JP2550720B2 - Ion beam assisted vapor deposition method - Google Patents

Ion beam assisted vapor deposition method

Info

Publication number
JP2550720B2
JP2550720B2 JP1220801A JP22080189A JP2550720B2 JP 2550720 B2 JP2550720 B2 JP 2550720B2 JP 1220801 A JP1220801 A JP 1220801A JP 22080189 A JP22080189 A JP 22080189A JP 2550720 B2 JP2550720 B2 JP 2550720B2
Authority
JP
Japan
Prior art keywords
vapor deposition
ion beam
titanium
substrate
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1220801A
Other languages
Japanese (ja)
Other versions
JPH0382756A (en
Inventor
啓明 北村
勲二 中嶋
孝広 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1220801A priority Critical patent/JP2550720B2/en
Publication of JPH0382756A publication Critical patent/JPH0382756A/en
Application granted granted Critical
Publication of JP2550720B2 publication Critical patent/JP2550720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はTiN(窒化チタン)膜の形成を行うイオンビ
ームアシスト蒸着方法に関するものである。
The present invention relates to an ion beam assisted vapor deposition method for forming a TiN (titanium nitride) film.

[従来の技術] 従来のTiN(窒化チタン)膜の形成を行うイオンビー
ムアシスト蒸着法としては例えば特開昭62-199763号公
報に示された方法がある。
[Prior Art] As a conventional ion beam assisted vapor deposition method for forming a TiN (titanium nitride) film, for example, there is a method disclosed in JP-A-62-199763.

この従来例の装置の概略図を第6図に示す。この装置
は蒸着槽11、電子ビーム蒸発源15、蒸着金属即ちチタン
18、イオン銃16およびチタン18の蒸発量を制御するため
の蒸発量を検出する水晶振動子13とそれを制御するレイ
トコントローラ14等を備えている。一方フープ状の被蒸
着基材12は電子ビーム蒸発源15およびイオン銃16に対面
する位置に配置されて一定速度で巻き取られる。
FIG. 6 shows a schematic view of this conventional device. This equipment consists of a vapor deposition tank 11, an electron beam evaporation source 15, a vapor deposition metal or titanium.
18, a crystal oscillator 13 for detecting the amount of evaporation for controlling the amount of evaporation of the ion gun 16 and titanium 18, a rate controller 14 for controlling the same, and the like. On the other hand, the hoop-shaped deposition target substrate 12 is arranged at a position facing the electron beam evaporation source 15 and the ion gun 16 and is wound at a constant speed.

イオン銃16により窒素ガスがイオンビームとして被蒸
着基材12に照射され、被蒸着基材12上にTiN膜を形成す
る。このとき蒸着槽11内の窒素ガスイオンビームが到達
しない位置に設けられた水晶振動子13および蒸着槽11外
のレイトコントローラ14によりTiN膜の形成が制御され
る。一方イオンビームの量はファラデーカップ(図示せ
ず)により検出し制御される。
The vapor deposition substrate 12 is irradiated with nitrogen gas as an ion beam by the ion gun 16 to form a TiN film on the vapor deposition substrate 12. At this time, the formation of the TiN film is controlled by the crystal oscillator 13 provided at a position in the vapor deposition tank 11 where the nitrogen gas ion beam does not reach and the rate controller 14 outside the vapor deposition tank 11. On the other hand, the amount of ion beam is detected and controlled by a Faraday cup (not shown).

[発明が解決しようとする課題] このような従来例においては、水晶振動子13および蒸
着槽11外のレイトコントローラ14により制御されてはい
るがイオンビームアシスト蒸着によるTiN膜の品質の安
定化の上で以下に示すような課題がある。
[Problems to be Solved by the Invention] In such a conventional example, although the crystal oscillator 13 and the rate controller 14 outside the vapor deposition tank 11 are controlled, the quality of the TiN film is stabilized by ion beam assisted vapor deposition. There are the following issues above.

即ち、ち密で耐食性、密着性に優れた一定品質の金色
のTiN膜を得るにはチタン蒸発速度、窒素イオンビーム
電流密度の最適値の設定およびこれらの相関関係を明確
にして、最適な膜の形成ができるように管理しなければ
ならない。
That is, in order to obtain a dense, corrosion-resistant, excellent-quality gold-colored TiN film with excellent adhesion, the titanium evaporation rate, the setting of the optimum values of the nitrogen ion beam current density and their correlation are clarified, and the optimum film It must be managed so that it can be formed.

以上のような課題を解決し最適な膜の形成できる条件
を設定しその最適な条件を満足する状態で均一な高品質
の蒸着膜を生産できるイオンビームアシスト蒸着方法を
提供するのが本発明の目的である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an ion beam assisted vapor deposition method that solves the above problems and sets conditions for forming an optimum film, and that can produce a uniform high-quality evaporated film in a state that satisfies the optimum conditions. Is the purpose.

[課題を解決するための手段] 本発明は上記目的を達成するため以下のような手段を
有するものである。
[Means for Solving the Problems] The present invention has the following means in order to achieve the above object.

即ち、請求項(1)に示すように、蒸着槽内に被蒸着
基材を配置し、前記被蒸着基材に窒素イオンビームを照
射するとともに、電子ビーム蒸発源からチタンを蒸発さ
せて前記被蒸着基材に窒化チタン膜の形成を行うイオン
ビームアシスト蒸着方法において、チタンワイヤーを坩
堝へ連続して供給し溶融蒸散させて電子ビーム蒸発源と
し、前記電子ビーム蒸発源は坩堝近傍にあって、チタン
ワイヤーの供給のためのガイドパイプを坩堝の液面と交
叉方向に配置させるとともに反対方向に5〜8度折り曲
げてなるチタンワイヤー供給装置を備えたものであるイ
オンビームアシスト蒸着装置を用いて、前記被蒸着基材
の近傍でのチタン蒸発速度(R)と窒素イオンビーム電
流密度(p)が各々R=2〜5Å/S、p=30〜200μA/c
m2であり、前記Rと前記pの間の関係が概略p=40R−5
0であることを特徴とするイオンビームアシスト蒸着方
法としたものである。
That is, as described in claim (1), the deposition target substrate is placed in the deposition tank, the deposition target substrate is irradiated with a nitrogen ion beam, and titanium is evaporated from an electron beam evaporation source to cause the deposition target substrate to be evaporated. In an ion beam assisted vapor deposition method for forming a titanium nitride film on a vapor deposition substrate, a titanium wire is continuously supplied to a crucible to melt and evaporate to become an electron beam evaporation source, and the electron beam evaporation source is in the vicinity of the crucible, Using an ion beam assisted vapor deposition device, which is provided with a titanium wire supply device in which a guide pipe for supplying the titanium wire is arranged in a direction intersecting with the liquid surface of the crucible and is bent 5 to 8 degrees in the opposite direction, The titanium evaporation rate (R) and the nitrogen ion beam current density (p) in the vicinity of the substrate to be vapor-deposited are R = 2 to 5Å / S and p = 30 to 200 μA / c, respectively.
m 2 and the relationship between R and p is approximately p = 40R−5.
The ion beam assisted vapor deposition method is characterized in that it is 0.

[作用] 特許請求の範囲第1項記載のように、蒸着槽内に被蒸
着基材を配置し、前記被蒸着基材に窒素イオンビームを
照射するとともに、電子ビーム蒸発源からチタンを蒸発
させて前記被蒸着基材に窒化チタン膜の形成を行うイオ
ンビームアシスト蒸着方法において、チタンワイヤーを
坩堝へ連続して供給し溶融蒸散させて電子ビーム蒸発源
とし、前記電子ビーム蒸発源は坩堝近傍にあって、チタ
ンワイヤーの供給のためのガイドパイプを坩堝の液面と
交叉方向に配置させるとともに反対方向に5〜8度折り
曲げてなるチタンワイヤー供給装置を備えたものである
イオンビームアシスト蒸着装置を用いて、前記被蒸着基
材の近傍でのチタン蒸発速度(R)と窒素イオンビーム
電流密度(p)が各々R=2〜5Å/S、p=30〜200μA
/cm2であり、前記Rと前記pの間の関係が概略p=40R
−50であることを特徴とするイオンビームアシスト蒸着
方法としたことにより長時間連続的に一定スピードでチ
タンを供給でき、チタンの蒸発金属流を一定させ、均一
で高品質のTiN膜の最適条件での安定した生産を可能と
したものである。
[Operation] As described in claim 1, the vapor deposition base material is placed in the vapor deposition tank, the vapor deposition base material is irradiated with a nitrogen ion beam, and titanium is vaporized from the electron beam evaporation source. In the ion beam assisted vapor deposition method for forming a titanium nitride film on the substrate to be vapor deposited, a titanium wire is continuously supplied to the crucible and melted and evaporated to serve as an electron beam evaporation source, and the electron beam evaporation source is in the vicinity of the crucible. There is an ion beam assisted vapor deposition device equipped with a titanium wire supply device in which a guide pipe for supplying the titanium wire is arranged in a direction intersecting with the liquid surface of the crucible and is bent 5 to 8 degrees in the opposite direction. The titanium vaporization rate (R) and the nitrogen ion beam current density (p) in the vicinity of the vapor-deposited substrate were R = 2 to 5Å / S and p = 30 to 200 μA, respectively.
/ cm 2 , and the relationship between R and p is approximately p = 40R
By using the ion beam assisted deposition method characterized by −50, titanium can be supplied continuously at a constant speed for a long time, the vaporized metal flow of titanium is made constant, and the optimum conditions for a uniform and high-quality TiN film are obtained. It enables stable production in Japan.

[実施例] 次に具体的実施例として電気カミソリの刃の表面処理
としてのTiN膜の形成につき説明する。第1図が本発明
になるイオンビームアシスト蒸着装置概略図である。こ
の装置は蒸着槽11、電子ビーム蒸発源15、イオン銃16、
チタンの蒸発量を検出制御する水晶振動子13、レイトコ
ントローラ14、被蒸着基材12および真空ポンプ68等から
なっている。
[Example] Next, as a specific example, the formation of a TiN film as the surface treatment of the blade of an electric razor will be described. FIG. 1 is a schematic view of an ion beam assisted vapor deposition device according to the present invention. This device includes a vapor deposition tank 11, an electron beam evaporation source 15, an ion gun 16,
It is composed of a crystal oscillator 13 for detecting and controlling the evaporation amount of titanium, a rate controller 14, a deposition base material 12, a vacuum pump 68 and the like.

電子ビーム蒸発源15は第2図に示すようなチタンワイ
ヤ21の連続供給装置20、電子銃25および坩堝28とからな
っている。第3図はチタンワイヤ21の供給ガイドパイプ
24の先端曲げ角度θと連続処理送り可能時間との関係を
実験的に求めたものである。第2図においてチタンワイ
ヤ21の連続供給装置20は供給ロール22、チタンワイヤ21
の巻癖矯正のための曲げ矯正ロール23、チタンワイヤ21
を坩堝28のすぐ上の決められた位置に送るためのガイド
パイプ24、蒸着金属の溶融蒸発時の熱によるガイドパイ
プ24の変形を防止するための水冷ブロック26およびチタ
ンワイヤ21を一定速度で送るための駆動ロール27等を備
えている。
The electron beam evaporation source 15 comprises a continuous supply device 20 for a titanium wire 21, an electron gun 25 and a crucible 28 as shown in FIG. Fig. 3 shows the supply guide pipe for titanium wire 21.
The relationship between the tip bending angle θ of 24 and the continuous process feedable time was obtained experimentally. In FIG. 2, the continuous supply device 20 for the titanium wire 21 includes a supply roll 22 and a titanium wire 21.
Bend straightening roll 23 and titanium wire 21 for straightening curl
To a predetermined position just above the crucible 28, a water cooling block 26 and a titanium wire 21 for preventing deformation of the guide pipe 24 due to heat during melting and vaporization of vapor-deposited metal, and a titanium wire 21 at a constant speed. It is equipped with a drive roll 27 and the like.

装置の運転においてガイドパイプ24の先端曲げ角度
(θ)がチタンワイヤ21の連続供給可能時間を決定する
上で大きな要因となる。第3図に示すように先端曲げ角
度(θ)が0〜5度の範囲においては蒸着開始直後、坩
堝28中の蒸発材料が均一に溶融していず、局部的に硬質
ゾーンが存在しチタンワイヤ21が硬質ゾーンに接触する
とガイドパイプ24の入口部にてチタンワイヤ21が変形し
連続供給が不可能となる。先端曲げ角度(θ)が8度以
上になると蒸着金属の溶融に用いる電子ビームの軌跡よ
りはずれてしまうため坩堝28に蒸着金属を供給すること
が不可能となってしまう。従って安定した連続供給を行
うためには先端曲げ角度(θ)を5〜8度にする必要が
ある。
In the operation of the apparatus, the tip bending angle (θ) of the guide pipe 24 becomes a major factor in determining the continuous supply possible time of the titanium wire 21. As shown in FIG. 3, when the tip bending angle (θ) is in the range of 0 to 5 degrees, the vaporized material in the crucible 28 is not melted uniformly immediately after the start of vapor deposition, and a hard zone exists locally to form a titanium wire. When 21 comes into contact with the hard zone, the titanium wire 21 is deformed at the entrance of the guide pipe 24, making continuous supply impossible. If the tip bending angle (θ) is 8 degrees or more, it will deviate from the trajectory of the electron beam used for melting the vapor-deposited metal, making it impossible to supply the vapor-deposited metal to the crucible 28. Therefore, it is necessary to set the tip bending angle (θ) to 5 to 8 degrees for stable and continuous supply.

イオンビームアシスト蒸着法によりステンレス材から
なる電気カミソリ用網状刃板を被蒸着基材12として金色
のTiN膜を均一安定して形成するための蒸着条件を設定
する。TiN膜の色調はその組成、構造により決定され
る。組成を一定にするためには操作条件として基板近傍
におけるチタン蒸発速度と窒素イオンビーム電流密度を
管理する必要がある。チタン蒸発速度(R)としては2
〜5Å/S、窒素イオンビーム電流密度(ρ)としては30
〜200μA/cm2にて実験を行い、ρ=40・R−50の条件に
て蒸着を行えば金色膜が得られることを見いだした。こ
のとき、窒素イオンビーム電流密度ρの値は±8%以内
の精度におさえる必要がある。また、イオンビームの照
射を安定なものにするため被蒸着基材12はアースしなけ
ればならない。
A vapor deposition condition for uniformly and stably forming a gold-colored TiN film is set by using a net-shaped blade plate for an electric razor made of a stainless steel material as a vapor deposition base material 12 by an ion beam assisted vapor deposition method. The color tone of the TiN film is determined by its composition and structure. In order to keep the composition constant, it is necessary to control the titanium evaporation rate and nitrogen ion beam current density near the substrate as operating conditions. Titanium evaporation rate (R) is 2
~ 5Å / S, 30 as nitrogen ion beam current density (ρ)
It was found that a gold-colored film can be obtained by carrying out an experiment at ˜200 μA / cm 2 and performing vapor deposition under the condition of ρ = 40 · R-50. At this time, it is necessary to keep the value of the nitrogen ion beam current density ρ within ± 8%. In addition, the deposition target substrate 12 must be grounded in order to stabilize the irradiation of the ion beam.

被蒸着基材12、電子ビーム蒸発源15およびイオン銃16
の間の幾何学的位置関係も考慮しなければならない。第
1図に示すように被蒸着基材12とイオン銃16の間の距離
をLIGとし被蒸着基材12と電子ビーム蒸発源15間の距離
をLEBとし、イオン銃16で作り出すイオンビームと電子
ビーム蒸発源15から作り出す蒸発流のなす角度をσとし
て、LIG=400〜900mm、LEB=400〜1000mmにて実験をお
こなった。その結果角度σを25度以内にしなければなら
ないことがわかった。
Deposition substrate 12, electron beam evaporation source 15 and ion gun 16
The geometrical relationship between the two must also be considered. As shown in FIG. 1, the distance between the vapor deposition substrate 12 and the ion gun 16 is LIG, and the distance between the vapor deposition substrate 12 and the electron beam evaporation source 15 is LEB. Experiments were conducted at LIG = 400 to 900 mm and LEB = 400 to 1000 mm, where σ is the angle formed by the evaporation flow generated from the beam evaporation source 15. As a result, it was found that the angle σ must be within 25 degrees.

上記条件設定に当りイオンビームの測定には第4図に
示すようなファラデーカップ53を使用した。ファラデー
カップ53で検出したイオンビームの量は蒸着槽11外に設
けた電流計55により表示する。ファラデーカップ53を蒸
着装置の中で使用する場合、ファラデーカップ53と蒸着
装置とを絶縁する碍子54が蒸着金属(第4図においてチ
タン粒子51)で汚れ易く従来のものでは機能を持続する
ことが難しい。絶縁性が低下するとイオンビーム電流密
度の検出が不安定となりひいてはイオンビームの安定照
射ができない。これを防止するために蒸発流の回り込み
を防ぐとともにイオンビーム(第4図において窒素イオ
ン52)の取り込みを制御することにより二次電子がファ
ラデーカップ53に入ることを制限する蒸発流ガイド56を
設け、更に碍子54の形状を段付きとして蒸着金属が碍子
54に付着しても絶縁が保てるようにする。第5図に蒸着
装置の運転のタイムチャートを示すようにイオンビーム
アシスト蒸着の間ずっとファラデーカップ53でイオンビ
ームの量を検出して蒸着槽11外に表示してモニターして
おくことができる。
When setting the above conditions, a Faraday cup 53 as shown in FIG. 4 was used to measure the ion beam. The amount of the ion beam detected by the Faraday cup 53 is displayed by an ammeter 55 provided outside the vapor deposition tank 11. When the Faraday cup 53 is used in a vapor deposition apparatus, the insulator 54 that insulates the Faraday cup 53 from the vapor deposition apparatus is apt to be contaminated with vapor deposition metal (titanium particles 51 in FIG. 4) and the conventional function can be maintained. difficult. If the insulation is deteriorated, the detection of the ion beam current density becomes unstable, and thus stable irradiation of the ion beam cannot be performed. In order to prevent this, the evaporation flow guide 56 is provided to prevent the secondary flow from entering the Faraday cup 53 by preventing the evaporation flow from wrapping around and controlling the intake of the ion beam (nitrogen ion 52 in FIG. 4). Furthermore, the shape of the insulator 54 is stepped and the deposited metal is an insulator.
Be able to maintain insulation even if it adheres to 54. As shown in the time chart of the operation of the vapor deposition apparatus in FIG. 5, the amount of the ion beam can be detected by the Faraday cup 53 and displayed outside the vapor deposition tank 11 and monitored during the ion beam assisted vapor deposition.

[発明の効果] 上述のようなイオンビームアシスト蒸着方法の構成と
することにより、以下に述べる効果が得られる。
[Advantages of the Invention] With the configuration of the ion beam assisted vapor deposition method as described above, the effects described below can be obtained.

特許請求の範囲第1項に記載のように、蒸着槽内に被
蒸着基材を配置し、前記被蒸着基材に窒素イオンビーム
を照射するとともに、電子ビーム蒸発源からチタンを蒸
発させて前記被蒸着基材に窒化チタン膜の形成を行うイ
オンビームアシスト蒸着方法において、チタンワイヤー
を坩堝へ連続して供給し溶融蒸散させて電子ビーム蒸発
源とし、前記電子ビーム蒸発源は坩堝近傍にあって、チ
タンワイヤーの供給のためのガイドパイプを坩堝の液面
と交叉方向に配置させるとともに反対方向に5〜8度折
り曲げてなるチタンワイヤー供給装置を備えたものであ
るイオンビームアシスト蒸着装置を用いて、前記被蒸着
基材の近傍でのチタン蒸発速度(R)と窒素イオンビー
ム電流密度(p)が各々R=2〜5Å/S、p=30〜200
μA/cm2であり、前記Rと前記pの間の関係が概略p=4
0R−50であることを特徴とするイオンビームアシスト蒸
着方法としたことにより、長時間連続的に一定スピード
でチタンを供給でき、蒸着時の溶融チタンの液面を一定
に保ち、従って蒸発金属流が一定し膜質、組成等の品質
の一定した金色のTiN膜を効率的に安定して生産するこ
とができるという効果が得られる。
As described in claim 1, the vapor deposition base material is arranged in a vapor deposition tank, the vapor deposition base material is irradiated with a nitrogen ion beam, and titanium is vaporized from an electron beam evaporation source. In an ion beam assisted vapor deposition method for forming a titanium nitride film on a substrate to be vapor-deposited, a titanium wire is continuously supplied to a crucible and melted and evaporated to serve as an electron beam evaporation source, and the electron beam evaporation source is near the crucible. Using an ion beam assisted vapor deposition device, which is provided with a titanium wire supply device in which a guide pipe for supplying the titanium wire is arranged in a direction intersecting with the liquid surface of the crucible and is bent 5 to 8 degrees in the opposite direction. , The titanium evaporation rate (R) and the nitrogen ion beam current density (p) in the vicinity of the vapor-deposited substrate are R = 2 to 5Å / S and p = 30 to 200, respectively.
μA / cm 2 and the relationship between R and p is roughly p = 4
By using the ion beam assisted vapor deposition method characterized by being 0R-50, titanium can be continuously supplied at a constant speed for a long time, and the liquid surface of molten titanium during vapor deposition can be kept constant. The effect is that it is possible to efficiently and stably produce a gold-colored TiN film having a constant film quality and composition and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のイオンビームアシスト蒸着装置の実施
例を説明するための装置概略図、第2図は本発明の電子
ビーム蒸発源の実施例を説明するための装置概略図、第
3図は本発明の電子ビーム蒸発源の実験結果を示す相関
図、第4図は本発明のイオンビーム検出装置の実施例を
示す構造図、第5図は本発明の蒸着装置の運転を説明す
るためのタイムチャート図、第6図は従来例の蒸着装置
概略図である。 11……蒸着槽、12……被蒸着基材、13……水晶振動子、
14……レイトコントローラ、15……電子ビーム蒸発源、
16……イオン銃、18……蒸着金属(チタン)、25……電
子銃、53……ファラデーカップ
1 is a schematic view of an apparatus for explaining an embodiment of an ion beam assisted vapor deposition apparatus of the present invention, FIG. 2 is a schematic view of an apparatus for explaining an embodiment of an electron beam evaporation source of the present invention, and FIG. Is a correlation diagram showing the experimental results of the electron beam evaporation source of the present invention, FIG. 4 is a structural diagram showing an embodiment of the ion beam detection device of the present invention, and FIG. 5 is for explaining the operation of the vapor deposition device of the present invention. FIG. 6 is a schematic diagram of a conventional vapor deposition apparatus. 11 …… deposition tank, 12 …… deposited substrate, 13 …… crystal oscillator,
14 …… late controller, 15 …… electron beam evaporation source,
16 …… ion gun, 18 …… evaporated metal (titanium), 25 …… electron gun, 53 …… Faraday cup

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸着槽内に被蒸着基材を配置し、前記被蒸
着基材に窒素イオンビームを照射するとともに、電子ビ
ーム蒸発源からチタンを蒸発させて前記被蒸着基材に窒
化チタン膜の形成を行うイオンビームアシスト蒸着方法
において、チタンワイヤーを坩堝へ連続して供給し溶融
蒸散させて電子ビーム蒸発源とし、前記電子ビーム蒸発
源は坩堝近傍にあって、チタンワイヤーの供給のための
ガイドパイプを坩堝の液面と交叉方向に配置させるとと
もに反対方向に5〜8度折り曲げてなるチタンワイヤー
供給装置を備えたものであるイオンビームアシスト蒸着
装置を用いて、前記被蒸着基材の近傍でのチタン蒸発速
度(R)と窒素イオンビーム電流密度(p)が各々R=
2〜5Å/S、p=30〜200μA/cm2であり、前記Rと前記
pの間の関係が概略p=40R−50であることを特徴とす
るイオンビームアシスト蒸着方法。
1. A titanium nitride film is deposited on a substrate to be vapor-deposited by placing a substrate to be vapor-deposited in a vapor deposition tank, irradiating the substrate to be vapor-deposited with a nitrogen ion beam, and evaporating titanium from an electron beam evaporation source. In the ion beam assisted vapor deposition method for forming the, the titanium wire is continuously supplied to the crucible to be an electron beam evaporation source by melting and evaporating, the electron beam evaporation source is in the vicinity of the crucible, for supplying the titanium wire. In the vicinity of the substrate to be vapor-deposited by using an ion beam assisted vapor deposition device provided with a titanium wire supply device in which the guide pipe is arranged in a direction intersecting with the liquid surface of the crucible and bent in the opposite direction by 5 to 8 degrees. The titanium evaporation rate (R) and nitrogen ion beam current density (p) at R =
2-5Å / S, p = 30-200 μA / cm 2 , and the relationship between R and p is approximately p = 40R-50.
JP1220801A 1989-08-28 1989-08-28 Ion beam assisted vapor deposition method Expired - Fee Related JP2550720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220801A JP2550720B2 (en) 1989-08-28 1989-08-28 Ion beam assisted vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220801A JP2550720B2 (en) 1989-08-28 1989-08-28 Ion beam assisted vapor deposition method

Publications (2)

Publication Number Publication Date
JPH0382756A JPH0382756A (en) 1991-04-08
JP2550720B2 true JP2550720B2 (en) 1996-11-06

Family

ID=16756777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220801A Expired - Fee Related JP2550720B2 (en) 1989-08-28 1989-08-28 Ion beam assisted vapor deposition method

Country Status (1)

Country Link
JP (1) JP2550720B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7020482B2 (en) 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759751B2 (en) * 1986-03-31 1995-06-28 株式会社日立製作所 Thin film manufacturing method

Also Published As

Publication number Publication date
JPH0382756A (en) 1991-04-08

Similar Documents

Publication Publication Date Title
EP0278494B1 (en) Hollow cathode gun and deposition device for ion plating process
JP2550720B2 (en) Ion beam assisted vapor deposition method
US4587135A (en) Process for producing metallic coatings
JPH0219459A (en) Evaporation source assembly having cruucible
JP3407281B2 (en) Continuous vacuum deposition equipment
EP0887435B1 (en) Free-standing rotating evaporation source
JP4142765B2 (en) Ion plating apparatus for forming sublimable metal compound thin films
JPH02122068A (en) Method and device for supplying vaporization material in dry plating
JPS6320464A (en) Vacuum deposition device
JP2898652B2 (en) Evaporator for ion plating
JP3741160B2 (en) Continuous vacuum deposition apparatus and continuous vacuum deposition method
JPH09324261A (en) Vacuum deposition device and method for controlling film thickness therefor
JP2005105375A (en) Thin film production method and thin film production apparatus
JPH0633237A (en) Vapor deposition plating method of sublimatable material
JPH08225932A (en) Electron beam heating vapor deposition method and apparatus thereof
JPS62180064A (en) Coating method for inside surface of pipe by arc melting method
JPS6314861A (en) Vacuum deposition device
JPS60169561A (en) Method and apparatus for forming thin film
JP3430543B2 (en) Crucible for continuous vacuum deposition equipment
JPH05255841A (en) Plating method by vacuum deposition with electron beam heating system
JPH05320886A (en) Ion plating device
JPH03215661A (en) Ion plating device
JPH04358061A (en) Electron beam heating type vapor-deposition plating method
JP2634487B2 (en) Abrasion resistant film formation method by ion plating
JPH04346666A (en) Vapor depositing material feeder for ion plating apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees