JP2541621B2 - Directional microphone - Google Patents

Directional microphone

Info

Publication number
JP2541621B2
JP2541621B2 JP63095714A JP9571488A JP2541621B2 JP 2541621 B2 JP2541621 B2 JP 2541621B2 JP 63095714 A JP63095714 A JP 63095714A JP 9571488 A JP9571488 A JP 9571488A JP 2541621 B2 JP2541621 B2 JP 2541621B2
Authority
JP
Japan
Prior art keywords
microphone
sound
case
sound pressure
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63095714A
Other languages
Japanese (ja)
Other versions
JPH01268398A (en
Inventor
繁夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PURIMO KK
Original Assignee
PURIMO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PURIMO KK filed Critical PURIMO KK
Priority to JP63095714A priority Critical patent/JP2541621B2/en
Priority to DE19893907895 priority patent/DE3907895A1/en
Priority to FR8903187A priority patent/FR2630610A1/en
Priority to GB8905924A priority patent/GB2218303A/en
Publication of JPH01268398A publication Critical patent/JPH01268398A/en
Application granted granted Critical
Publication of JP2541621B2 publication Critical patent/JP2541621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/38Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means in which sound waves act upon both sides of a diaphragm and incorporating acoustic phase-shifting means, e.g. pressure-gradient microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/19Arrangements of transmitters, receivers, or complete sets to prevent eavesdropping, to attenuate local noise or to prevent undesired transmission; Mouthpieces or receivers specially adapted therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/342Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for microphones

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Telephone Set Structure (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、周囲の雑音に煩らわされることなく目的
音を捕捉することのできる指向性マイクロホンに関し、
例えば電話の送受話器に組込んで明瞭な送話を可能にす
る指向性マイクロホンを得るのに利用できるものであ
る。
TECHNICAL FIELD The present invention relates to a directional microphone capable of capturing a target sound without being bothered by ambient noise,
For example, it can be used to obtain a directional microphone that can be incorporated into a telephone handset to enable clear speech.

(従来の技術) 近年の電話器の電子化にともない、その送受話器に組
込まれるマイクロホンも従来のカーボン型に代ってダイ
ナミック型やエレクトレット型などの新しい型のマイク
ロホンが使用されるようになって来ている。
(Prior Art) With the digitization of telephones in recent years, new types of microphones such as dynamic type and electret type have been used instead of the conventional carbon type microphones incorporated in the handsets. It is coming.

しかしながら、これらの新しい型のマイクロホンは殆
んど無指向性であるため、送話時に周囲の不要な音が混
入して送話を不明瞭にすることが多い。
However, since these new types of microphones are almost omnidirectional, undesired surrounding sounds are often mixed in during transmission to obscure the transmission.

そこで非直線特性を持って周囲の雑音を拾うことの少
ないカーボン型マイクロホンと同等の、或いはこれより
も勝れた性能を持つ接話型マイクロホンの必要性が高ま
って来ている。
Therefore, there is an increasing need for a close-talking microphone that has a performance equal to or better than that of a carbon microphone that has a non-linear characteristic and hardly picks up ambient noise.

ところが従来のマイクロホンを1個だけ用いた接話型
マイクロホンユニットに音圧傾度を与えようとすると、
送話器のケースの側面或は背面に音波を通す適当な開口
を設けなければならず、この音響開口がなければ殆ど指
向性が得られない。
However, when trying to give a sound pressure gradient to a close-talking type microphone unit using only one conventional microphone,
A suitable opening for transmitting sound waves must be provided on the side or back of the case of the transmitter, and almost no directivity can be obtained without this acoustic opening.

この点を以下に第10〜12図により説明する。 This point will be described below with reference to FIGS.

第10図はマイクロホンの縦断面図、第11図は音圧傾度
を示す線図、第12図は周波数特性線図である。
FIG. 10 is a vertical sectional view of the microphone, FIG. 11 is a diagram showing sound pressure gradient, and FIG. 12 is a frequency characteristic diagram.

