JP2545926B2 - Current detector - Google Patents

Current detector

Info

Publication number
JP2545926B2
JP2545926B2 JP63128622A JP12862288A JP2545926B2 JP 2545926 B2 JP2545926 B2 JP 2545926B2 JP 63128622 A JP63128622 A JP 63128622A JP 12862288 A JP12862288 A JP 12862288A JP 2545926 B2 JP2545926 B2 JP 2545926B2
Authority
JP
Japan
Prior art keywords
film
current
conductive film
magnetic
magnetic sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63128622A
Other languages
Japanese (ja)
Other versions
JPH01105178A (en
Inventor
好 吉野
達也 筧
青  建一
俊和 荒砂
一朗 伊澤
博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP63128622A priority Critical patent/JP2545926B2/en
Publication of JPH01105178A publication Critical patent/JPH01105178A/en
Application granted granted Critical
Publication of JP2545926B2 publication Critical patent/JP2545926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導体に流れる被測定電流を該導体から電気
的に絶縁した状態にて検出する電流検出器に関する。
TECHNICAL FIELD The present invention relates to a current detector for detecting a current to be measured flowing in a conductor in a state of being electrically insulated from the conductor.

〔従来の技術〕[Conventional technology]

そのような電流検出器として従来では、被測定電流を
コイルに流して磁界を発生させ、ホール素子あるいは磁
気抵抗素子にて検出するものが提案されている。
Conventionally, as such a current detector, a current detector has been proposed in which a current to be measured is passed through a coil to generate a magnetic field, which is detected by a hall element or a magnetoresistive element.

〔発明が解決しようとする課題〕 しかしながら、従来の電流検出器によると、被測定電
流の回路にコイルによるリアクタンス成分が入る為、出
力の応答性が悪くなってしまう。又、コイルと検出素子
の一体化が困難であり、別部品となる為に小型化に限界
があり、さらには、コイルと検出素子との間のギャップ
等の組み付け精度に限界がある為にその調整を行う必要
があるという問題があった。
[Problems to be Solved by the Invention] However, according to the conventional current detector, since the reactance component due to the coil enters the circuit of the measured current, the response of the output is deteriorated. In addition, it is difficult to integrate the coil and the detection element, and there is a limit to miniaturization because it is a separate part, and further, there is a limit to the assembly accuracy such as the gap between the coil and the detection element. There was a problem that it was necessary to make adjustments.

そこで本発明は上記の問題点に鑑みなされたものであ
って、従来のものと比較して十分に小型で高精度の電流
検出器を提供する事を目的としている。
Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a current detector which is sufficiently small and highly accurate as compared with the conventional one.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成する為に本発明の電流検出器は、被
測定電流の流れる薄膜の導電膜、及び薄膜の強磁性抵抗
素子より成る感磁性膜とを電気的に絶縁した状態にて基
板上に形成した事を特徴としている。
In order to achieve the above-mentioned object, the current detector of the present invention has a thin film conductive film on which a current to be measured flows and a magnetic sensitive film formed of a thin film ferromagnetic resistance element on a substrate in an electrically insulated state. It is characterized by being formed in.

又、前記感磁性膜は、前記導電膜の上側に形成し、前
記感磁性膜のパターン巾をWM,前記導電膜のパターン巾
をWALとした場合、WM/WAL≧1.3に設定しても良い。
When the magnetic sensitive film is formed above the conductive film and the pattern width of the magnetic sensitive film is W M and the pattern width of the conductive film is W AL , W M / W AL ≧ 1.3 is set. You may.

又、前記導電膜はアルミニウムとしても良い。 Further, the conductive film may be aluminum.

又、被測定電流の流れる薄膜の導電膜、及び薄膜の電
流磁気抵抗素子より成る感磁性膜とが電気的に絶縁され
た状態にて絶縁基板上に形成され、 前記導電膜及び前記感磁性膜は、互いに離間した状態
で、かつ同じ高さで前記絶縁基板上に並列配置されてい
る事を特徴とする電流検出器。
Further, the thin film conductive film through which the current to be measured flows and the magnetic sensitive film composed of the thin film current magnetoresistive element are formed on the insulating substrate in an electrically insulated state, and the conductive film and the magnetic sensitive film are provided. Are arranged in parallel on the insulating substrate at a distance from each other and at the same height.

又、前記電流磁気抵抗素子はホール素子としても良
い。
The current magnetoresistive element may be a Hall element.

〔作用〕[Action]

上記の手段によると、導電膜に流れる被測定電流によ
りその電流の大きさに比例した磁界が発生し、その磁界
が感磁性膜に印加されると電流磁気効果により電気的に
その磁界の強さ、延いては被測定電流の大きさを検出で
きる。又、基板上に形成する導電膜及び磁性膜は全て薄
膜である為に、半導体の薄膜技術、フォトリソグラフィ
技術により小型で高精度に形成できる。
According to the above means, the measured current flowing in the conductive film generates a magnetic field proportional to the magnitude of the current, and when the magnetic field is applied to the magnetosensitive film, the strength of the magnetic field is electrically generated by the current-magnetic effect. As a result, the magnitude of the measured current can be detected. Further, since the conductive film and the magnetic film formed on the substrate are all thin films, they can be formed in a small size and with high precision by the semiconductor thin film technology and photolithography technology.

又、強磁性磁気抵抗素子を用いて積層することによ
り、感度を高くできると共に、より一層の小型化が可能
となる。
Further, by stacking the layers using the ferromagnetic magnetoresistive element, the sensitivity can be increased and the size can be further reduced.

又、パターン巾をWM/WAL≧1.3に設定することにより
抵抗変化率が高くなり、ほぼ飽和する。
Also, by setting the pattern width to W M / W AL ≧ 1.3, the rate of resistance change becomes high and the resistance is almost saturated.

又、請求項4記載の発明では、導電膜と感磁性膜とが
同一基板上の同一平面上に形成されるため、その形成が
容易となる。
Further, in the invention according to claim 4, the conductive film and the magnetic sensitive film are formed on the same plane on the same substrate, so that the formation thereof is facilitated.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例を用いて詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings.

第1図は本発明の第1実施例を示す図であり、同図
(a)にその平面図、同図(b)に同図(a)中のA−
A線断面図を示す。図において、4は絶縁性基板であ
り、その絶縁性基板4上に本発明の言う電流磁気効果素
子としてNi−Fe合金から成る強磁性磁気抵抗素子の薄膜
を蒸着により付着した後、フォトリソグラフィ技術によ
り所定のパターンにエッチングして感磁性膜1を形成す
る。そして、感磁性膜1上にスパッタリングにより例え
ばSiO2膜による絶縁膜2を被覆する。さらに、この絶縁
膜2上に蒸着によりアルミニウム薄膜を付着し、フォト
リソグラフィ技術により所定パターンにエッチングして
導電膜3を形成する。
FIG. 1 is a view showing a first embodiment of the present invention, in which FIG. 1 (a) is a plan view thereof, and FIG. 1 (b) is a line A- in FIG. 1 (a).
A sectional view taken on line A is shown. In the figure, reference numeral 4 designates an insulating substrate, and a thin film of a ferromagnetic magnetoresistive element made of a Ni—Fe alloy as a current magnetic effect element according to the present invention is deposited on the insulating substrate 4 by vapor deposition, followed by photolithography technique. Thus, the magnetic sensitive film 1 is formed by etching into a predetermined pattern. Then, the magnetic sensitive film 1 is covered with the insulating film 2 made of, for example, a SiO 2 film by sputtering. Further, an aluminum thin film is attached on the insulating film 2 by vapor deposition, and the conductive film 3 is formed by etching into a predetermined pattern by a photolithography technique.

ここで、強磁性磁気抵抗素子としては上記の他にFe,C
o,Ni等を主成分として含むものであれば良い。又、強磁
性磁気抵抗素子は電流の流れる方向に対して直交する方
向から磁界を受けると、その部分の抵抗値が減少する特
性を有している。
Here, in addition to the above, as the ferromagnetic magnetoresistive element, Fe, C
Any material containing o, Ni or the like as a main component may be used. Further, when the ferromagnetic magnetoresistive element receives a magnetic field from a direction orthogonal to the direction of current flow, the resistance value of that portion decreases.

そこで本実施例によると、導電膜3に図中上向の矢印
で示す方向、即ち端部5から端部6に向う方向に電流I
を流すと、図中左向の矢印で示す方向に電流Iの大きさ
に比例した強度の磁界Hが発生する。ここで、感磁性膜
1の両端部7,8間に、例えば図中点線矢印で示す方向に
定電流を流した場合、前記の磁界Hはこの感磁性膜1に
対して、水平に、かつ電流の流れる方向に対して直交す
る方向に印加される事になる。そして、その磁界Hを受
けると感磁性膜1の抵抗値はその磁界強度に比例して変
化する。従って、この抵抗値を検出する事により電流I
の大きさを検出する事ができる。又、この電流検出器は
感磁性膜1と導電膜3とが絶縁膜2により電気的に絶縁
されているので被測定電流に影響を与えずに測定する事
ができる。
Therefore, according to this embodiment, the current I is applied to the conductive film 3 in the direction indicated by the upward arrow in the drawing, that is, in the direction from the end 5 to the end 6.
Flowing, a magnetic field H having an intensity proportional to the magnitude of the current I is generated in the direction indicated by the arrow pointing to the left in the figure. Here, when a constant current is applied between both ends 7 and 8 of the magnetic sensitive film 1 in the direction indicated by the dotted arrow in the figure, the magnetic field H is horizontal to the magnetic sensitive film 1 and It is applied in a direction orthogonal to the direction of current flow. When the magnetic field H is received, the resistance value of the magnetic sensitive film 1 changes in proportion to the magnetic field strength. Therefore, by detecting this resistance value, the current I
The size of can be detected. Further, since the magnetic sensitive film 1 and the conductive film 3 are electrically insulated by the insulating film 2 in this current detector, the current can be measured without affecting the current to be measured.

さらに、本実施例によると以下に示す効果がある。即
ち、 従来技術のように被測定電流をコイルに流す必要がな
いのでリアクタンス成分が入る事がなく、その分、出力
の応答性が良くなる。
Further, according to the present embodiment, there are the following effects. That is, unlike the prior art, it is not necessary to pass the current to be measured through the coil, so that the reactance component does not enter, and the output response is improved accordingly.

絶縁性基板4上に形成する感磁性膜1、絶縁膜2、及
び導電膜3は全て薄膜に形成され、それらは半導体の薄
膜技術、フォトリソグラフィ技術により形成されるの
で、その幅方向、及び厚さ方向において制御性の良い状
態で微細加工が可能となり、非常に高精度に、かつ小型
に形成できる。又、本実施例によると、感磁性膜1、絶
縁膜2、及び導電膜3が積層されているので、絶縁性基
板4上の占有面積が非常に小さく、より一層の小型化が
可能となる。
The magnetic sensitive film 1, the insulating film 2, and the conductive film 3 formed on the insulating substrate 4 are all formed into a thin film, and they are formed by a semiconductor thin film technique or photolithography technique. In the depth direction, fine processing is possible with good controllability, and it is possible to form with extremely high precision and small size. Further, according to the present embodiment, since the magnetic sensitive film 1, the insulating film 2 and the conductive film 3 are laminated, the occupied area on the insulating substrate 4 is very small, and the size can be further reduced. .

電流磁気効果素子として強磁性磁気抵抗素子を使用し
ている事から、他のホール素子あるいは半導体磁気抵抗
素子(例えばInSb)等と比較して、第2図の電流値と出
力との関係図に示すように感度が高いので、小電流域に
おいても良好に使用でき、又、温度特性についても定電
流におけるその温度係数が半導体磁気抵抗素子では−2
%/℃、ホール素子では−0.13%/℃であるのに対し、
強磁性磁気抵抗素子では−0.05%/℃であり、その値が
小さい事から比較的特性の良い電流検出器を構成でき
る。
Since a ferromagnetic magnetoresistive element is used as the current magnetic effect element, it is compared with other Hall elements or semiconductor magnetoresistive elements (for example, InSb), etc. Since the sensitivity is high as shown, it can be used satisfactorily even in a small current range, and the temperature coefficient of the semiconductor magnetoresistive element is -2 at a constant current.
% / ° C, and Hall element is -0.13% / ° C,
In the case of a ferromagnetic magnetoresistive element, the value is -0.05% / ° C, and since the value is small, a current detector having relatively good characteristics can be constructed.

尚、上記第1実施例では感磁性膜1の上側に導電膜3
が形成される構成であるが、言うまでもなく導電膜3の
上側に感磁性膜1を形成しても同様の効果が期待でき
る。
In the first embodiment, the conductive film 3 is formed on the magnetic sensitive film 1.
However, needless to say, the same effect can be expected by forming the magnetic sensitive film 1 on the upper side of the conductive film 3.

次に、第3図を用いて本発明の第2実施例を説明す
る。第3図(a)は第2実施例の斜視図、第3図(b)
はそのB−B線断面図である。図において、11は絶縁性
基板であり、その絶縁性基板11上に蒸着によりアルミニ
ウム薄膜を付着し、フォトリソグラフィ技術により所定
のパターンにエッチングして第1の導電膜12を形成す
る。そして、スパッタリングにより絶縁膜13を被覆し、
絶縁膜13上に強磁性磁気抵抗素子の薄膜を蒸着により付
着した後、所定のパターンにエッチングして感磁性膜14
を形成する。その後に、上記と同様の方法にて絶縁膜1
5、アルミニウムから成る第2の導電膜16を形成し、絶
縁膜13,15にコンタクトホール20を形成する事により該
コンタクトホール20内にもアルミニムムを充填させて、
第1の導電膜12と第2の導電膜16との結線を行う。そし
て、保護膜17を形成して本実施例の電流検出器を構成す
る。尚、図中18a,18bは被測定電流端子、19a,19bは感磁
性膜14の両端子である。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 (a) is a perspective view of the second embodiment, and FIG. 3 (b).
Is a sectional view taken along line BB. In the figure, reference numeral 11 denotes an insulating substrate, and an aluminum thin film is deposited on the insulating substrate 11 by vapor deposition and is etched into a predetermined pattern by a photolithography technique to form a first conductive film 12. Then, the insulating film 13 is covered by sputtering,
After depositing a thin film of a ferromagnetic magnetoresistive element on the insulating film 13 by vapor deposition, the magnetic sensitive film 14 is etched by a predetermined pattern.
To form. After that, in the same manner as above, the insulating film 1
5, the second conductive film 16 made of aluminum is formed, and the contact holes 20 are formed in the insulating films 13 and 15 so that the contact holes 20 are filled with aluminum,
The first conductive film 12 and the second conductive film 16 are connected. Then, the protective film 17 is formed to form the current detector of this embodiment. In the figure, 18a and 18b are current terminals to be measured, and 19a and 19b are both terminals of the magnetic sensitive film 14.

そこで上記第2実施例によると、被測定電流iを端子
18aから端子18bの方向に流すと、感磁性膜14は上下の第
1、第2の導電膜12,16から共に水平でかつ電流の流れ
る方向(端子19aから端子19bに向う方向、あるいはその
逆方向)に対して直交する方向に磁界Hを受け、その抵
抗値が減少する。従って抵抗値を測定する事により、被
測定電流iの大きさを検出できる。そして、この第2実
施例においても上記第1実施例と同様の効果が期待でき
る事になるが、両実施例を比較すると、導電膜に同じ大
きさの被測定電流を流した場合、感磁性膜が受ける磁界
の強度が2倍になるので第2実施例の方が出力が大きく
なり感度が向上する。
Therefore, according to the second embodiment described above, the measured current i is
When flowing from 18a to the terminal 18b, the magnetic sensitive film 14 is horizontal from both the upper and lower first and second conductive films 12 and 16 and has a current flowing direction (direction from the terminal 19a to the terminal 19b, or vice versa). The magnetic field H is received in the direction orthogonal to the (direction), and the resistance value decreases. Therefore, by measuring the resistance value, the magnitude of the measured current i can be detected. The same effect as that of the first embodiment can be expected in the second embodiment. However, comparing both the embodiments, when the measured current of the same magnitude is applied to the conductive film, the magnetic sensitivity is reduced. Since the strength of the magnetic field received by the film is doubled, the output is larger and the sensitivity is improved in the second embodiment.

次に、第4図を用いて本発明の第3実施例を説明す
る。第4図(a)は第3実施例の平面図、第4図(b)
はそのC−C線断面図である。図において、21は絶縁性
基板であり、その絶縁性基板21上の所定領域にアルミニ
ウム薄膜から成る導電膜22を形成する。そして、絶縁性
基板21上で導電膜22に並行に電流磁気効果素子の薄膜か
ら成る感磁性膜23を所定パターンに形成する。尚、この
第3実施例では電流磁気効果素子としてInSb,GaAs等か
ら成るホール素子、あるいはInSb等から成る半導体磁気
抵抗素子が好適である。
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 4 (a) is a plan view of the third embodiment, and FIG. 4 (b).
Is a sectional view taken along the line CC. In the figure, 21 is an insulating substrate, and a conductive film 22 made of an aluminum thin film is formed in a predetermined region on the insulating substrate 21. Then, on the insulating substrate 21, a magnetic sensitive film 23 made of a thin film of a current magnetic effect element is formed in a predetermined pattern in parallel with the conductive film 22. In the third embodiment, a Hall element made of InSb, GaAs or the like or a semiconductor magnetoresistive element made of InSb or the like is suitable as the current magnetic effect element.

そこで上記第3実施例によると、導電膜22に図中矢印
に示す方向に被測定電流Iを流すと、感磁性膜23はその
平面に垂直な方向から磁界Hを受ける。従って、電流磁
気効果素子としてホール素子を採用した場合には、感磁
性膜23の電流iの流れる方向(図では端子24aから端子2
4bに向う方向)、及び磁界Hの方向のいずれにも直角な
方向、即ち、端子25aから端子25bに向う方向に磁界Hの
強さに比例した大きさの電位差が生じるので、その電位
差を測定する事により、被測定電流Iの大きさを検出で
きる。又、電流磁気効果素子として半導体磁気抵抗素子
を採用した場合には、磁界Hの強さに比例して感磁性膜
23の抵抗値が増加する事から、その抵抗値を測定する事
により、被測定電流Iの大きさを検出できる。
Therefore, according to the third embodiment, when the current I to be measured is passed through the conductive film 22 in the direction shown by the arrow in the figure, the magnetic sensitive film 23 receives the magnetic field H from the direction perpendicular to its plane. Therefore, when a Hall element is used as the current magnetic effect element, the direction in which the current i of the magnetic sensitive film 23 flows (from the terminal 24a to the terminal 2 in the figure)
4b) and a direction of the magnetic field H, that is, a potential difference of a magnitude proportional to the strength of the magnetic field H is generated in the direction perpendicular to the direction of the magnetic field H, that is, from the terminal 25a to the terminal 25b. By doing so, the magnitude of the measured current I can be detected. When a semiconductor magnetoresistive element is used as the current magnetic effect element, the magnetic sensitive film is proportional to the strength of the magnetic field H.
Since the resistance value of 23 increases, the magnitude of the measured current I can be detected by measuring the resistance value.

次に、第5図を用いて本発明の第4実施例を説明す
る。第5図(a)は第4実施例の平面図、第5図(b)
はそのD−D線断面図である。本実施例は上記第1実施
例において、導電膜の上側に感磁性膜を形成した例であ
り、各構成要素は第1実施例と同様の工程により形成可
能である。
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 (a) is a plan view of the fourth embodiment, and FIG. 5 (b).
Is a cross-sectional view taken along the line D-D. This embodiment is an example in which the magnetic sensitive film is formed on the upper side of the conductive film in the first embodiment, and each component can be formed by the same steps as in the first embodiment.

絶縁性基板34上に所定パターンに形成された導電膜33
には、端部35から端部36に向う方向に被測定電流Iが流
れる。この導電膜33上に絶縁膜32を介して感磁性膜31が
積層されており、被測定電流Iが導電膜36を流れると、
その電流の大きさに比例した強度の磁界Hがこの感磁性
膜31上に作用するようになる。その結果、第1実施例と
同様の作用により感磁性膜31の両端部37,38間の抵抗値
がその磁界強度に比例して変化することになり、この抵
抗値を検出する事により電流Iの大きさを検出すること
ができる。
Conductive film 33 formed in a predetermined pattern on insulating substrate 34
, The current I to be measured flows from the end portion 35 toward the end portion 36. The magnetic sensitive film 31 is laminated on the conductive film 33 via the insulating film 32, and when the measured current I flows through the conductive film 36,
A magnetic field H having an intensity proportional to the magnitude of the current acts on the magnetic sensitive film 31. As a result, the resistance value between the both ends 37, 38 of the magnetic sensitive film 31 changes in proportion to the magnetic field strength by the same action as in the first embodiment, and the current I is detected by detecting this resistance value. The size of can be detected.

第6図は第4実施例による電流検出器における感磁性
膜31と導電膜33のパターン比と、その際の感磁性膜31の
抵抗変化率との関係を表す特性図であり、パターン比は
第5図(b)に示すように感磁性膜31のパターン巾WM
導電膜33のパターン巾WALを用いてWM/WALで表され、
又、抵抗変化率は電流I=0mAの時の抵抗値をR
(0)、電流I=50mAの時の抵抗値をR(50)とする場
合、(R(0)−R(50))/R(0)で表される。尚、
測定は感磁性膜31としてNi−Fe合金から成る強磁性磁気
抵抗素子を用いて行った。
FIG. 6 is a characteristic diagram showing the relationship between the pattern ratio of the magnetic sensitive film 31 and the conductive film 33 in the current detector according to the fourth embodiment and the rate of change in resistance of the magnetic sensitive film 31 at that time. As shown in FIG. 5 (b), the pattern width W M of the magnetic sensitive film 31 and the pattern width W AL of the conductive film 33 are used and expressed as W M / W AL ,
The resistance change rate is the resistance value when the current I = 0mA is R
When the resistance value at (0) and the current I = 50 mA is R (50), it is represented by (R (0) -R (50)) / R (0). still,
The measurement was performed using a ferromagnetic magnetoresistive element made of a Ni—Fe alloy as the magnetic sensitive film 31.

第6図よりWM/WAL≧1.3にすることにより抵抗変化率
を最も高い値に設定することができ、検出器の感度を高
めることができる。又、抵抗変化値がほぼ飽和するの
で、製造誤差等の影響を低減でき、安定的な電流検出を
行い得る検出器を提供できる。尚、このような特性が得
られる理由として次の事が考えられる。電流Iにより発
生する磁界Hは導電膜33を中心に環状に作用するので、
必然的に導電膜33のパターンより巾方向に広がった部位
にも磁界Hは作用する事になる。そこで、導電膜33のパ
ターン巾WALより感磁性膜31のパターン巾WMを巾広とす
ることにより、そのような磁界Hの幅方向成分を感磁性
膜31に有効に作用させる事ができる。又、導電膜33のパ
ターンのエッジの部分で感磁性膜31が導電膜33を取り囲
むように形成される為に、導電膜33に流れる電流Iによ
り発生する磁界Hが第5図(b)中に点線で示すよう
に、感磁性膜31中を効果的に横切る為に、その抵抗変化
率を高めているものと考えられる。又、WM/WAL≧1.3に
設定する事により抵抗変化率がほぼ飽和するのは、ほぼ
WM/WAL=1.3にて磁界Hが感磁性膜31に最も効果的に作
用する為に、抵抗変化率が最も高い値となり、WM/WAL
1.3になると、磁界強度は距離(この場合、導電膜33と
感磁性膜31との間隔)の2乗に反比例する為に導電膜33
から離れた部分の感磁性膜31においてはほとんど抵抗値
変化しなくなり、抵抗変化率が飽和するものと考えられ
る。
From FIG. 6, by setting W M / W AL ≧ 1.3, the rate of resistance change can be set to the highest value and the sensitivity of the detector can be increased. Further, since the resistance change value is almost saturated, it is possible to provide a detector that can reduce the influence of manufacturing error and the like and can perform stable current detection. The following is considered as the reason why such characteristics are obtained. Since the magnetic field H generated by the current I acts in a ring shape centering on the conductive film 33,
Inevitably, the magnetic field H also acts on the portion of the conductive film 33 that is wider than the pattern in the width direction. Therefore, by making the pattern width W M of the magnetic sensitive film 31 wider than the pattern width W AL of the conductive film 33, such a width direction component of the magnetic field H can be effectively applied to the magnetic sensitive film 31. . Further, since the magnetic sensitive film 31 is formed so as to surround the conductive film 33 at the edge portion of the pattern of the conductive film 33, the magnetic field H generated by the current I flowing through the conductive film 33 is shown in FIG. It is considered that the resistance change rate is increased in order to effectively traverse the magnetic sensitive film 31, as indicated by the dotted line. Also, the resistance change rate is almost saturated by setting W M / W AL ≧ 1.3.
When W M / W AL = 1.3, the magnetic field H acts most effectively on the magnetic sensitive film 31, so that the rate of change in resistance becomes the highest, and W M / W AL >
At 1.3, the magnetic field strength is inversely proportional to the square of the distance (in this case, the distance between the conductive film 33 and the magnetic sensitive film 31), and therefore the conductive film 33 is
It is considered that the resistance value hardly changes in the magnetic sensitive film 31 in the portion away from, and the resistance change rate is saturated.

又、上述のような電流検出器を用いる場合には、感磁
性膜31の両端部37,38間に抵抗値として得られる微弱な
信号を処理する為に、一般には後段の回路に演算増幅器
(オペアンプ)が接続されることになるが、演算増幅器
のオフセット電圧は通常3mV程度以下である為、抵抗変
化率が0.3%以上であればオフセットがあったとしても
問題なく電流検出が行える。従って、第6図よりWM/WAL
≧0.6に設定すれば良い。
Further, when using the current detector as described above, in order to process a weak signal obtained as a resistance value between both ends 37, 38 of the magnetic sensitive film 31, in general, an operational amplifier ( Although the operational amplifier will be connected, the offset voltage of the operational amplifier is usually about 3 mV or less, so if the resistance change rate is 0.3% or more, current detection can be performed without problems even if there is an offset. Therefore, from Figure 6, W M / W AL
It should be set to ≧ 0.6.

次に、上記第1乃至第4実施例の電流検出器を用い
て、実際に被測定電流を検出する場合の電気回路を第7
図乃至第9図を用いて説明する。尚、図中の符号は第1
図に示した第1実施例の構成に対応している。
Next, using the current detectors of the first to fourth embodiments, an electric circuit for actually detecting the current to be measured is referred to as a seventh circuit.
This will be described with reference to FIGS. Incidentally, the reference numeral in the drawing is the first
This corresponds to the configuration of the first embodiment shown in the figure.

第7図に示す例は、感磁性膜1と他の抵抗R1,R2,R3
よりフルブリッジを構成し、電極(端部)8を比較器
(コンパレータ)40の一方の入力に接続し、電極Aを他
方の入力に接続した構成である。この回路によると、抵
抗R1,R2の抵抗値を調整して、電極Aの電位を所望の値
に設定する事により、所定の電流Iに達した時に比較器
40により信号が出力されることになり、任意の電流値I
の検出が行える。
In the example shown in FIG. 7, the magnetic sensitive film 1 and the other resistors R 1 , R 2 and R 3 form a full bridge, and the electrode (end) 8 is connected to one input of the comparator 40. However, the electrode A is connected to the other input. According to this circuit, by adjusting the resistance values of the resistors R 1 and R 2 and setting the potential of the electrode A to a desired value, the comparator when the predetermined current I is reached.
A signal is output by 40, and an arbitrary current value I
Can be detected.

第8図に示す例は、感磁性膜1と他の抵抗R4,R5,R6
よりフルブリッジを構成し、電極Bを演算増幅器41から
成るボルテージフォロワの+入力に接続し、電極(端
部)8を演算増幅器42及び抵抗R7,R8から成る非反転増
幅回路の+入力に接続した構成である。この回路による
と、非反転増幅回路の出力端子より被測定電流1に比例
した出力が得られる。
In the example shown in FIG. 8, the magnetic sensitive film 1 and the other resistors R 4 , R 5 , and R 6 form a full bridge, and the electrode B is connected to the + input of the voltage follower composed of the operational amplifier 41, and the electrode ( The end portion 8 is connected to the + input of the non-inverting amplifier circuit composed of the operational amplifier 42 and the resistors R 7 and R 8 . According to this circuit, an output proportional to the measured current 1 is obtained from the output terminal of the non-inverting amplifier circuit.

第9図に示す例は、感磁性膜1を2ケ所に形成し、こ
れらと抵抗R9,R10によりフルブリッジを構成しており、
この回路による感度が2倍になるという利点がある。
In the example shown in FIG. 9, the magnetic sensitive film 1 is formed in two places, and a full bridge is formed by these and the resistors R 9 and R 10 .
This circuit has the advantage of doubling the sensitivity.

以上、本発明を上記実施例により説明したが、本発明
はそれらに限定される事なく、その主旨を逸脱しない限
り種々変形可能であり、例えば、感磁性膜及び導電膜を
形成する方法としては蒸着の他にスパッタリング、イオ
ンビームデポジション、CVD等が採用可能であり、絶縁
膜を形成する方法としてもスパッタリングの他にCVD等
が採用可能であり、又、その絶縁膜はSi3N4等の薄膜で
あってもよい。さらに、本発明の言う基板としては絶縁
性基板の他に例えば半導体基板上に絶縁膜を形成したも
のであってもよい。その場合、半導体基板内に半導体素
子を形成すればICとの一体化も容易である。
Although the present invention has been described above with reference to the above embodiments, the present invention is not limited thereto and can be variously modified without departing from the gist thereof. For example, as a method of forming a magnetic sensitive film and a conductive film, In addition to vapor deposition, sputtering, ion beam deposition, CVD, etc. can be adopted. As a method for forming an insulating film, CVD, etc. can also be adopted in addition to sputtering, and the insulating film is Si 3 N 4 etc. It may be a thin film. Further, the substrate referred to in the present invention may be, for example, a semiconductor substrate on which an insulating film is formed in addition to the insulating substrate. In that case, if a semiconductor element is formed in the semiconductor substrate, it can be easily integrated with the IC.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、導電膜及び感磁
性膜とを電気的に絶縁した状態にて基板上に形成してい
るので、十分に小型で高精度が電流検出器を提供できる
という優れた効果がある。
As described above, according to the present invention, since the conductive film and the magnetic sensitive film are formed on the substrate in an electrically insulated state, it is possible to provide a sufficiently small and highly accurate current detector. There is an excellent effect.

又、強磁性磁気抵抗素子を用いて積層する事により、
感度を高くできると共に、より一層の小型化が可能とな
る。
Also, by stacking with a ferromagnetic magnetoresistive element,
The sensitivity can be increased and the size can be further reduced.

又、パターン巾をWM/WAL≧1.3に設定する事により、
より感度を高めることができると共に安定な電流検出器
を提供できる。
Also, by setting the pattern width to W M / W AL ≧ 1.3,
It is possible to further improve the sensitivity and provide a stable current detector.

又、請求項4記載の発明では、さらに、基板の同一平
面上に導電膜と感磁性膜とが形成されることになるた
め、容易にこれらを形成することができる。
Further, in the invention according to claim 4, since the conductive film and the magnetic sensitive film are formed on the same plane of the substrate, they can be easily formed.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の第1実施例の平面図、第1図
(b)は第1図(a)中のA−A線断面図、第2図は電
流磁気効果素子における電流値と出力との関係図、第3
図(a)は本発明の第2実施例の斜視図、第3図(b)
は第3図(a)中のB−B線断面図、第4図(a)は本
発明の第3実施例の平面図、第4図(b)は第4図
(a)中のC−C線断面図、第5図(a)は本発明の第
4実施例の平面図、第5図(b)は第5図(a)中のD
−D線断面図、第6図は第4実施例のパターン巾の比と
抵抗変化率との関係を表す特性図、第7図乃至第9図は
本発明の電流検出器を用いた装置の電気回路図である。 1……感磁性膜,2……絶縁膜,3……導電膜,4……絶縁性
基板。
FIG. 1 (a) is a plan view of the first embodiment of the present invention, FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a), and FIG. 2 is a current in a current magnetic effect element. Relationship between value and output, 3rd
FIG. 3 (a) is a perspective view of the second embodiment of the present invention, and FIG. 3 (b).
Is a sectional view taken along line BB in FIG. 3 (a), FIG. 4 (a) is a plan view of a third embodiment of the present invention, and FIG. 4 (b) is C in FIG. 4 (a). FIG. 5A is a plan view of the fourth embodiment of the present invention, and FIG. 5B is a D view in FIG. 5A.
FIG. 6 is a characteristic view showing the relationship between the pattern width ratio and the resistance change rate in the fourth embodiment, and FIGS. 7 to 9 show the device using the current detector of the present invention. It is an electric circuit diagram. 1 ... Magnetic sensitive film, 2 ... Insulating film, 3 ... Conductive film, 4 ... Insulating substrate.

フロントページの続き (72)発明者 荒砂 俊和 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (72)発明者 伊澤 一朗 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (72)発明者 桜井 博 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (56)参考文献 特開 昭61−97574(JP,A)Front Page Continuation (72) Inventor Toshikazu Arashi 1-1, Showamachi, Kariya, Aichi Prefecture, Nippon Denso Co., Ltd. (72) Inventor, Ichiro Izawa, 1-1, Showamachi, Kariya City, Aichi Nippon Denso Co., Ltd. (72 ) Inventor Hiroshi Sakurai, 1-1, Showa-cho, Kariya city, Aichi Prefecture, Nippon Denso Co., Ltd. (56) Reference JP-A-61-97574 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定電流の流れる薄膜の導電膜、及び薄
膜の強磁性磁気抵抗素子より成る感磁性膜とが電気的に
絶縁された状態にて基板上に形成され、 前記導電膜及び前記感磁性膜は該両者間に絶縁膜を介し
て前記基板上に積層配置されていることを特徴とする電
流検出器。
1. A thin film conductive film through which a current to be measured flows and a magnetic sensitive film composed of a thin film ferromagnetic magnetoresistive element are formed on a substrate in an electrically insulated state. A current detector characterized in that a magnetically sensitive film is laminated on the substrate with an insulating film interposed therebetween.
【請求項2】前記感磁性膜は、前記導電膜の上側に形成
されるものであり、前記感磁性膜のパターン巾をWM,前
記導電膜のパターン巾をWAMとした場合、WM/WAM≧1.3に
設定されている請求項1記載の電流検出器。
2. The magnetic-sensitive film is formed on the upper side of the conductive film, and when the pattern width of the magnetic-sensitive film is W M and the pattern width of the conductive film is W AM , W M The current detector according to claim 1, wherein / W AM ≧ 1.3 is set.
【請求項3】前記導電膜はアルミニウムである請求項1
記載の電流検出器。
3. The conductive film is aluminum.
The current detector described.
【請求項4】被測定電流の流れる薄膜の導電膜、及び薄
膜の電流磁気抵抗素子より成る感磁性膜とが電気的に絶
縁された状態にて絶縁基板上に形成され、 前記導電膜及び前記感磁性膜は、互いに離間した状態
で、かつ同じ高さで前記絶縁基板上に並列配置されてい
る事を特徴とする電流検出器。
4. A thin film conductive film through which a current to be measured flows and a magnetic sensitive film composed of a thin film current magnetoresistive element are formed on an insulating substrate in a state of being electrically insulated, A current detector characterized in that the magnetic sensitive films are arranged in parallel on the insulating substrate while being separated from each other and at the same height.
【請求項5】前記電流磁気抵抗素子は、ホール素子であ
る請求項4記載の電流検出器。
5. The current detector according to claim 4, wherein the current magnetoresistive element is a Hall element.
JP63128622A 1987-07-07 1988-05-26 Current detector Expired - Lifetime JP2545926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63128622A JP2545926B2 (en) 1987-07-07 1988-05-26 Current detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16896787 1987-07-07
JP62-168967 1987-07-07
JP63128622A JP2545926B2 (en) 1987-07-07 1988-05-26 Current detector

Publications (2)

Publication Number Publication Date
JPH01105178A JPH01105178A (en) 1989-04-21
JP2545926B2 true JP2545926B2 (en) 1996-10-23

Family

ID=26464230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63128622A Expired - Lifetime JP2545926B2 (en) 1987-07-07 1988-05-26 Current detector

Country Status (1)

Country Link
JP (1) JP2545926B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559474Y2 (en) * 1991-07-05 1998-01-19 株式会社村田製作所 Current detector
JP2005204375A (en) * 2004-01-14 2005-07-28 Nec Corp Overcurrent protection circuit and portable communication terminal device
JP4105145B2 (en) 2004-11-30 2008-06-25 Tdk株式会社 Current sensor
JP4853807B2 (en) * 2007-02-21 2012-01-11 甲神電機株式会社 Current sensing device
US8339134B2 (en) * 2010-10-08 2012-12-25 Allegro Microsystems, Inc. Apparatus and method for reducing a transient signal in a magnetic field sensor
WO2012096211A1 (en) * 2011-01-11 2012-07-19 アルプス・グリーンデバイス株式会社 Current sensor
WO2012117784A1 (en) * 2011-03-02 2012-09-07 アルプス・グリーンデバイス株式会社 Current sensor
AT518248B1 (en) 2016-06-22 2017-09-15 Blum Gmbh Julius furniture accessories

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197574A (en) * 1984-10-19 1986-05-16 Nissan Motor Co Ltd Semiconductor current detector

Also Published As

Publication number Publication date
JPH01105178A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
EP0300635B1 (en) Current detecting device using ferromagnetic magnetoresistance element
US7518354B2 (en) Multi-substrate integrated sensor
US6462531B1 (en) Current detector having a hall-effect device
EP0539081B1 (en) Current sensor system or a method for current detection
KR20000029928A (en) Magnetic current sensor
JP2545926B2 (en) Current detector
US4835510A (en) Magnetoresistive element of ferromagnetic material and method of forming thereof
JPH06130088A (en) Current sensor
JPH06148301A (en) Magnetic sensor
JPH0888423A (en) Magnetic sensor
JPH0293373A (en) Current detector
KR100658025B1 (en) Compound semiconductor multilayer structure, hall device, and hall device manufacturing method
CN113167841A (en) Magnetic sensor and hall sensor using abnormal hall effect and method of manufacturing hall sensor
JPS6331116B2 (en)
US5138146A (en) Image position sensitive device with multiple output electrodes
JP2712206B2 (en) Current detector
Bajorek et al. A permalloy current sensor
CN108387784B (en) Magnetic film inductive sensor
JP3144051B2 (en) Current detector
JPS6311672Y2 (en)
JP2663460B2 (en) Magnetic direction sensor
JP3339237B2 (en) Magnetoelectric conversion element
JPS6159553B2 (en)
JPH069306Y2 (en) Position detector
GB2372574A (en) Polarity sensitive magnetic sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term