JP2531801B2 - Exhaust heat recovery heat exchanger controller - Google Patents

Exhaust heat recovery heat exchanger controller

Info

Publication number
JP2531801B2
JP2531801B2 JP1236301A JP23630189A JP2531801B2 JP 2531801 B2 JP2531801 B2 JP 2531801B2 JP 1236301 A JP1236301 A JP 1236301A JP 23630189 A JP23630189 A JP 23630189A JP 2531801 B2 JP2531801 B2 JP 2531801B2
Authority
JP
Japan
Prior art keywords
economizer
pressure
temperature
low
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1236301A
Other languages
Japanese (ja)
Other versions
JPH0399101A (en
Inventor
孝幸 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1236301A priority Critical patent/JP2531801B2/en
Publication of JPH0399101A publication Critical patent/JPH0399101A/en
Application granted granted Critical
Publication of JP2531801B2 publication Critical patent/JP2531801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ガスタービンと蒸気タービンとを組合わせ
たコンバインドサイクルプラントにおける排熱回収熱交
換器の制御装置に関する。
The present invention relates to a control device for an exhaust heat recovery heat exchanger in a combined cycle plant in which a gas turbine and a steam turbine are combined.

(従来の技術) 最近、高効率発電の一環として、ガスタービンで発電
を行なうとともに、ガスタービンから排出された排出ガ
ス中の熱を排熱回収熱交換器で回収し、同ボイラで発生
した蒸気により蒸気タービンを駆動させるコンバインド
サイクルプラントが注目されている。
(Prior art) Recently, as part of high-efficiency power generation, power is generated by a gas turbine, and heat in exhaust gas discharged from the gas turbine is recovered by an exhaust heat recovery heat exchanger to generate steam in the boiler. Has attracted attention for a combined cycle plant that drives a steam turbine.

第5図は、上記コンバインドサイクルプラントの系統
の概略構成を示す図であり、ガスタービン1には発電機
2および蒸気タービン3が連結されており、上記ガスタ
ービン1で仕事を行なった排ガスが排熱回収熱交換器4
に供給され、そこで発生した蒸気が蒸気タービン3に導
入され、排ガス中の排熱が最大限に回収されるようにし
てある。
FIG. 5 is a diagram showing a schematic configuration of the system of the combined cycle plant, in which the generator 2 and the steam turbine 3 are connected to the gas turbine 1, and the exhaust gas working in the gas turbine 1 is exhausted. Heat recovery heat exchanger 4
The steam generated there is introduced into the steam turbine 3 so that the exhaust heat in the exhaust gas is recovered to the maximum extent.

上記排熱回収熱交換器4内には、ガスタービン1から
排出される排ガスの流れ方向の上流側から過熱器5、高
圧蒸発器6、高圧節炭器7、低圧蒸発器8および低圧節
炭器9が配設されており、復水器11で復水された復水が
給水ポンプ12によって上記低圧節炭器9に供給される。
そして、上記低圧節炭器9を経た給水が低圧ドラム13に
送給され、その低圧ドラム13に接続された低圧蒸発器9
で加熱され、そこで発生した蒸気が低圧ドラム13を経て
図示しない低圧蒸気タービンに供給される。
In the exhaust heat recovery heat exchanger 4, the superheater 5, the high pressure evaporator 6, the high pressure economizer 7, the low pressure evaporator 8 and the low pressure economizer are arranged from the upstream side in the flow direction of the exhaust gas discharged from the gas turbine 1. The condenser 9 is provided, and the condensate condensed by the condenser 11 is supplied to the low pressure economizer 9 by the water supply pump 12.
Then, the feed water that has passed through the low pressure economizer 9 is fed to the low pressure drum 13, and the low pressure evaporator 9 connected to the low pressure drum 13
The steam generated in the steam generator is supplied to a low pressure steam turbine (not shown) through the low pressure drum 13.

上記低圧節炭器9の出口部から分岐された分岐導管14
には高圧給水ポンプ15が設けられており、その高圧給水
ポンプ15で加圧された給水が高圧節炭器7に供給され、
さらに高圧ドラム16を介して高圧蒸発器6に送られる。
そして、上記高圧蒸発器6で発生した蒸気が、上記高圧
ドラム16を経て過熱器5に送給され、その後蒸気タービ
ン3に送給される。
Branch conduit 14 branched from the outlet of the low-pressure economizer 9
Is provided with a high-pressure water supply pump 15, and the water supplied by the high-pressure water supply pump 15 is supplied to the high-pressure economizer 7.
Further, it is sent to the high pressure evaporator 6 via the high pressure drum 16.
Then, the steam generated in the high-pressure evaporator 6 is sent to the superheater 5 via the high-pressure drum 16 and then to the steam turbine 3.

ところが、このようなプラントにおいては、起動時及
び低負荷域において、当該ボイラ流入ガス温度が低いた
めに比較的低温の伝熱管群部、すなわち低圧節炭器9お
よび高圧節炭器7内が減圧し、そこで蒸発現象が生ずる
という特性がある。しかしてこのように節炭器内に気水
の混合流体が発生すると、制御系が不安定となり運転継
続が困難となったり、またウォーターハンマーが生じ機
器損傷などの種々な不都合が発生することがある等の問
題がある。
However, in such a plant, at startup and in a low load region, the boiler inflow gas temperature is low, so that the relatively low temperature heat transfer tube group portion, that is, the low-pressure economizer 9 and the high-pressure economizer 7 is depressurized. However, there is a characteristic that an evaporation phenomenon occurs there. However, when a mixed fluid of steam and water is generated in the economizer in this way, the control system becomes unstable, making it difficult to continue operation, and causing various inconveniences such as water hammer and equipment damage. There are some problems.

そこで、従来の火力ボイラと異なり低圧節炭器9およ
び高圧節炭器7の出口側に給水流量調節弁17,18をそれ
ぞれ設け、各給水ポンプ12,15の吐出圧力で各節炭器9,7
の内部流体圧力を保持し、その流体温度を該圧力におけ
る飽和温度以下の温度に維持して、当該部での蒸発を防
止するようにしてある。また、夜間のプラント停止時に
は、圧力降下に基づく上記節炭器9、および7における
自己蒸発防止を目的として低圧蒸発器再循環ライン19,
および高圧蒸発器再循環ライン20を利用して、気水混合
物に起因する弊害を防止するようにしてある。
Therefore, unlike the conventional thermal power boiler, the feed water flow rate control valves 17 and 18 are provided on the outlet side of the low pressure economizer 9 and the high pressure economizer 7, respectively, and the economizers 9 and 9 are supplied at the discharge pressures of the feed pumps 12 and 15, 7
The internal fluid pressure is maintained and the fluid temperature is maintained at a temperature below the saturation temperature at the pressure to prevent evaporation at this portion. When the plant is stopped at night, the low pressure evaporator recirculation line 19, for the purpose of preventing self-evaporation in the economizers 9 and 7 based on the pressure drop,
The high pressure evaporator recirculation line 20 is used to prevent the harmful effects caused by the steam-water mixture.

ところが、このような装置においては、起動時は蒸発
器再循環ライン19,20を閉、給水ポンプ12,15を起動、高
低圧の各ドラム13,16のドラムレベル制御が可能となっ
た時点でガスタービン1からの排ガスを導入するが、蒸
発器6,8内の缶水は昇温により膨張し、ドラム水位が上
昇傾向となる。このため流量調節弁17,18は、起動初期
の10〜30分間閉動作を継続するよう制御されている。し
かして、節炭器7,9系内の水は、密閉された管内で加温
され、流体容積が5〜6%増加する。そのため節炭器の
容量にもよるが、通常各節炭器系でほぼ1m3膨張する。
However, in such a device, at the time of start-up, the evaporator recirculation lines 19 and 20 were closed, the feed water pumps 12 and 15 were started, and the drum level control of the high and low pressure drums 13 and 16 became possible. Although the exhaust gas from the gas turbine 1 is introduced, the can water in the evaporators 6 and 8 expands due to the temperature rise, and the drum water level tends to rise. Therefore, the flow rate control valves 17 and 18 are controlled to continue the closing operation for 10 to 30 minutes in the initial stage of activation. Then, the water in the economizer 7, 9 system is heated in the closed pipe, and the fluid volume increases by 5 to 6%. Therefore, although it depends on the capacity of the economizer, it usually expands by about 1 m 3 in each economizer system.

そこで、この節炭器内の流体の異常昇圧を防止するた
め、上記膨張した水は高圧給水ポンプのミニマムフロー
ライン21および低圧給水ポンプのミニマムフローライン
22を介して復水器11にブローすることが提案されている
(特開昭61-213401号)。
Therefore, in order to prevent abnormal pressurization of the fluid in this economizer, the expanded water is treated by the minimum flow line 21 of the high-pressure water supply pump and the minimum flow line of the low-pressure water supply pump.
It has been proposed to blow to the condenser 11 via 22 (Japanese Patent Laid-Open No. 61-213401).

ところが、第5図に示されている系統により排熱回収
熱交換器を起動運転しようとすると、高圧給水ポンプの
ミニマムフローライン21が高圧給水ポンプから低圧節炭
器9の入口に接続されておりダンプタンクに接続されて
いないので、ミニマムフローの循環をしている間に徐々
に流体の温度が上昇し、また低圧節炭器9では排ガスの
熱吸収が行なわれるので、この2つの効果によりミニマ
ムフロー運転中に低圧節炭器9の流体温度がその圧力に
おける飽和温度を越えてしまい、発生した蒸気泡により
高圧給水ポンプ15が損傷してしまう等の問題が生じる。
However, when the exhaust heat recovery heat exchanger is started up by the system shown in FIG. 5, the minimum flow line 21 of the high-pressure water feed pump is connected from the high-pressure water feed pump to the inlet of the low-pressure economizer 9. Since it is not connected to the dump tank, the temperature of the fluid gradually rises during circulation of the minimum flow, and the low pressure economizer 9 absorbs heat of the exhaust gas. During the flow operation, the fluid temperature of the low-pressure coal economizer 9 exceeds the saturation temperature at that pressure, which causes a problem that the high-pressure feed pump 15 is damaged by the generated vapor bubbles.

この問題を解決するためには、第6図に示されている
ように、各節炭器7,9の出口を復水器11に接続する節炭
器再循環ライン23,24を設け、この両節炭器再循環ライ
ン23,24にそれぞれ設けられた節炭器再循環弁25,26をド
ラム圧力の飽和温度で制御したり、或は缶水温度で制御
して節炭器出口給水温度が上昇しすぎてスチーミングが
発生しないようにブローを行なう方法が行なわれている
(特開昭53-8401号公報、特公昭63-26801号公報参
照)。
In order to solve this problem, as shown in FIG. 6, the economizer recirculation lines 23 and 24 connecting the outlets of the economizers 7 and 9 to the condenser 11 are provided. Both economizer economizer recirculation lines 23 and 24 are equipped with economizer economizer recirculation valves 25 and 26, respectively, which are controlled by the saturation temperature of the drum pressure or the can water temperature to control the economizer outlet feed water temperature. Is blown so that steaming does not occur too much (see Japanese Patent Laid-Open No. 53-8401 and Japanese Patent Publication No. 63-26801).

このような節炭器出口給水温度の調整を行なう場合、
制御の安定性、動作の確実さを確保するため、節炭器出
口での温度設定値は、節炭器出口でのスチーミング開始
温度より或偏差分だけ低い値にセットされ、かつ弁の開
閉動作が頻繁に行なわれるのを防止するためにヒステリ
シスを持つ制御装置が組み合わされている。
When adjusting the feed water temperature at the outlet of the economizer,
To ensure control stability and reliable operation, the temperature setting value at the economizer outlet is set to a value that is lower than the steaming start temperature at the economizer outlet by a certain deviation, and the valve is opened / closed. Controllers with hysteresis are combined to prevent frequent movements.

(発明が解決しようとする課題) ところが、このような装置においては、プラントの停
止、ホットバンキング中はドラム内の缶水は飽和温度で
節炭器内はドラム缶水より若干低い温度となっている。
そこで給水ポンプを起動してミニマムフロー運転を開始
すると、節炭器出口温度が徐々に上昇し、節炭器再循環
ラインの節炭器再循環弁25,26の温度設定値に達し、上
記節炭器再循環弁が開らかれ復水器へのブローが始ま
る。
(Problems to be solved by the invention) However, in such an apparatus, the temperature of the can water in the drum is saturated and the temperature in the economizer is slightly lower than that of the drum water during the plant shutdown and hot banking. .
Therefore, when the water supply pump is started and the minimum flow operation is started, the outlet temperature of the economizer gradually rises and reaches the temperature set value of the economizer recirculation valves 25 and 26 of the economizer recirculation line, The charcoal recirculation valve is opened and the blow to the condenser begins.

一方、ガスタービンが起動され圧力が上昇していく過
程では、ドラムの缶水温度はドラムの圧力における飽和
温度より低温であり、蒸発器出口のガス温度はこの低温
である缶水温度とほぼ同じ温度になるので、節炭器入口
のガス温度もドラムの缶水温度とほぼ同じ温度になる。
On the other hand, in the process of starting the gas turbine and increasing the pressure, the temperature of the can water in the drum is lower than the saturation temperature at the pressure of the drum, and the gas temperature at the evaporator outlet is almost the same as the temperature of the can water at this low temperature. Since the temperature is high, the gas temperature at the inlet of the economizer is almost the same as the temperature of the water in the drum.

しかして、節炭器出口の給水温度は、この節炭器入口
ガス温度よりほんの少しだけ低い温度になるが、この温
度差は小さく実質的には缶水温度と節炭器出口給水温度
はほぼ等しく、ブローしなくともスチーミングが発生す
ることはない。
The feed water temperature at the outlet of the economizer is slightly lower than the gas temperature at the inlet of the economizer, but this temperature difference is small and the can water temperature and the feed water temperature of the economizer outlet are almost equal. , Steaming does not occur without blowing.

ところが、節炭器再循環ラインの節炭器再循環弁の制
御は、飽和温度より温度偏差ΔT通常6℃程度低い温度
で開くようにしてあるため、節炭器出口温度がスチーミ
ング温度に達していなくとも、上記節炭器再循環ライン
の節炭器再循環弁25,26が開らいてしまい、高圧、低圧
節炭器内の水が復水器へブローされる等の問題がある。
However, since the control of the economizer recirculation valve of the economizer recirculation line is made to open at a temperature deviation ΔT which is usually about 6 ° C. lower than the saturation temperature, the economizer exit temperature reaches the steaming temperature. Even if not, the economizer recirculation valves 25 and 26 of the economizer recirculation line are opened, and there is a problem that the water in the high pressure and low pressure economizers is blown to the condenser.

すなわち、上記ブローによって高圧節炭器で吸熱され
た熱量が復水器にすてられ、起動ロスが多くなるととも
に、低圧蒸発器8に流入するガスの温度が上昇せず、複
圧式ボイラにおいては高圧ボイラが所定の運転圧力に上
昇しても、低圧ボイラが所定の運転圧力に上昇せず、高
圧ボイラの蒸気をバイパスさせながら低圧ボイラの圧力
上昇を待たねばならない(第7図)。しかして、高圧蒸
気のバイパス分だけ起動ロスが増加し、起動時間が長く
なり、負荷追従性のよいコンバインドサイクルプラント
の特徴がなくなってしまうという問題がある。
That is, the amount of heat absorbed in the high-pressure coal economizer by the above-mentioned blow is passed to the condenser, the start-up loss increases, the temperature of the gas flowing into the low-pressure evaporator 8 does not rise, and in the double-pressure boiler, Even if the high-pressure boiler rises to a predetermined operating pressure, the low-pressure boiler does not rise to a predetermined operating pressure, and the pressure of the low-pressure boiler must wait while bypassing the steam of the high-pressure boiler (Fig. 7). However, there is a problem that the start-up loss is increased by the amount of bypass of the high-pressure steam, the start-up time is lengthened, and the characteristic of the combined cycle plant with good load following performance is lost.

本発明はこのような点に鑑み、複圧式排熱回収熱交換
器の起動時間、起動ロスの低減を図ることができるよう
にした排熱回収熱交換器の制御装置を得ることを目的と
する。
The present invention has been made in view of the above circumstances, and an object thereof is to obtain a control device for an exhaust heat recovery heat exchanger that can reduce the startup time and startup loss of the compound pressure exhaust heat recovery heat exchanger. .

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 本発明は、ガスタービンから排出される排ガス中にそ
れぞれ圧力が異なる複数の蒸発器および節炭器を配設す
るとともに、各節炭器の出口を各蒸発器に設けられた蒸
気ドラムに接続し、低圧節炭器出口からそれぞれ分岐し
た配管に他の節炭器に給水する給水ポンプを配設し、各
給水ポンプの出口側と復水器とをミニマムフローライン
により接続し、各節炭器の出口をそれぞれ節炭器再循環
弁を有する節炭器再循環ラインを介して復水器に接続
し、さらに、上記節炭器再循環弁の制御回路に、ボイラ
起動時には節炭器再循環弁に全閉制御信号を出力すると
ともに、通常運転時には、節炭器再循環弁制御信号をド
ラム圧に対応する飽和温度より所定設定温度だけ低い温
度設定信号と節炭器出口温度との偏差信号からなる制御
信号に切換える切換装置を設けたことを特徴とする。
(Means for Solving the Problems) According to the present invention, a plurality of evaporators and economizers having different pressures are provided in exhaust gas discharged from a gas turbine, and the outlets of the economizers are connected to the evaporators. It is connected to the steam drum provided in the, and a water supply pump for supplying water to other economizers is installed in the pipe branched from the low pressure economizer outlet, and the outlet side of each water supply pump and the condenser are minimum flow. Connected by a line, the outlet of each economizer is connected to the condenser via a economizer recirculation line having a economizer recirculation valve, and further to the control circuit of the economizer recirculation valve. When the boiler is started, a full-closed control signal is output to the economizer recirculation valve, and during normal operation, the economizer recirculation valve control signal is set to a temperature setting signal that is lower than the saturation temperature corresponding to the drum pressure by a preset temperature. From the deviation signal from the economizer outlet temperature It is characterized in that a switching device for switching to the control signal is provided.

(作用) ボイラ起動時には節炭器再循環弁が全閉状態に維持さ
れており、ボイラが通常運転状態になるまでは、節炭器
再循環弁は開らかれることがなく、スチーミング温度に
達していない給水が復水器にブローされることが確実に
防止される。したがって、高圧節炭器で吸熱された熱量
が復水器に捨てられることがなく、起動ロスが減少され
る。
(Operation) When the boiler is started, the economizer recirculation valve is maintained in a fully closed state, and the economizer economizer recirculation valve will not be opened until the boiler is in the normal operating state, and the steaming temperature will not rise. The unreachable water supply is reliably prevented from being blown into the condenser. Therefore, the amount of heat absorbed by the high pressure economizer is not discarded in the condenser, and the starting loss is reduced.

(実施例) 以下、第1図乃至第4図を参照して本発明の実施例に
ついて説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第2図は本発明にかかるコンバインドサイクルプラン
トの概略構成を示す図であり、排熱回収熱交換器4内に
は、排ガスの流れ方向の上流側から過熱器5、高圧蒸発
器6、高圧節炭器7、中圧蒸発器31、中圧節炭器32、低
圧蒸発器8および低圧節炭器9が配設されており、復水
器11で復水された復水が給水ポンプ12によって上記低圧
節炭器9に供給される。そして、低圧節炭器9を経た給
水が低圧ドラム13に送給され、その低圧ドラム13に接続
された低圧蒸発器8で加熱され、そこで発生した蒸気が
低圧ドラム13を経て図示しない低圧蒸気タービンに供給
される。
FIG. 2 is a diagram showing a schematic configuration of a combined cycle plant according to the present invention. In the exhaust heat recovery heat exchanger 4, a superheater 5, a high pressure evaporator 6 and a high pressure node are arranged from the upstream side in the exhaust gas flow direction. A charcoal device 7, a medium-pressure evaporator 31, a medium-pressure economizer 32, a low-pressure evaporator 8 and a low-pressure economizer 9 are provided, and the condensate condensed by the condenser 11 is supplied by the feed pump 12. It is supplied to the low-pressure economizer 9. Then, the feed water that has passed through the low-pressure economizer 9 is sent to the low-pressure drum 13 and heated by the low-pressure evaporator 8 connected to the low-pressure drum 13, and the steam generated there passes through the low-pressure drum 13 and the low-pressure steam turbine (not shown). Is supplied to.

上記低圧節炭器9の出口部から分岐された分岐導管14
は、さらに2つの導管33、34に分岐され、各導管33、34
に設けられた中圧給水ポンプ35、高圧給水ポンプ15で加
熱された給水が、それぞれ中圧節炭器32、高圧節炭器7
に供給され、さらにそれぞれ中圧ドラム36、高圧ドラム
16を介して中圧蒸発器31、高圧蒸発器6に送られる。そ
して、中圧蒸発器31で発生した蒸気が中圧ドラム36を介
して図示しない中圧蒸気タービンへ、また高圧蒸発器6
で発生した蒸気が高圧ドラム16を経、さらに過熱器5で
過熱され高圧タービンに送られる。
Branch conduit 14 branched from the outlet of the low-pressure economizer 9
Is further branched into two conduits 33, 34, each conduit 33, 34
The medium-pressure water pump 35 and the high-pressure water pump 15 provided in the water supply water supply the medium-pressure economizer 32 and the high-pressure economizer 7, respectively.
The medium pressure drum 36 and high pressure drum respectively
It is sent to the medium pressure evaporator 31 and the high pressure evaporator 6 via 16. Then, the steam generated in the medium pressure evaporator 31 passes through the medium pressure drum 36 to a medium pressure steam turbine (not shown), and the high pressure evaporator 6
The steam generated in 1) passes through the high-pressure drum 16, is further superheated in the superheater 5, and is sent to the high-pressure turbine.

なお、図中符号37は中圧節炭器32の出口を中圧ドラム
36に接続する導管に設けられた流量調節弁である。
The reference numeral 37 in the figure indicates the outlet of the medium-pressure economizer 32 to the medium-pressure drum.
A flow control valve provided in a conduit connected to 36.

ところで、高圧節炭器7、中圧節炭器32および低圧節
炭器9の各出口部からは、それぞれ復水器11に接続され
た節炭器再循環ライン23,38,24が分岐導出されており、
各節炭器再循環ライン23,38,24には節炭器再循環弁25,2
9,26が設けられている。
By the way, from the outlets of the high-pressure economizer 7, the medium-pressure economizer 32, and the low-pressure economizer 9, the economizer recirculation lines 23, 38, 24 connected to the condenser 11 are branched and led out. Has been done,
Each economizer recirculation line 23, 38, 24 has a economizer recirculation valve 25, 2
9,26 are provided.

一方、低圧給水ポンプ12、中圧給水ポンプ35、および
高圧給水ポンプ15の出口部にはそれぞれミニマムフロー
ライン22,40,41が接続されており、各ミニマムフローラ
インの先端は復水器11に接続されている。
On the other hand, minimum flow lines 22, 40, 41 are connected to the outlets of the low-pressure water supply pump 12, the medium-pressure water supply pump 35, and the high-pressure water supply pump 15, respectively, and the tip of each minimum flow line is connected to the condenser 11. It is connected.

ところで、第1図は節炭器再循環弁25,39,26の制御系
統図であって、各ドラム16,36,13にはそれぞれ圧力検出
器42が設けられており、その圧力検出器42から検出され
た圧力信号が所定値以上になるとその信号がAND回路43
に入力される。一方、ガスタービン1には回転数検出器
44が設けられており、そのガスタービン回転数が所定値
以上になると、その信号が前記AND回路43に入力され
る。しかして、ドラム圧が所定値以上となり、かつガス
タービンの回転数が所定値以上になると、AND回路43か
らの出力信号によって切換器45が作動され、起動時温度
偏差設定信号例えば0℃から通常運転時温度偏差設定信
号例えば6℃に切換られ、その温度偏差設定信号が増幅
器46を介して減算器47に入力される。
By the way, FIG. 1 is a control system diagram of the economizer recirculation valves 25, 39, and 26. Each drum 16, 36, 13 is provided with a pressure detector 42, and the pressure detector 42 is provided. When the pressure signal detected from the signal exceeds a predetermined value, the signal is
Is input to On the other hand, the gas turbine 1 has a rotation speed detector.
44 is provided, and the signal is input to the AND circuit 43 when the number of revolutions of the gas turbine exceeds a predetermined value. When the drum pressure becomes equal to or higher than the predetermined value and the number of revolutions of the gas turbine becomes equal to or higher than the predetermined value, the switch 45 is operated by the output signal from the AND circuit 43, and the starting temperature deviation setting signal, for example, 0 ° C to normal. The operating temperature deviation setting signal is switched to, for example, 6 ° C., and the temperature deviation setting signal is input to the subtractor 47 via the amplifier 46.

一方、前記ドラムの圧力信号は関数発生器48にも入力
されており、その関数発生器48では当該圧力に対応する
飽和温度が算出され、その飽和温度信号が前記減算器47
に入力される。そして、この減算器47で上記関数発生器
48から出力された飽和温度信号から、増幅器46から出力
された温度偏差設定信号が減算され、その偏差信号が温
度設定信号として比較器49に入力される。
On the other hand, the pressure signal of the drum is also inputted to the function generator 48, the saturation temperature corresponding to the pressure is calculated in the function generator 48, and the saturation temperature signal is calculated by the subtractor 47.
Is input to Then, the function generator
The temperature deviation setting signal output from the amplifier 46 is subtracted from the saturation temperature signal output from 48, and the deviation signal is input to the comparator 49 as a temperature setting signal.

上記比較器49には節炭器出口温度検出器50からの実温
度信号も入力されており、そこでこの実温度信号と上記
温度設定信号とが比較され、その偏差信号が比例積分器
51を介して作動装置52に加えられ、節炭器再循環弁25,3
9,26の開度が制御される。
The actual temperature signal from the economizer outlet temperature detector 50 is also input to the comparator 49, where the actual temperature signal and the temperature setting signal are compared, and the deviation signal is proportional to the proportional integrator.
Added to actuator 52 via 51, economizer recirculation valve 25,3
The opening of 9,26 is controlled.

しかして、プラントの起動に際しては、給水ポンプを
低圧給水ポンプ12、中圧給水ポンプ35、高圧給水ポンプ
15の順に起動させ、各ポンプをミニマムフローライン2
2,40,41を使用してミニマムフロー運転する。
Then, at the time of starting the plant, the water supply pump is a low pressure water supply pump 12, a medium pressure water supply pump 35, and a high pressure water supply pump.
Start in order of 15 and set each pump to minimum flow line 2
Use 2,40,41 for minimum flow operation.

そこで、ガスタービンが起動されると、高、中、低圧
の各ドラムの圧力が上昇し始める。
Then, when the gas turbine is started, the pressures of the high, medium, and low pressure drums start to rise.

ところで、この場合、ドラム圧が所定値以下でありま
たガスタービンの回転数も所定値以下であるため、AND
回路43からは出力信号が0であり、切換器45からは起動
時温度偏差設定信号例えば0℃が出力される。したがっ
て、減算器47からは関数発生器48から出力された飽和温
度信号が出力され、比較器49では節炭器出口の実温度信
号が上記飽和温度信号と比較される。そのため、節炭器
出口の実温度が飽和温度に達するまでは節炭器再循環弁
は全閉状態に保持されている。しかして、節炭器内の流
体温度の上昇はガス温度と殆ど同じとなるが、ガス温度
は缶水の温度とほぼ等しく、節炭器内の給水にはポンプ
の締切り圧近い圧力が加わっているのでスチーミングは
発生しない。
By the way, in this case, since the drum pressure is less than or equal to a predetermined value and the rotational speed of the gas turbine is less than or equal to a predetermined value, AND
The output signal from the circuit 43 is 0, and the starter temperature deviation setting signal, for example, 0 ° C. is output from the switch 45. Therefore, the subtractor 47 outputs the saturation temperature signal output from the function generator 48, and the comparator 49 compares the actual temperature signal at the outlet of the economizer with the saturation temperature signal. Therefore, the economizer recirculation valve is kept fully closed until the actual temperature at the economizer outlet reaches the saturation temperature. Then, the rise of the fluid temperature in the economizer is almost the same as the gas temperature, but the gas temperature is almost equal to the temperature of the canned water, and the feedwater in the economizer is under a pressure close to the cutoff pressure of the pump. Therefore, steaming does not occur.

そして、この場合、高圧節炭器7および中圧節炭器32
内では給水の流れがないので、低圧蒸発器8のガス上流
側では高圧蒸発器6および中圧蒸発器31以外に吸熱する
ものがなくなり、蒸発器とドラムの圧力は急速に上昇す
る。これとともにガスの温度も上昇するので、節炭器内
にとじ込められた給水が熱膨張をおこすが、この熱膨張
による体積増加分の給水はポンプのミニマムフローライ
ンを経て復水器に排出され、節炭器内に過大な圧力が発
生するようなことはない。
In this case, the high pressure economizer 7 and the medium pressure economizer 32
Since there is no flow of feed water inside, there is nothing that absorbs heat other than the high pressure evaporator 6 and the intermediate pressure evaporator 31 on the gas upstream side of the low pressure evaporator 8, and the pressures of the evaporator and the drum rise rapidly. Since the temperature of the gas also rises with this, the feedwater trapped in the economizer causes thermal expansion, but the volumetric increase due to this thermal expansion is discharged to the condenser via the minimum flow line of the pump. No excessive pressure is generated in the economizer.

このようにして、ドラム圧が所定値に達するとともに
ガスタービンの回転数に達すると、切換器45が作動し、
温度偏差設定信号が起動時温度偏差設定信号から通常運
転時温度偏差設定信号例えば6℃に切換えられる。した
がって、比較器49には当該圧力における飽和温度より6
℃だけ低い温度信号が設定信号として入力され、節炭器
出口温度が上記飽和温度より6℃だけ低い温度になると
節炭器再循環弁が開方向に制御され、節炭器再循環弁2
5,39,26が節炭器出口の温度により制御されるようにな
る(第3図)。
In this way, when the drum pressure reaches the predetermined value and the number of revolutions of the gas turbine is reached, the switch 45 operates,
The temperature deviation setting signal is switched from the startup temperature deviation setting signal to the normal operation temperature deviation setting signal, for example, 6 ° C. Therefore, the comparator 49 has 6
A temperature signal lower by ℃ is input as a setting signal, and when the outlet temperature of the economizer is 6 ° C lower than the saturation temperature, the economizer recirculation valve is controlled to open and the economizer recirculation valve 2
5,39,26 will be controlled by the temperature of the economizer outlet (Fig. 3).

このようにして、起動時において節炭器での吸熱によ
る熱の排出をおさえたままドラム圧を規定値まで上昇さ
せることができ、圧力の上昇を速くして起動時間の短縮
を図ることができる。
In this way, the drum pressure can be raised to the specified value while suppressing the heat discharge due to the heat absorption in the economizer at the time of start-up, and the rise of the pressure can be accelerated to shorten the start-up time. .

第4図は本発明の他の実施例を示す図であり、関数発
生器48から出力された飽和温度信号から温度偏差設定器
53からの設定信号が減算器54で減算され、飽和温度より
設定値だけ低い設定温度信号が比較器49に入力される。
上記比較器49には節炭器出口温度信号も入力されてお
り、そこで両者の偏差信号がゲート回路55に入力される
ようにしてある。上記ゲート回路55は、AND回路43を介
して、ドラム圧が所定値以上でありかつガスタービンの
回転数が所定値以上になったときに制御信号がゲート回
路55に入力され、そのゲートが開かれ、比較器49からの
制御信号が比例積分器51を介して作動装置52に加えら
れ、節炭器再循環弁25,39,26が開方向に制御される。
FIG. 4 is a diagram showing another embodiment of the present invention, in which a temperature deviation setter from the saturation temperature signal output from the function generator 48 is used.
The set signal from 53 is subtracted by the subtractor 54, and the set temperature signal lower than the saturation temperature by the set value is input to the comparator 49.
The comparator 49 also receives an outlet temperature signal of the economizer, and the deviation signal between the two is input to the gate circuit 55. The gate circuit 55 inputs a control signal to the gate circuit 55 via the AND circuit 43 when the drum pressure is equal to or higher than a predetermined value and the number of revolutions of the gas turbine is equal to or higher than the predetermined value, and the gate is opened. Then, the control signal from the comparator 49 is applied to the actuator 52 via the proportional integrator 51, and the economizer recirculation valves 25, 39, 26 are controlled in the opening direction.

しかして、この場合起動時においては比較器49からの
制御信号は節炭器再循環弁に加えられず、節炭器再循環
弁は全閉状態に保持されている。そこで、ガスタービン
が完全に起動されドラム圧が所定値に達した通常運転時
になると、ゲート回路55が開かれ、比較器49からの偏差
信号が制御信号として作動装置に加えられ、節炭器再循
環弁が節炭器出口温度による制御に切換えられる。
In this case, however, the control signal from the comparator 49 is not applied to the economizer recirculation valve at the time of start-up, and the economizer recirculation valve is held in the fully closed state. Therefore, at the time of normal operation when the gas turbine is completely started and the drum pressure reaches a predetermined value, the gate circuit 55 is opened, the deviation signal from the comparator 49 is added to the operating device as a control signal, and the economizer is reactivated. The circulation valve is switched to control by the outlet temperature of the economizer.

したがって、この実施例においても第一実施例と同様
な作用を行なう。
Therefore, also in this embodiment, the same operation as in the first embodiment is performed.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明においては排熱回収熱交
換器の起動時に節炭器再循環弁の制御温度設定値が通常
運転時のそれより高温になるように切換可能としたの
で、起動時に節炭器再循環弁が早くから開らくことがな
く、節炭器での吸熱による熱量の排出がなくなり、ドラ
ム圧力の上昇に寄与する蒸発器のみで熱吸収が行なわれ
ることとなり、ドラム圧の上昇を早くし起動時間の短
縮、起動ロスの低減を図ることができる等の効果を奏す
る。
As described above, in the present invention, when the exhaust heat recovery heat exchanger is started, it is possible to switch the control temperature set value of the economizer recirculation valve to be higher than that during normal operation. The economizer recirculation valve will not open early and the heat quantity will not be discharged due to the endothermic absorption of the economizer, and heat will be absorbed only by the evaporator that contributes to the increase in drum pressure, which will increase the drum pressure. This has the effect of speeding up the process, reducing the startup time, and reducing the startup loss.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明における節炭器再循環弁の制御系統図、
第2図は本発明におけるコンバインドサイクルプラント
の概略系統図、第3図は起動状態説明図、第4図は本発
明の他の実施例における節炭器再循環弁の制御系統図、
第5図、第6図はそれぞれ従来のコンバインドサイクル
プラントの系統図、第7図は従来の排熱回収熱交換器の
起動曲線を示す図である。 1……ガスタービン、3……蒸気タービン、4……排熱
回収熱交換器、5……過熱器、6……高圧蒸発器、7…
…高圧節炭器、8……低圧蒸発器、9……低圧節炭器、
12……低圧給水ポンプ、13……低圧ドラム、15……高圧
給水ポンプ、16……高圧ドラム、25,26,39……節炭器再
循環弁、31……中圧蒸発器、32……中圧節炭器、35……
中圧給水ポンプ、45……切換器、47……減算器、48……
関数発生器、49……比較器、52……作動装置。
FIG. 1 is a control system diagram of a economizer recirculation valve according to the present invention,
FIG. 2 is a schematic system diagram of a combined cycle plant according to the present invention, FIG. 3 is a starting state explanatory diagram, and FIG. 4 is a control system diagram of a economizer recirculation valve according to another embodiment of the present invention.
5 and 6 are system diagrams of a conventional combined cycle plant, and FIG. 7 is a diagram showing a starting curve of a conventional exhaust heat recovery heat exchanger. 1 ... Gas turbine, 3 ... Steam turbine, 4 ... Exhaust heat recovery heat exchanger, 5 ... Superheater, 6 ... High-pressure evaporator, 7 ...
… High-pressure economizer, 8 …… Low-pressure evaporator, 9 …… Low-pressure economizer,
12 …… Low-pressure feed pump, 13 …… Low-pressure drum, 15 …… High-pressure feed pump, 16 …… High-pressure drum, 25,26,39 …… Coal economizer recirculation valve, 31 …… Medium-pressure evaporator, 32… … Medium pressure economizer, 35 ……
Medium pressure water supply pump, 45 …… Switcher, 47 …… Subtractor, 48 ……
Function generator, 49 ... Comparator, 52 ... Actuator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガスタービンから排出される排ガス中にそ
れぞれ圧力が異なる複数の蒸発器および節炭器を配設す
るとともに、各節炭器の出口を流量調節弁を介して各蒸
発器に設けられた蒸気ドラムに接続し、低圧節炭器出口
からそれぞれ分岐した配管に他の節炭器に給水する給水
ポンプを配設し、各給水ポンプの出口側と復水器とをミ
ニマムフローラインにより接続し、さらに、節炭器再循
環弁の制御回路に、ボイラ起動時には節炭器再循環弁に
全閉制御信号を出力するとともに、通常運転時には、節
炭器再循環弁制御信号をドラム圧に対応する飽和温度よ
り所定設定温度だけ低い温度設定信号と節炭器出口温度
との偏差信号からなる制御信号に切換える切換装置を設
けたことを特徴とする、排熱回収熱交換器の制御装置。
1. A plurality of evaporators and economizers having different pressures are arranged in exhaust gas discharged from a gas turbine, and an outlet of each economizer is provided to each evaporator via a flow rate control valve. It is connected to the steam drum that is connected to each of the low-pressure coal economizer outlets, and a water supply pump that supplies water to other economizers is installed in the pipes branched from the low-pressure economizer outlets.The outlet side of each water supply pump and the condenser are connected by a minimum flow line. In addition, the control circuit of the economizer recirculation valve outputs a fully closed control signal to the economizer recirculation valve when the boiler is started, and the economizer recirculation valve control signal is applied to the drum pressure during normal operation. A control device for an exhaust heat recovery heat exchanger, characterized in that a switching device for switching to a control signal consisting of a deviation signal between a temperature setting signal lower than the saturation temperature by a predetermined set temperature and the outlet temperature of the economizer is provided. .
JP1236301A 1989-09-12 1989-09-12 Exhaust heat recovery heat exchanger controller Expired - Lifetime JP2531801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236301A JP2531801B2 (en) 1989-09-12 1989-09-12 Exhaust heat recovery heat exchanger controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236301A JP2531801B2 (en) 1989-09-12 1989-09-12 Exhaust heat recovery heat exchanger controller

Publications (2)

Publication Number Publication Date
JPH0399101A JPH0399101A (en) 1991-04-24
JP2531801B2 true JP2531801B2 (en) 1996-09-04

Family

ID=16998769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236301A Expired - Lifetime JP2531801B2 (en) 1989-09-12 1989-09-12 Exhaust heat recovery heat exchanger controller

Country Status (1)

Country Link
JP (1) JP2531801B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613921B2 (en) * 2010-11-29 2014-10-29 バブコック日立株式会社 Exhaust heat recovery boiler and method for preventing corrosion in the can
JP6415219B2 (en) 2014-09-26 2018-10-31 三菱日立パワーシステムズ株式会社 Boiler, combined cycle plant and boiler operation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935705A (en) * 1982-08-23 1984-02-27 株式会社日立製作所 Method of controlling boiler device
JPH0658161B2 (en) * 1985-03-18 1994-08-03 バブコツク日立株式会社 Waste heat recovery boiler

Also Published As

Publication number Publication date
JPH0399101A (en) 1991-04-24

Similar Documents

Publication Publication Date Title
EP0178617B1 (en) Steam turbine plant having a turbine bypass system
US6250258B1 (en) Method for starting up a once-through heat recovery steam generator and apparatus for carrying out the method
US5477683A (en) Method and device during starting and low-load operation of a once-through boiler
JP2001329806A (en) Combined cycle plant
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH10292902A (en) Main steam temperature controller
JP7291010B2 (en) power plant
JP5355358B2 (en) Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device
JPH0384301A (en) Naturally circulating waste heat recovery boiler
US3361117A (en) Start-up system for forced flow vapor generator and method of operating the vapor generator
JPH07217803A (en) Method and equipment for starting waste heat boiler with at least two separating pressure device
JP2960190B2 (en) Steam turbine bypass spray system in combined cycle power plant
JPS61213401A (en) Waste-heat recovery boiler
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
JP3068972B2 (en) Combined cycle power plant
US3242678A (en) Apparatus and method for obtaining high temperature low pressure vapor from a high temperature high pressure vapor source
JP3745419B2 (en) Waste heat recovery boiler
JPH09196301A (en) Exhaust heat recovery boiler and method for its operation
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPH09195718A (en) Main steam temperature control device
JP2971629B2 (en) Waste heat recovery boiler
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JP3300079B2 (en) Water supply system and exhaust heat recovery boiler for combined cycle plant
JP3317536B2 (en) Saturated drain discharge piping system
JP3335696B2 (en) Steam generator and method of operating the same