第10図において、1は前面(図面の右側面)に音孔2
を設けたマイクロホンケースで、その中に一次音圧傾度
マイクロホン素子3を収納している。このマイクロホン
素子(以下単に素子という)3は、その音響主軸a(振
動板4に垂直な中心軸)を音孔2のあるケース前面に垂
直にしてケース1内に設置されている。
In FIG. 10, 1 is a sound hole 2 on the front surface (right side of the drawing)
In the microphone case, the primary sound pressure gradient microphone element 3 is housed. The microphone element (hereinafter simply referred to as element) 3 is installed in the case 1 with its acoustic main axis a (central axis perpendicular to the diaphragm 4) being perpendicular to the front surface of the case having the sound hole 2.

今、素子3の主軸aに平行(この方向の入射角θを0
゜とする)に音波が到来したとき、素子3の振動板4の
前面に作用する音圧をP1とすると、素子3の背面の音響
端子5における音圧Prは、入射音波が平面波の場合は、
外部平均行路差deのため、振幅が音圧P1と等しく位相だ
けがkdeラジアン 遅れたものとなる。更に素子内での行路差及び素子内に
設けた位相推移用音響インピーダンス(第10図には内部
行路差のみを示している)のため位相がkdiラジアン遅
れた音圧P2となって振動板4の背面に作用する。これら
各音圧の関係を音圧傾度を示す線図により図示すると第
11図aのようになる。即ち、振動板4の表面に作用する
音圧P1と素子の音響端子5における音圧Prとの間にはkd
eラジアンの位相差があり、振動数の背面に作用する音
圧P2と音圧Prとの間にはkdiラジアンの位相差があるた
め、振動板を駆動する音圧傾度P=P1−P2は線7の長さ
で表わされる。
Now, parallel to the main axis a of the element 3 (incident angle θ in this direction is 0
Suppose that the sound pressure acting on the front surface of the diaphragm 4 of the element 3 is P 1 when the sound wave arrives at (°), the sound pressure P r at the acoustic terminal 5 on the back surface of the element 3 is If
Due to the external mean path difference d e , the amplitude is equal to the sound pressure P 1 and only the phase is kd e radian. It will be delayed. Vibration further a sound pressure P 2 in which the phase is delayed kd i radian for the phase transition for the acoustic impedance provided on the path difference and the element in the element (in FIG. 10 shows only the internal path difference) It acts on the back of the plate 4. The relationship between each of these sound pressures is illustrated by a diagram showing the sound pressure gradient.
11 It looks like Figure a. That is, between the sound pressure P 1 acting on the surface of the diaphragm 4 and the sound pressure P r at the acoustic terminal 5 of the element, kd
Since there is a phase difference of e radians and there is a phase difference of kd i radians between the sound pressure P 2 acting on the back surface of the frequency and the sound pressure P r , the sound pressure gradient P = P that drives the diaphragm. 1- P 2 is represented by the length of line 7.

音波の入射角θ=90゜の場合は、音圧傾度Pは第11図
bの線8で表わされ、θ=180゜の場合は第11図cの線
9で表わされる。線7、8、9の長さの変化は少ない。
When the incident angle θ of the sound wave is 90 °, the sound pressure gradient P is represented by the line 8 in FIG. 11b, and when θ = 180 °, it is represented by the line 9 in FIG. 11c. There is little change in the length of lines 7, 8 and 9.

又、このマイクロホンの周波数特性は第12図のように
なり、入射角の相違による出力の大きさは、周波数の高
い範囲においては音波の回折現象のため変化があるが、
低周波域においては殆どない。
Also, the frequency characteristic of this microphone is as shown in FIG. 12, and the magnitude of the output due to the difference in the incident angle changes in the high frequency range due to the diffraction phenomenon of the sound wave.
Almost no in the low frequency range.

(発明が解決しようとする課題) 上記のように構成され作用する従来のマイクロホン
は、音波の入射角θが変っても、上記の線7、8、9の
長さの相違が小さいように音圧傾度の変化が小さいの
で、例えばθ=0゜方向付近の音響のみを捕捉したいと
きでも周囲の雑音をも同様の強さで捕えてしまうことに
なる。即ち殆ど指向性がない。
(Problems to be Solved by the Invention) The conventional microphone configured and operating as described above produces a sound so that the difference in length between the lines 7, 8 and 9 is small even if the incident angle θ of the sound wave changes. Since the change in the pressure gradient is small, for example, even when it is desired to capture only the sound near the θ = 0 ° direction, ambient noise is also captured with the same strength. That is, there is almost no directivity.

このような構成でマイクロホン1に明らかな指向性を
持たせるには、ケース1及び電話器の場合ならば送受話
器にも側面、背面等に適当に穿孔しなければならず、ケ
ースの外観を害ねることになる。
In order to provide the microphone 1 with a clear directivity in such a configuration, in the case of the case 1 and the telephone set, it is necessary to appropriately perforate the side face, the back face, etc. of the handset, which impairs the appearance of the case. I will be sleeping.

(課題を解決するための手段) この発明は、前面に音孔を有するケース内に音響主軸
aをケース前面に平行ないし傾斜させて1個の素子を収
納し、素子外面とケース内面との間に音響遮蔽材を介在
させてケース内を音響的に2分割することにより指向性
を持つマイクロホンを構成したものである。
(Means for Solving the Problem) According to the present invention, a single element is housed in a case having a sound hole in the front surface thereof with the acoustic main axis a parallel or inclined to the front surface of the case, and between the outer surface of the element and the inner surface of the case. A microphone having directivity is configured by acoustically dividing the inside of the case into two with an acoustic shielding material interposed therebetween.

(作用) 素子の音響主軸aの方向をケース前面に平行ないし傾
斜させると共に、ケース内面と素子外面との間を遮断し
て、素子の振動板の表裏に作用する音波を分離したこと
により、音波の入射角が変るに従って振動板に作用する
音圧傾度の変化が大きくなり、マイクロホンに明瞭な指
向性を与えることができる。
(Function) The acoustic principal axis a of the element is parallel to or inclined to the front surface of the case, and the inner surface of the case and the outer surface of the element are cut off to separate sound waves acting on the front and back of the diaphragm of the element. The change in the sound pressure gradient acting on the diaphragm increases as the angle of incidence changes, and clear directivity can be given to the microphone.

(実施例) 第1〜6図は本発明の第一実施例を略示し、第1図は
マイクロホンの縦断面図、第2図a、b、cは音圧傾度
を示す線図、第3図は入射角が変った場合の周波数特性
線図、第4図は入射角θ及び音源との距離が変った場合
の周波数特性線図、第5図は指向性特性線図、第6図は
電話の送受話器に組込み使用する状態を示す略図であ
る。
(Embodiment) FIGS. 1 to 6 schematically show a first embodiment of the present invention, FIG. 1 is a longitudinal sectional view of a microphone, and FIGS. 2a, 2b and 2c are diagrams showing sound pressure gradient, and FIG. The figure shows the frequency characteristic diagram when the incident angle changes, Fig. 4 shows the frequency characteristic diagram when the incident angle θ and the distance to the sound source change, Fig. 5 shows the directional characteristic diagram, and Fig. 6 shows It is a schematic diagram showing a state where it is built in and used in a handset of a telephone.

第10図、第11図と同等部分には同符号を使用して次に
これを説明する。
The same parts as those in FIGS. 10 and 11 are designated by the same reference numerals and will be described below.

一次音圧傾度マイクロホン素子3は、ケース1の音孔
2を穿設した前面に音響主軸aを平行させてケース1内
に設置される。且つ素子3の外面とケース1の内面との
間には、音響遮蔽板10を介在させて、ケース1内を素子
3の前部を囲む空間と後部を囲む空間とに分割する。
The primary sound pressure gradient microphone element 3 is installed in the case 1 with the acoustic principal axis a parallel to the front surface of the case 1 in which the sound hole 2 is formed. In addition, an acoustic shield 10 is interposed between the outer surface of the element 3 and the inner surface of the case 1 to divide the case 1 into a space surrounding the front part of the element 3 and a space surrounding the rear part thereof.

素子3の音響主軸aと平行に素子の前方から音波が到
来する場合を入射角θ=0゜、音孔2を設けたケース前
面と直角に音波が到来する場合をθ=90゜、素子の後方
から音波が到来する場合をθ=180゜とする。
The incident angle θ = 0 ° when the sound wave arrives from the front of the element parallel to the acoustic main axis a of the element 3, and θ = 90 ° when the sound wave arrives at right angles to the front surface of the case where the sound hole 2 is provided. When sound waves arrive from the rear, θ = 180 °.

θ=0゜のとき、振動板の裏面に作用する音圧P2は、
素子の振動板4の前面に作用する音圧P1と同振幅で位相
のみが(kdi+kde)ラジアン遅れたものとなり、振動板
4を振動させる音圧傾度Pは となる。第2図aはこの状態を示し、音圧傾度Pは線
7′で示される。
When θ = 0 °, the sound pressure P 2 acting on the back surface of the diaphragm is
Only the phase is delayed by (kd i + kd e ) radians with the same amplitude as the sound pressure P 1 acting on the front surface of the diaphragm 4 of the element, and the sound pressure gradient P for vibrating the diaphragm 4 is Becomes FIG. 2a shows this state, and the sound pressure gradient P is shown by the line 7 '.

θ=90゜の場合は、振動板前面と素子3の音響素子5
とには同時に音波が到達し、その時の音圧はP1=Prであ
り、音圧P2は素子3の内部行路差及び位相推移用音響イ
ンピーダンスのため位相がKdiラジアン遅れるので、音
圧傾度P=P1−P2は第2図bの線8′のようになり、第
2図aの音圧傾度Pより小さくなる。
In the case of θ = 90 °, the acoustic element 5 of the diaphragm and the element 3
A sound wave arrives at the same time, and the sound pressure at that time is P 1 = P r , and the sound pressure P 2 is delayed by Kd i radians due to the internal path difference of the element 3 and the acoustic impedance for phase transition. The pressure gradient P = P 1 -P 2 is as shown by the line 8 ′ in FIG. 2B, which is smaller than the sound pressure gradient P in FIG. 2A.

θ=180゜のときは、初めに音波は素子3の後部の音
響素子5に到達し、音圧P1は音圧Prに対してKdiラジア
ンだけ位相が遅れ、音圧P2が音圧PrよりKdiラジアン遅
れるので音圧Pは第2図cの線9′のように小さくな
る。
When θ = 180 °, the sound wave first reaches the acoustic element 5 behind the element 3, and the sound pressure P 1 is delayed in phase by Kd i radians with respect to the sound pressure P r , and the sound pressure P 2 is generated. Since Kd i radians lag behind the pressure P r, the sound pressure P becomes smaller as indicated by line 9'in FIG. 2c.

この場合、θ方向からの入射音波に対しては平均行路
差deはθ=0゜の場合に比べてcosθ倍だけ短かくな
る。そこで一般の入射角θに対しては、振動板4に作用
する音圧傾度Pは となり、di+de cosθが音波の波長λに比べて十分小さ
い場合は、 と見故せるから となる。但しα=P1 kdeである。
In this case, the average path difference d e for the incident sound wave from the θ direction becomes cos θ times shorter than in the case where θ = 0 °. Therefore, for a general incident angle θ, the sound pressure gradient P acting on the diaphragm 4 is And when d i + d e cos θ is sufficiently smaller than the wavelength λ of the sound wave, Because I guess Becomes Where α = P 1 kd e , Is.

このα、βは定数と見故せるから、上式においてα、
βを適当な値、例えばβ=1即ちde=diにすればP=α
(1+cosθ)となる。マイクロホンの出力電圧は、振
動板に作用する音圧傾度に比例するから、このように1
+cosθの項を持って入射角θによって音圧傾度の大き
さが変るマイクロホンは、単一指向性を示すようにな
る。
Since α and β can be regarded as constants, α,
If β is an appropriate value, for example β = 1, that is, d e = d i , then P = α
(1 + cos θ). The output voltage of the microphone is proportional to the sound pressure gradient acting on the diaphragm.
A microphone in which the magnitude of the sound pressure gradient changes depending on the incident angle θ with a term of + cos θ becomes unidirectional.

第3図、第4図は、このように行程の遅れde、diを適
当な値としたときに音波の入射方向に対する周波数特性
線図(第3図)と、音源を近接させたとき及び離したと
きの周波数特性線図(第4図)とを示し、第5図は指向
特性線図を示す。第5図において実線11は周波数1KHzの
場合、波線12は500Hzの場合を示す。
FIGS. 3 and 4 show the frequency characteristic diagram (FIG. 3) with respect to the incident direction of the sound wave when the delays d e and d i of the strokes are set to appropriate values, and when the sound source is brought close to each other. And a frequency characteristic diagram (Fig. 4) when separated from each other, and Fig. 5 shows a directional characteristic diagram. In FIG. 5, the solid line 11 shows the case where the frequency is 1 KHz, and the broken line 12 shows the case where the frequency is 500 Hz.

この素子3を電話の送受話器に組込んで第6図のよう
に使用する場合は、音源である口元がマイクロホンに著
しく接近するため、素子3に入射する音波は球面波と考
えられる。そのため、球面波による近接効果を生じ、波
長の長い音波、即ち低い周波数に対して感度がよくな
り、出力が上昇する。
When the element 3 is incorporated in a telephone handset and used as shown in FIG. 6, the sound source incident on the element 3 is considered to be a spherical wave because the mouth of the sound source comes very close to the microphone. Therefore, the proximity effect due to the spherical wave is generated, the sensitivity to the sound wave having a long wavelength, that is, the low frequency is improved, and the output is increased.

第4図の鎖線13は、第6図に例示した電話の送受話器
を組込んで使用する場合(音波の入射角θaは約45゜)
のマイクロホンの近接特性を例示する。
The chain line 13 in FIG. 4 is used when the handset of the telephone illustrated in FIG. 6 is incorporated (the incident angle θa of the sound wave is about 45 °).
2 illustrates an example of the proximity characteristic of the microphone.

第4図の実線14はθ=0゜で音源から50cm離れたとき
の周波数特性、破線15は音源から50cm離れてθ=90゜の
ときの周波数特性、実線16は音源から50cm離れθ=180
゜のときの周波数特性を示し、本発明のマイクロホンを
使用した送話器を口元に近づけて送話すると、遠方から
同じレベルで入射した音波があっても、これよりも送話
音声の出力が高くなるため音声の伝送を明瞭度よく行な
い得ることが判る。
The solid line 14 in FIG. 4 shows the frequency characteristic when θ = 0 ° and 50 cm away from the sound source, the broken line 15 shows the frequency characteristic when 50 cm away from the sound source and θ = 90 °, and the solid line 16 shows 50 cm away from the sound source θ = 180
When the transmitter that uses the microphone of the present invention is brought close to the mouth to transmit, the output of the transmitted voice is higher than that even if there is a sound wave incident at the same level from a distance. It can be seen that the transmission of voice can be performed with high clarity because it becomes high.

第7〜9図は本発明の第二実施例を示し、素子3の音
響主軸aをケース1の前面に対して30゜傾けたものであ
る。第7図はマイクロホンの縦断面図、第8図は周波数
特性線図、第9図は指向特性線図である。
7 to 9 show a second embodiment of the present invention, in which the acoustic principal axis a of the element 3 is inclined by 30 ° with respect to the front surface of the case 1. FIG. 7 is a longitudinal sectional view of the microphone, FIG. 8 is a frequency characteristic diagram, and FIG. 9 is a directional characteristic diagram.

この実施例は、第一実施例の素子3を30゜傾けてケー
ス内に設置したものであって、その時の周波数特性は第
8図のようになり、指向特性は第9図のようになる。第
9図において実線17は1KHzの場合、破線18は500Hzの場
合を示す。何れの周波数でも指向性はあるが左右非対称
になっている。
In this embodiment, the element 3 of the first embodiment is installed in the case with an inclination of 30 °, and the frequency characteristic at that time is as shown in FIG. 8 and the directional characteristic is as shown in FIG. . In FIG. 9, the solid line 17 indicates the case of 1 KHz, and the broken line 18 indicates the case of 500 Hz. There is directivity at any frequency, but it is left-right asymmetric.

(発明の効果) (1) 素子を納めるケースの側面或いは背面に音響開
口部を設ける必要がないから、このケースを更に内蔵す
る電話の送受話器等の側面或は背面にも開口を設ける必
要がなく、送受話器のような接話型送話器の外観を悪く
することがない。
(Effects of the Invention) (1) Since it is not necessary to provide an acoustic opening on the side surface or the back surface of the case for accommodating the element, it is necessary to provide an opening also on the side surface or the back surface of the handset or the like of a telephone which further incorporates this case. In addition, the appearance of a close-talking type transmitter such as a handset is not deteriorated.

(2) 送話器の音響開口部を設けないから、従来の指
向性マイクロホンのようにこの開口部の位置に関連して
内蔵するマイクロホンの取付け位置に制限を受けること
が少ない。
(2) Since the acoustic opening of the transmitter is not provided, the mounting position of the built-in microphone is unlikely to be restricted in relation to the position of the opening unlike the conventional directional microphone.

(3) 従ってマイクロホンを送話器に埋込んで取付け
たり、机の上面にマイクロホンを埋込んでおき机の前に
坐ったまま手を使わないで送話するように使用すること
ができる。
(3) Therefore, the microphone can be embedded in the transmitter to be attached, or the microphone can be embedded on the upper surface of the desk and used for speaking without sitting while sitting in front of the desk.

【図面の簡単な説明】[Brief description of drawings]

第1〜6図は本発明の第一実施例を示し、第1図はマイ
クロホンの縦断面図、第2図a、b、cは音圧傾度を示
す線図、第3図は入射角が変った場合の周波数特性線
図、第4図は入射角及び音源との距離が変った場合の周
波数特性線図、第5図は指向特性線図、第6図は電話の
送受話器に組込み使用する状態を示す略図、第7〜9図
は第二実施例を示し、第7図はマイクロホンの縦断面
図、第8図は周波数特性線図、第9図は指向特性線図、
第10〜12図は従来例を示し、第10図はマイクロホンの縦
断面図、第11図a、b、cは音圧傾度を示す線図、第12
図は周波数特性線図である。 1:ケース、2:音孔、3:マイクロホン素子、4:振動板、5:
音響端子、7、7′、8、8′、9、9′:線、10:音
響遮蔽材、11:実線、12:破線、13:鎖線、14:実線、15:
破線、16、17:実線、18:破線。
1 to 6 show a first embodiment of the present invention, FIG. 1 is a longitudinal sectional view of a microphone, FIGS. 2a, 2b and 2c are diagrams showing sound pressure gradients, and FIG. Frequency characteristic diagram when it changes, Fig. 4 shows frequency characteristic diagram when the incident angle and the distance to the sound source change, Fig. 5 shows directional characteristic diagram, and Fig. 6 is built in the handset of the telephone. FIG. 7 to FIG. 9 show a second embodiment, FIG. 7 is a longitudinal sectional view of the microphone, FIG. 8 is a frequency characteristic diagram, FIG. 9 is a directional characteristic diagram,
10 to 12 show a conventional example, FIG. 10 is a longitudinal sectional view of a microphone, and FIGS. 11 a, b, and c are diagrams showing sound pressure gradient, FIG.
The figure is a frequency characteristic diagram. 1: case, 2: sound hole, 3: microphone element, 4: diaphragm, 5:
Acoustic terminals, 7, 7 ', 8, 8', 9, 9 ': wire, 10: acoustic shielding material, 11: solid line, 12: broken line, 13: chain line, 14: solid line, 15:
Dashed line, 16, 17: solid line, 18: broken line.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】前面に音孔(2)を設け、他を密閉したマ
イクロホンケース(1)内に、一次音圧傾度マイクロホ
ン素子(3)を収納し、このマイクロホン素子(3)の
振動板(4)に垂直な音響主軸(a)をマイクロホンケ
ースの音孔のある前面に平行ないし指向性が得られる限
度で傾斜させ、このマイクロホン素子(3)の外面とマ
イクロホンケース(1)の内面との間を音響遮蔽材(1
0)で塞いで、マイクロホンケース(1)内を、それぞ
れ別個に音波を受ける、マイクロホン素子(3)の前部
を囲む空間と後部を囲む空間とに分割した指向性マイク
ロホン。
1. A primary sound pressure gradient microphone element (3) is housed in a microphone case (1) which is provided with a sound hole (2) on the front surface and hermetically seals the others, and a diaphragm of the microphone element (3) ( 4) The acoustic main axis (a) perpendicular to 4) is tilted in parallel with the front surface of the microphone case having a sound hole, or is tilted to the extent that directivity can be obtained. Acoustic shield (1
A directional microphone that is closed by 0) and divides the inside of the microphone case (1) into a space surrounding the front part and a space surrounding the rear part of the microphone element (3).
JP63095714A 1988-04-20 1988-04-20 Directional microphone Expired - Fee Related JP2541621B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63095714A JP2541621B2 (en) 1988-04-20 1988-04-20 Directional microphone
DE19893907895 DE3907895A1 (en) 1988-04-20 1989-03-09 Directional microphone
FR8903187A FR2630610A1 (en) 1988-04-20 1989-03-10 DIRECT MICROPHONE
GB8905924A GB2218303A (en) 1988-04-20 1989-03-15 Directional microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095714A JP2541621B2 (en) 1988-04-20 1988-04-20 Directional microphone

Publications (2)

Publication Number Publication Date
JPH01268398A JPH01268398A (en) 1989-10-26
JP2541621B2 true JP2541621B2 (en) 1996-10-09

Family

ID=14145155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095714A Expired - Fee Related JP2541621B2 (en) 1988-04-20 1988-04-20 Directional microphone

Country Status (4)

Country Link
JP (1) JP2541621B2 (en)
DE (1) DE3907895A1 (en)
FR (1) FR2630610A1 (en)
GB (1) GB2218303A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2032080C (en) * 1990-02-28 1996-07-23 John Charles Baumhauer Jr. Directional microphone assembly
JPH0476795U (en) * 1990-11-15 1992-07-03
ES2077877T3 (en) * 1991-01-24 1995-12-01 Hagenuk Telecom Gmbh MICROPHONE FOR TELEPHONES.
US6421444B1 (en) * 1995-09-28 2002-07-16 Nortel Networks Limited Embedded higher order microphone
IES77868B2 (en) * 1996-08-30 1998-01-14 Nokia Mobile Phones Ltd A handset and a connector therefor
US5878147A (en) * 1996-12-31 1999-03-02 Etymotic Research, Inc. Directional microphone assembly
DE29908853U1 (en) * 1999-05-20 2000-11-02 Peiker Andreas Device for detecting sound waves in a vehicle
DE19963217A1 (en) * 1999-12-28 2001-07-12 Thomson Brandt Gmbh Differential pressure microphone
IL138460A0 (en) * 2000-09-14 2001-10-31 Phone Or Ltd Directional optical microphones
US8180082B2 (en) 2007-04-04 2012-05-15 Funai Electric Advanced Applied Technology Research Institute Inc. Microphone unit, close-talking voice input device, information processing system, and method of manufacturing microphone unit
JP2009239631A (en) * 2008-03-27 2009-10-15 Funai Electric Advanced Applied Technology Research Institute Inc Microphone unit, close-talking voice input device, information processing system, and manufacturing method for microphone unit
JP4293378B2 (en) * 2007-04-04 2009-07-08 株式会社船井電機新応用技術研究所 Microphone unit, close-talking voice input device, and information processing system
US7832080B2 (en) 2007-10-11 2010-11-16 Etymotic Research, Inc. Directional microphone assembly
JP5166007B2 (en) * 2007-11-30 2013-03-21 船井電機株式会社 Microphone unit and manufacturing method thereof
JP5008638B2 (en) * 2008-12-01 2012-08-22 株式会社船井電機新応用技術研究所 Microphone unit, voice input device, information processing system, and method of manufacturing microphone unit
JP2011082723A (en) * 2009-10-06 2011-04-21 Hosiden Corp Unidirectional microphone
WO2011095222A1 (en) * 2010-02-08 2011-08-11 Robert Bosch Gmbh High directivity boundary microphone
FR2963192B1 (en) 2010-07-22 2013-07-19 Commissariat Energie Atomique MEMS TYPE PRESSURE PULSE GENERATOR
FR2963099B1 (en) * 2010-07-22 2013-10-04 Commissariat Energie Atomique DYNAMIC MEMS PRESSURE SENSOR, IN PARTICULAR FOR MICROPHONE APPLICATIONS
US9226052B2 (en) * 2013-01-22 2015-12-29 Invensense, Inc. Microphone system with non-orthogonally mounted microphone die

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB161277A (en) * 1920-01-06 1921-04-06 Magnavox Co Improvements in and relating to telephone transmitters
DE1171468C2 (en) * 1962-10-16 1974-01-17 Siemens Ag Arrangement for the use of gradient microphones in telephone systems
DE3700594A1 (en) * 1986-01-16 1987-07-23 Akg Akustische Kino Geraete PRESSURE GRADIENT RECEIVER

Also Published As

Publication number Publication date
GB2218303A (en) 1989-11-08
FR2630610A1 (en) 1989-10-27
GB8905924D0 (en) 1989-04-26
JPH01268398A (en) 1989-10-26
DE3907895A1 (en) 1989-11-02

Similar Documents

Publication Publication Date Title
JP2541621B2 (en) Directional microphone
US7233679B2 (en) Microphone system for a communication device
US6633647B1 (en) Method of custom designing directional responses for a microphone of a portable computer
EP2235966B1 (en) Microphone device
US4528426A (en) Directional microphone assembly
JPH0965478A (en) Directional microphone synthesis body
JP2007516658A (en) Noise canceling microphone with acoustically tuned ports
EP1401240B1 (en) A dual directional mode mobile terminal and a method for manufacturing of the same
JP2009135777A (en) Microphone unit and voice input device
US7027603B2 (en) Ear level noise rejection voice pickup method and apparatus
JPS62230297A (en) Directional microphone
US3633705A (en) Noise-cancelling microphone
US6408080B1 (en) Boundary layer microphone
KR20100101545A (en) Microphone unit
Ballou et al. Microphones
US6421444B1 (en) Embedded higher order microphone
JPH0744750B2 (en) Microphone unit
JP7383165B2 (en) Wireless headset with improved wind noise resistance
US20050053251A1 (en) Dual boundary pressure zone three dimensional microphone and hearing aid
JPH0630490A (en) Ear set type transceiver
JPS62203453A (en) Noise preventing type transmitter
JPH09130463A (en) Housing structure for speech device
JPS6337559B2 (en)
JP2003032778A (en) Microphone
JPH08265887A (en) Bone conduction microphone and bone conduction earphone-microphone

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees