989)に記載されているYSr
3−xFeのデータと比較してみると、ゼロ抵
抗温度、超伝導体積分率共に本発明の材料の方がはるか
に高いことが分かる。又、例えば、実施例1の材料の比
重は5.5g/cmであり、既存の銅酸化物超伝導
体、例えばYBaCuと比較し3割程度も軽く
なっている。
Further, FIG. 4 shows the measurement results showing the temperature dependence of the magnetic susceptibility of the metal oxide material formed in Example 1. From this, it can be seen that the sample of Example 1 exhibits the Meissner effect from 35K and the superconductor integration rate at 10K exceeds 20%. These results are shown in the Chemistry of Materials Vo shown in FIG.
l. 1331 (1989), YSr 2 C
Comparing with the data of u 3-x Fe x O y , it can be seen that the zero resistance temperature and the superconducting volume fraction of the material of the present invention are much higher. Further, for example, the specific gravity of the material of Example 1 is 5.5 g / cm 3, which is about 30% lighter than the existing copper oxide superconductor, for example, YBa 2 Cu 3 O 7 .

【0016】更に、図5に、実施例1で形成した金属酸
化物材料、及び図6に比較例としてYBaCu
材料の水分に対する耐久試験結果についてのX線回折結
果を示す。ここで耐久試験は、40℃及び50時間の条
件で、各々の材料を水蒸気中に放置して行った。この結
果、図5ではX線パターンに変化は全く見られないが、
図6のYBaCuでは、元の構造が殆どなくな
り、BaCO、Y及びCuOによるピークが見
られる。この為、YBaCuは、全く超伝導性
を示さなくなった。図7に、この耐久試験後の実施例1
の材料の電気低効率の測定結果を示す。この図から超伝
導性はほとんど変化しておらず、本発明の材料の水分に
対する耐久性のよさを示している。又、他の酸化物超伝
導性材料の代表であるBi系は、このY系よりも水分に
弱いとされている。又、表1に実施例1の耐水試験によ
るTcの劣化を示す。この結果、本発明の材料が耐水性
に優れていることがわかる。更に、図8には実施例1の
材料のTG−DTAの測定結果を示す。この測定の際、
試料は50.4mg使用した。この図から本発明の金属
酸化物材料の900℃における酸素の抜けは、重量で1
%であり、組成式における酸素で表現すると約0.34
であった。これは、比較例のYBaCuの場合
が、重量変化で2.4%、酸素で表現した場合の1に比
較して3分の1程度であり、本発明の金属酸化物材料の
方が酸素の抜けによる劣化が少ないことが分かる。尚、
これら図5、図7、図8の結果は、他の実施例において
も同様に見られるものである。
Further, FIG. 5 shows the metal oxide material formed in Example 1, and FIG. 6 shows YBa 2 Cu 3 O 7 as a comparative example.
The X-ray-diffraction result about the endurance test result with respect to the water | moisture content of a material is shown. Here, the durability test was performed by leaving each material in steam under conditions of 40 ° C. and 50 hours. As a result, no change is seen in the X-ray pattern in FIG.
In YBa 2 Cu 3 O 7 in FIG. 6, the original structure is almost lost, and peaks due to BaCO 3 , Y 2 O 3 and CuO are seen. Therefore, YBa 2 Cu 3 O 7 does not exhibit superconductivity at all. FIG. 7 shows Example 1 after this durability test.
The measurement result of electric low efficiency of the material of is shown. From this figure, the superconductivity is almost unchanged, showing the good durability of the material of the present invention against moisture. Further, the Bi type, which is a representative of other oxide superconducting materials, is considered to be weaker to moisture than the Y type. Table 1 shows the deterioration of Tc due to the water resistance test of Example 1. As a result, it can be seen that the material of the present invention has excellent water resistance. Furthermore, FIG. 8 shows the measurement results of TG-DTA of the material of Example 1. During this measurement,
The sample used was 50.4 mg. From this figure, the loss of oxygen in the metal oxide material of the present invention at 900 ° C. is 1 by weight.
%, Which is approximately 0.34 when expressed by oxygen in the composition formula.
Met. This is 2.4% by weight change in the case of YBa 2 Cu 3 O 7 of the comparative example, which is about 1/3 of 1 in the case of being expressed by oxygen, and the metal oxide material of the present invention. It can be seen that in the case of, the deterioration due to the escape of oxygen is less. still,
The results shown in FIGS. 5, 7, and 8 are similarly observed in the other examples.

【0017】実施例2〜4及び比較例7〜12 原料としてY、Ho、Ga、ReO
、SrCO及びCuOを用い、これらを適当な組成
比に秤量して乾式混合した。これらの混合物を前述した
と同様に反応及び焼結させ、本発明の実施例、及び比較
例の銅酸化物を調製し、電気抵抗率と磁化率の測定を行
った。表3に実施例2〜4の銅酸化物の組成比と、その
転移温度(K)を記した。又、表4には比較例7〜12
の銅酸化物の仕込み組成と電気的特性を示す。尚、ここ
で組成比はEPMAで測定したので、酸素の量に関して
は20%程度の誤差があり得る。表3から本発明で使用
する組成比内の金属酸化物材料が、全てTc=20K以
上の超伝導体となることが分かる。表4に示した本発明
で使用する組成比以外の比較例の材料では、超伝導転移
しないか、若しくは超伝導転移してゼロ抵抗になる温度
が10K以下であった。又、超伝導体積分率も3%以下
であり、特性の悪いものであった。尚、表3の右欄に実
施例1に記載したと同様に、耐水試験を行ったときのT
cの劣化を示す。この結果、本発明の材料が耐水性に優
れていることがわかる。
Examples 2 to 4 and Comparative Examples 7 to 12 Y 2 O 3 , Ho 2 O 3 , Ga 2 O 3 and ReO as raw materials.
3 , SrCO 3 and CuO were used, and these were weighed in an appropriate composition ratio and dry-mixed. These mixtures were reacted and sintered in the same manner as described above to prepare copper oxides of Examples of the present invention and Comparative Examples, and electric resistivity and magnetic susceptibility were measured. Table 3 shows the composition ratios of the copper oxides of Examples 2 to 4 and their transition temperatures (K). Further, Table 4 shows Comparative Examples 7 to 12
2 shows the charging composition and electrical characteristics of the copper oxide. Since the composition ratio was measured by EPMA, there may be an error of about 20% in the amount of oxygen. It can be seen from Table 3 that all the metal oxide materials within the composition ratio used in the present invention are superconductors with Tc = 20K or more. In the materials of Comparative Examples other than the composition ratios used in the present invention shown in Table 4, the temperature at which the superconducting transition did not occur or the superconducting transition occurred to zero resistance was 10 K or less. Also, the superconductor volume fraction was 3% or less, and the characteristics were poor. In addition, in the same manner as described in Example 1 in the right column of Table 3, T when water resistance test was performed
shows deterioration of c. As a result, it can be seen that the material of the present invention has excellent water resistance.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】実施例5〜6及び比較例13〜26 表5及び表6の材料を、必要な材料を用いて前述と同様
にして反応及び焼結させ、本発明の実施例及び比較例の
銅酸化物を調製した。実施例5〜6に挙げた材料のX線
回折パターンは、ほぼ図2と同じであり、同類の構造が
得られていることが分かる。又、これらの磁化率の温度
依存性は、図4に示した様に超伝導体積分率が10%を
越えており、特性のよいものであった。表5及び表6か
ら、YSrCu3−xReの組成比において使
用する元素Reに関して、以下の様に超伝導特性のよい
Xの範囲が0.05≦x≦0.4と求まる尚、表5の右
欄に実施例1に記載したと同様に、耐水試験を行ったと
きのTcの劣化を示す。この結果、本発明の材料が耐水
性に優れていることがわかる。
Examples 5 to 6 and Comparative Examples 13 to 26 The materials shown in Tables 5 and 6 were reacted and sintered in the same manner as described above using the necessary materials, and the copper used in the Examples and Comparative Examples of the present invention. An oxide was prepared. The X-ray diffraction patterns of the materials listed in Examples 5 to 6 are almost the same as those in FIG. 2, and it can be seen that similar structures are obtained. As for the temperature dependence of these magnetic susceptibility, as shown in FIG. 4, the superconductor integral ratio exceeded 10%, and the characteristics were good. From Table 5 and Table 6, regarding the element Re used in the composition ratio of YSr 2 Cu 3−x Re x O y , the range of X with good superconducting properties is as follows: 0.05 ≦ x ≦ 0.4 In addition, in the same manner as described in Example 1, the right column of Table 5 shows deterioration of Tc when the water resistance test is performed. As a result, it can be seen that the material of the present invention has excellent water resistance.

【表5】 [Table 5]

【0021】[0021]

【表6】 [Table 6]

【0022】[0022]

【効果】(1)本発明の金属酸化物材料は、従来は超高
圧下でしか合成出来なかった超伝導材料と異なり、大気
圧中で安定に合成することが可能である。 (2)本発明の金属酸化物材料は、超伝導転移温度が液
体ヘリウム温度をはるかに超えており、且つ、超伝導体
積分率も10%超える特性のよい超伝導材料である。従
って、本発明の金属酸化物材料は、安易な冷却装置によ
っても利用することが出来る。 (3)本発明の金属酸化物材料は、現在まで知られてい
る安定に得られる銅酸化物超伝導体の中では最も比重が
軽く、バルク材として使用される場合には特に効果が大
きい。 (4)本発明の金属酸化物材料を合成するに際し、使用
される原料が他の銅酸化物超伝導体と比較して、重金属
や炭酸バリウム等の毒性の強いものを使用しない為、安
全で安価である。 (5)本発明の金属酸化物材料は、水分や水蒸気に対し
ての耐久性に優れ、使用条件及び用途を広げることが出
来るのは勿論、材料表面が安定な為、デバイス用の材料
としても有効に使用出来る。 (6)本発明の金属酸化物材料は、高温においても酸素
の抜けが少ない為、使用上は勿論、作製上も酸素抜けに
対する対策が少なくなり有用である。
(Effects) (1) Unlike the superconducting materials which can be synthesized only under an ultrahigh pressure, the metal oxide material of the present invention can be synthesized stably under atmospheric pressure. (2) The metal oxide material of the present invention is a superconducting material having a superconducting transition temperature far exceeding the liquid helium temperature and a superconducting volume fraction exceeding 10%. Therefore, the metal oxide material of the present invention can be used with an easy cooling device. (3) The metal oxide material of the present invention has the lowest specific gravity among the stable copper oxide superconductors known to date, and is particularly effective when used as a bulk material. (4) When synthesizing the metal oxide material of the present invention, compared with other copper oxide superconductors, the raw material used is not a heavy metal, barium carbonate, or other highly toxic one, and is therefore safe. It is cheap. (5) The metal oxide material of the present invention is excellent in durability against moisture and water vapor, and can be used under various conditions and applications. In addition, the surface of the material is stable, so that it can be used as a device material. It can be used effectively. (6) Since the metal oxide material of the present invention has little oxygen desorption even at high temperatures, it is useful because there are few measures against oxygen depletion in production as well as in use.

【図面の簡単な説明】[Brief description of drawings]

【図1】Chemistry of Material
s Vol.1331(1989)に記載されているY
SrCu3−xFeのデータ。
FIG. 1 Chemistry of Material
s Vol. 1331 (1989)
Sr 2 Cu 3-x Fe x O y data.

【図2】実施例1のYSrCu2.7Re0.3
7.0のX線回折パターン。尚、この時のX線はCuK
α線を用いた。
FIG. 2 YSr 2 Cu 2.7 Re 0.3 O of Example 1
X-ray diffraction pattern of 7.0 . The X-ray at this time is CuK.
α rays were used.

【図3】実施例1のYSrCu2.7Re0.3
7.0の電気抵抗率の温度依存性のグラフ。
FIG. 3 is YSr 2 Cu 2.7 Re 0.3 O of Example 1.
The graph of the temperature dependence of the electrical resistivity of 7.0 .

【図4】実施例1のYSrCu2.7Re0.3
7.0の磁化率の温度依存性のグラフ。
FIG. 4 YSr 2 Cu 2.7 Re 0.3 O of Example 1
The graph of the temperature dependence of the magnetic susceptibility of 7.0 .

【図5】実施例1のYSrCu2.75Re0.25
7.2の水蒸気処理前後のX線回折パターン。
5: YSr 2 Cu 2.75 Re 0.25 of Example 1 FIG.
X-ray diffraction patterns before and after steam treatment of O 7.2 .

【図6】比較例のYBaCuの水蒸気処理前後
のX線回折パターン。
FIG. 6 is an X-ray diffraction pattern before and after steam treatment of YBa 2 Cu 3 O y of a comparative example.

【図7】実施例1のYSrCu2.75Re0.25
7.2の水蒸気処理前後の電気抵抗率の温度依存性の
グラフ。
FIG. 7: YSr 2 Cu 2.75 Re 0.25 of Example 1
The graph of the temperature dependence of the electrical resistivity of O 7.2 before and after the steam treatment.

【図8】実施例1のYSrCu2.75Re0.25
7.2のTG−DTAのグラフ。
8: YSr 2 Cu 2.75 Re 0.25 of Example 1 FIG.
TG-DTA graph for O 7.2 .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/12 ZAA C04B 35/00 ZAAK ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 39/12 ZAA C04B 35/00 ZAAK

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成式がLnSrCu3−xRe
と表される金属酸化物材料において、2.7≦a+
b≦3.3、0.8≦a≦1.2、6≦c≦9及び0.
05≦X≦0.4であり、且つ、LnがY元素及びラン
タノイド元素の元素群から選ばれた1種類以上の元素又
は原子団であることを特徴とする金属酸化物材料。
1. The composition formula is Ln a Sr b Cu 3-x Re x.
In the metal oxide material represented by O c , 2.7 ≦ a +
b ≦ 3.3, 0.8 ≦ a ≦ 1.2, 6 ≦ c ≦ 9 and 0.
05 ≦ X ≦ 0.4, and Ln is one or more kinds of elements or atomic groups selected from the element group of Y element and lanthanoid element, a metal oxide material.
【請求項2】 a=1、b=2であり、且つ、Lnが
Y、Ho、Dy及びGdのいずれかである請求項1又は
2に記載の金属酸化物材料。
2. The metal oxide material according to claim 1, wherein a = 1, b = 2, and Ln is any one of Y, Ho, Dy, and Gd.
【請求項3】 結晶格子が正方晶若しくは斜方晶であ
り、格子定数(c)が11Å以上12Å以下である請求
項1に記載の金属酸化物材料。
3. The metal oxide material according to claim 1, wherein the crystal lattice is tetragonal or orthorhombic, and the lattice constant (c) is 11 Å or more and 12 Å or less.
【請求項4】 20ケルビン以上の温度で超伝導性を有
する請求項1〜3のいずれかに記載の金属酸化物材料。
4. The metal oxide material according to claim 1, which has superconductivity at a temperature of 20 Kelvin or more.
JP4072994A 1991-03-22 1992-02-26 Metal oxide material Expired - Fee Related JP2555505B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP4072994A JP2555505B2 (en) 1991-03-22 1992-02-26 Metal oxide material
EP96202762A EP0760354B1 (en) 1991-03-22 1992-03-19 Metal oxide material
DE69219817T DE69219817T2 (en) 1991-03-22 1992-03-19 Metal oxide material
AT92302400T ATE153322T1 (en) 1991-03-22 1992-03-19 METAL OXIDE MATERIAL
EP92302400A EP0510806B1 (en) 1991-03-22 1992-03-19 Metal oxide material
DE69232051T DE69232051T2 (en) 1991-03-22 1992-03-19 Metal oxide material
AT96202762T ATE205172T1 (en) 1991-03-22 1992-03-19 MATERIAL MADE OF METAL OXIDE
US08/266,319 US5512538A (en) 1991-03-22 1994-06-27 Metal oxide material with Ln, Sr, Cu, Re, O, and optionally Ca
US08/473,362 US5583093A (en) 1991-03-22 1995-06-07 Metal oxide material with Ln, Sr, Cu, O, optionally Ca, and at least one of Fe, Co, Ti, V, Ge, Mo, and W

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8328591 1991-03-22
JP3-83285 1991-03-22
JP4072994A JP2555505B2 (en) 1991-03-22 1992-02-26 Metal oxide material

Publications (2)

Publication Number Publication Date
JPH0597435A JPH0597435A (en) 1993-04-20
JP2555505B2 true JP2555505B2 (en) 1996-11-20

Family

ID=26414128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4072994A Expired - Fee Related JP2555505B2 (en) 1991-03-22 1992-02-26 Metal oxide material

Country Status (1)

Country Link
JP (1) JP2555505B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151358A1 (en) * 2018-01-31 2019-08-08 Koa株式会社 Oxygen sensor element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339320A (en) * 1986-08-05 1988-02-19 Mikuni Seisakusho:Kk Manufacture of trim molded product
JPS6391225A (en) * 1986-10-06 1988-04-21 Mikuni Seisakusho:Kk Manufacture of molded product for trimming
JPH0751312B2 (en) * 1989-02-28 1995-06-05 日産自動車株式会社 Interior material manufacturing method

Also Published As

Publication number Publication date
JPH0597435A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
KR920005518B1 (en) Devices and systems based on superconducting material
Lee et al. Thermoelectric power and superconducting properties of Y 1 Ba 2 Cu 3 O 7− δ and R 1 Ba 2 Cu 3 O 7− δ
EP0356722A1 (en) Oxide superconductor and method of producing the same
US5583093A (en) Metal oxide material with Ln, Sr, Cu, O, optionally Ca, and at least one of Fe, Co, Ti, V, Ge, Mo, and W
US5446017A (en) Superconductive copper-containing oxide materials of the formula Ap Bq Cu2 O4±r
JP2555505B2 (en) Metal oxide material
JP2950422B2 (en) Metal oxide material
JP3219563B2 (en) Metal oxide and method for producing the same
JP3217905B2 (en) Metal oxide material and method for producing the same
Isawa et al. Synthesis of Superconducting Cuprates,(Pb (1+ x)/2 Cu (1− x)/2))(Sr 1− y Ca y) 2 (Y 1− x Ca x) Cu 2 O z by Means of Encapsulation and Post-Annealing (ECPA) Technique
Kirschner et al. High-Tc Superconductivity in La-Ba-Cu-O and Y-Ba-Cu-O Compounds
EP0284061A2 (en) Ceramic oxide superconductive composite material
JP3242252B2 (en) Metal oxide material and superconducting device using the same
JP2801806B2 (en) Metal oxide material
JP3247914B2 (en) Metal oxide material
EP0463506B1 (en) Oxide superconductor and its manufacturing method
EP0651909B1 (en) Superconducting compositions
JP2817170B2 (en) Manufacturing method of superconducting material
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
EP1022255A1 (en) Oxide superconductor
JPH04300202A (en) Superconductor using oxide and production thereof
KR0119192B1 (en) New high-tc superconductors and process for preparing them
JP3284010B2 (en) Metal oxide material and superconducting device using the same
JP3287667B2 (en) Metal oxide
JP3283909B2 (en) Metal oxide material and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees