JP2526404C - - Google Patents

Info

Publication number
JP2526404C
JP2526404C JP2526404C JP 2526404 C JP2526404 C JP 2526404C JP 2526404 C JP2526404 C JP 2526404C
Authority
JP
Japan
Prior art keywords
reaction
catalyst
reaction tube
catalytic
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Original Assignee
工業技術院長
Publication date

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、化学反応により発生する熱エネルギーを有効利
用するための触媒反応方法に関するものである。 【0002】 【従来の技術】従来、触媒反応装置は均一に触媒を充填し使用されてきた。その
外部に集熱媒体を入力し、反応装置内の化学反応熱を取り出すものである。これ
を図5,図6により説明する。 【0003】図5において、10は触媒反応管であり、11は入口側、12は出
口側を示す。また、A,Bは反応物質、C,Dは生成物質、Xは触媒、Fは熱媒
体物質、Qは反応熱を示す。 【0004】図5に示すように触媒反応管10内には均一に触媒Xが配置される
。このような従来方式では、図6の温度分布図に示すように触媒反応管10内に
局所的な高温部分が生じる。従って、従来方式で熱媒体物質Fにより外部へ熱量
を取り出す場合、熱媒体物質Fの出口温度は触媒反応管10内の出口側12の温
度に規定され、触媒反応管10内の出口側12の温度を越える温度では外部に熱
供給が行えない。そのため、触媒反応管10内で生じた反応熱を必ずしも有効に
利用しているとは言えない。 【0005】 【発明が解決しようとする課題】このように、触媒を均一に充填した従来の触媒
反応管10を用いる方法や装置では、触媒反応管10内で部分的に温度が上昇し
反応条件が部分的に変化するとともに、触媒反応管10の出口側12で反応温度
が熱媒体物質Fの温度よりも低くなるために、外部へ効率良い熱交換は行えない
。また、部分的な温度上昇により不要な反応副生成物が生じるという問題点があ
った。 【0006】本発明は上述の点にかんがみなされたもので、効率の良い熱交換を
行うことができ、しかも反応生成物の組成を可変しうる触媒反応方法を提供する
ことを目的とする。 【0007】 【課題を解決するための手段】本発明にかかる触媒反応方法の第1の発明は、反
応触媒として、相対的に低濃度の触媒と相対的に高濃度の触媒の少なくとも2種
類の触媒を用い、触媒反応管内が規定した温度分布になるように前記触媒反応管
の入口側から出口側に向って濃度を変化させて配置したものである。 【0008】また、触媒反応方法の第2の発明は、反応触媒として、相対的に低
濃度の触媒と相対的に高濃度の触媒の少なくとも2種類の触媒を用い、触媒反応
管内が規定した温度分布になるように前記触媒反応管の入口側から出口側に向っ
て濃度を変化させて配置し、その反応条件に応じて反応生成物の組成を可変とし
たものである。 【0009】また、触媒反応方法の第3の発明は、反応触媒として、相対的に低
活性の触媒と相対的に高活性の触媒の少なくとも2種類の触媒を用い、触媒反応
管内が規定した温度分布になるように前記触媒反応管の入口側から出口側に向っ
て活性を変化させて配置したものである。 【0010】また、触媒反応方法の第4の発明は、反応触媒として、相対的に低
活性の触媒と相対的に高活性の触媒の少なくとも2種類の触媒を用い、触媒反応
管内が条件に応じて反応生成物の組成を可変としたものである。 【0011】 【0012】 【作用】本発明の触媒反応方法によれば、触媒は触媒反応管内で反応目的に応じ
た濃度分布または組成分布をとる。そのため、部分的な温度上昇を防ぎ、効率よ
く反応熱を外部熱媒体物質に供給できる。また、不要な反応副生成物を抑制でき
、かつ、反応生成物の組成を制御できる。 【0013】 【実施例】図1には、本発明の触媒反応方法の一実施例を説明するための触媒反
応管の濃度分布の最適配置を行った場合の概略構成が示されている。 【0014】図1において、図5と同じ符号は同じものを示し、XDLは低濃度
触媒、XDHは高濃度触媒を示す。例えば、アセトン水素化反応に用いる触媒に
ついて、相対的な低濃度触媒XDLの具体例としては、ニッケル超微粒子触媒を
希釈して単位体積当りの触媒量が相対的に少ないもの、相対的な高濃度触媒XD
Hの具体例としては、ニッケル超微粒子触媒を希釈なしで用いるもの、が挙げら
れる。 【0015】上記の構成によれば、図4に示される温度分布図のように、触媒反
応管10の出口側12の温度が一番高くなり、反応熱をより有効に外部に供給で
きる。また、温度分布の制御により不要な反応副生成物を制御できる。 【0016】そして、触媒を2種類以上とし、その配置を工夫することによって
低濃度触媒XDLと高濃度触媒XDHとで触媒反応管10内の温度分布を可変と
し、それにより反応条件が変わるために生成物質C,Dの組成を変えることがで
きる。 【0017】ここで、より具体的に、図1に即し、アセトン水素化反応を例とし
て説明する。触媒反応管10の入口側11より流入する反応物質Aとしてアセト
ン、反応物質Bとして水素を用い、触媒Xとしてニッケル超微粒子、熱媒体物質
Fとしてジフェニルエーテルを用いるものとする。触媒Xにより発熱反応である
アセトン水素 化反応が起こり、生成物質Cとして2−プロパノールが生成し、反応熱Q(55
kJ/mol)が生じる。低濃度触媒XDLでは活性が低いため単位触媒体積当
りの反応熱Qは少なく、高濃度触媒XDHでは活性が高いために単位触媒条件に
よっては、アセトン水素化反応により4メチル2ペンタノン等が副生成物として
生じることもあるが、触媒反応管10各部の温度条件を触媒濃度により制御する
ことで、副生成物の発生を制御できる。 【0018】図2は本発明の触媒反応方法の他の実施例として、触媒反応管10
の組成分布の最適配置を行った場合の概略構成が示されている。図2で、XAL
は低活性触媒、XAHは高活性触媒であり、その他は図1と同じである。本実施
例で特徴的なことは、相対的な低活性触媒XALと相対的な高活性触媒XAHの
少なくとも2種類の触媒の配置に応じ、触媒反応管10内の温度分布が可変とな
ることである。このような触媒としては、例えば、アセトン水素化反応に用いる
触媒について、相対的に低活性の触媒の具体例として、パラジウム触媒、相対的
に高活性の触媒の具体例としてルテニウム触媒があげられる。そして、この実施
例の場合にも反応条件が変わるために反応生成物の組成を変えることができる。 【0019】例えば、アセトン水素化反応に用いる触媒について、反応条件が一
定であっても、触媒種が異なる反応の選択性の違いにより副生成物質種に違いが
生じる。具体例として、白金触媒はアセトンを水素化分解す る活性がパラジウム触媒より高いため、白金触媒の方が副生成物質としてプロパ
ンを生じやすい。 【0020】図3は、本発明の触媒反応方法を実施する触媒反応装置の一実施例
を示す概略構成図である。図3において、1は反応物質Aを収容する第1容器、
2は反応物質Bを収容する第2容器、3は熱媒体物質Fを収容する第3容器、4
は生成物質C,Dを収容する第4容器、5は前記触媒反応管10の発生熱を熱媒
体物質Fに伝える第1熱交換器、6は前記第1熱交換器5で得た熱を目的とする
放熱対象に供給する第2熱交換器、7は熱媒体物質Fを第3容器3に戻す流路手
段、10は図1,2に示した触媒反応管である。 【0021】次に、動作について説明する。反応物質AおよびBは第1容器1お
よび第2容器2に収容される。各反応物質A,Bは触媒反応管10内に供給され
、この内で触媒Xにより生成物質C,Dとなり、第4容器4に収容される。この
反応の際に生じる反応熱Qを回収するために、第3容器3から熱媒体物質Fが第
1熱交換器5に供給される。熱媒体物質Fは、第1熱交換器5において化学反応
による発生熱量を回収した後、放熱対象に熱量を与えるべく第2熱交換器6にお
いて熱交換を行い、第3容器3に戻される。触媒反応管10と第4容器4との間
に生成物質C,Dを分離する装置が設けられれば、生成物質C,Dを別個に収容
することも可能である。 【0022】本発明においては、活性の異なる少なくとも2種類の触媒を配置す
ることにより触媒反応管10内の温度分布を制御して図4に示すような温度分布
を得て、触媒反応管10内で生じる反応熱をより有効に外部に供給できる。また
、温度分布の制御により不要な反応副生成物を抑制できる。 【0023】なお、本発明の一実施例としてアセトン水素化反応では、触媒反応
管10内で従来例のような図6に示される温度分布をとると、熱交換の面からも
反応副生成物抑制の面からも好ましくない。そこで本発明による触媒反応方法を
用い、入口側11付近の触媒濃度を低くすることで部分的な温度上昇を防ぎ、反
応物流れが進むに従って触媒濃度を高めて発熱量を増加する。これにより、常に
触媒反応管から熱媒体物質への熱の移動が起こるような温度分布をとることを可
能とする。 【0024】本発明の一実施例としてアセトン水素化反応では、平衡転化率は反
応温度が高くなる程低くなるため、反応温度が高くなり過ぎると発熱量が減少し
、未反応物質が増加する。この場合、高い転化率を維持しつつ多くの発熱量を得
ることが必要となり、均等な発熱を達成するためにも本発明による触媒反応方法
は有効である。この場合、図4に示した温度分布とは異なり、触媒反応管内温度
分布をできる限り一様とするような触媒配置が必要となる。 【0025】本発明の原理に従えば、必ずしも反応物質はA,B2種類で生成物
質もC,D2種類である必要はない。反応物質は1種類以上、生成物質も1種類
以上であれば本発明の原理を適用することにより反応に望ましい温度分布を決定
することができる。 【0026】また、3種類以上の触媒濃度あるいは触媒種を選択することにより
、より細分化された温度分布を決定することもできる。 【0027】また、管型の触媒反応管10に限らず平板型触媒反応器においても
、本発明の原理を適用することにより触媒反応器内外の温度分布を決定すること
ができる。 【0028】 【発明の効果】本発明にかかる触媒反応方法は、反応触媒として、相対的に低濃
度の触媒と相対的に高濃度の触媒、または相対的に低活性の触媒と相対的に高活
性の触媒の少なくとも2種類の触媒を用いたので、触媒反応管内の温度分布を規
定通りに制御できるので、触媒化学反応による反応熱を有効に利用することがで
き、また、副生成物抑制効果も持たすことができる。したがって、化学反応プロ
セス運用上、極めて望ましい結果が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalytic reaction method for effectively utilizing heat energy generated by a chemical reaction. 2. Description of the Related Art Conventionally, a catalytic reactor has been used after uniformly filling a catalyst. The heat collecting medium is input to the outside, and the heat of chemical reaction in the reactor is taken out. This will be described with reference to FIGS. In FIG. 5, reference numeral 10 denotes a catalyst reaction tube, 11 denotes an inlet side, and 12 denotes an outlet side. A and B are reactants, C and D are product substances, X is a catalyst, F is a heat medium substance, and Q is reaction heat. As shown in FIG. 5, a catalyst X is uniformly arranged in a catalyst reaction tube 10. In such a conventional method, a local high-temperature portion occurs in the catalyst reaction tube 10 as shown in the temperature distribution diagram of FIG. Therefore, when heat is taken out by the heat medium substance F in the conventional manner, the outlet temperature of the heat medium substance F is defined by the temperature of the outlet side 12 in the catalyst reaction tube 10, If the temperature exceeds the temperature, heat cannot be supplied to the outside. Therefore, it cannot be said that the reaction heat generated in the catalyst reaction tube 10 is always used effectively. [0005] As described above, in the method and apparatus using the conventional catalyst reaction tube 10 in which the catalyst is uniformly filled, the temperature rises partially in the catalyst reaction tube 10 and the reaction conditions are increased. Is partially changed, and the reaction temperature at the outlet side 12 of the catalyst reaction tube 10 becomes lower than the temperature of the heat medium substance F, so that efficient heat exchange to the outside cannot be performed. Further, there is a problem that an unnecessary reaction by-product is generated due to a partial temperature rise. The present invention has been made in view of the above points, and has as its object to provide a catalytic reaction method capable of performing efficient heat exchange and changing the composition of a reaction product. [0007] A first aspect of the present invention is a catalyst reaction method according to the present invention, wherein at least two kinds of catalysts, a relatively low concentration catalyst and a relatively high concentration catalyst, are used as the reaction catalyst. A catalyst is used and the concentration is changed from the inlet side to the outlet side of the catalyst reaction tube so that the inside of the catalyst reaction tube has a specified temperature distribution. In a second aspect of the present invention, at least two kinds of catalysts, a relatively low concentration catalyst and a relatively high concentration catalyst, are used as the reaction catalyst, and the temperature inside the catalyst reaction tube is regulated. The catalyst reaction tube is arranged so that the concentration is changed from the inlet side to the outlet side of the catalyst reaction tube so as to be distributed, and the composition of the reaction product is made variable according to the reaction conditions. In a third aspect of the present invention, there is provided a catalyst reaction method wherein at least two kinds of catalysts, a relatively low-activity catalyst and a relatively high-activity catalyst, are used as reaction catalysts, and the temperature inside the catalyst reaction tube is regulated. The catalyst reaction tubes are arranged so that their activities are changed from the inlet side to the outlet side of the catalyst reaction tube so as to be distributed. In a fourth aspect of the present invention, at least two types of catalysts, a relatively low activity catalyst and a relatively high activity catalyst, are used as reaction catalysts, and the inside of the catalyst reaction tube is adjusted according to the conditions. Thus, the composition of the reaction product is made variable. According to catalysis how the [0012] the present invention, the catalyst takes the density distribution or composition distribution over the reaction purposes catalytic reaction tube. Therefore, a partial rise in temperature can be prevented, and the reaction heat can be efficiently supplied to the external heat medium substance. Further, unnecessary reaction by-products can be suppressed, and the composition of the reaction products can be controlled. FIG. 1 shows a schematic configuration of a catalytic reaction method according to an embodiment of the present invention in which the concentration distribution of a catalytic reaction tube is optimally arranged. In FIG. 1, the same reference numerals as those in FIG. 5 indicate the same components, and XDL indicates a low concentration catalyst and XDH indicates a high concentration catalyst. For example, with respect to the catalyst used for the acetone hydrogenation reaction, specific examples of the relatively low-concentration catalyst XDL include a catalyst in which a nickel ultrafine particle catalyst is diluted to have a relatively small amount of catalyst per unit volume, and a relatively high-concentration catalyst. Catalyst XD
Specific examples of H include those using a nickel ultrafine particle catalyst without dilution. According to the above configuration, as shown in the temperature distribution diagram of FIG. 4, the temperature of the outlet side 12 of the catalyst reaction tube 10 becomes the highest, and the reaction heat can be more effectively supplied to the outside. Further, unnecessary reaction by-products can be controlled by controlling the temperature distribution. In order to make the temperature distribution in the catalyst reaction tube 10 variable between the low-concentration catalyst XDL and the high-concentration catalyst XDH by using two or more types of catalysts and devising their arrangement, the reaction conditions change. The composition of the products C and D can be changed. Here, the acetone hydrogenation reaction will be described more specifically with reference to FIG. Acetone and hydrogen are used as the reactant A and the reactant B flowing from the inlet side 11 of the catalyst reaction tube 10, and nickel ultrafine particles are used as the catalyst X and diphenyl ether is used as the heat medium material F. An acetone hydrogenation reaction, which is an exothermic reaction, occurs by the catalyst X, and 2-propanol is generated as a product C, and the reaction heat Q (55)
kJ / mol). Since the activity of the low concentration catalyst XDL is low, the heat of reaction Q per unit catalyst volume is small, and the activity of the high concentration catalyst XDH is high. The generation of by-products can be controlled by controlling the temperature condition of each part of the catalyst reaction tube 10 by the catalyst concentration. FIG. 2 shows another embodiment of the catalytic reaction method according to the present invention.
3 shows a schematic configuration in a case where the optimum arrangement of the composition distribution is performed. In FIG. 2, XAL
Is a low activity catalyst, XAH is a high activity catalyst, and the others are the same as those in FIG. What is characteristic in this embodiment is that the temperature distribution in the catalyst reaction tube 10 can be changed according to the arrangement of at least two types of catalysts, the relatively low activity catalyst XAL and the relatively high activity catalyst XAH. is there. Examples of such a catalyst include a palladium catalyst as a specific example of a relatively low-activity catalyst and a ruthenium catalyst as a specific example of a relatively high-activity catalyst with respect to a catalyst used in an acetone hydrogenation reaction. Also, in this embodiment, the composition of the reaction product can be changed because the reaction conditions are changed. For example, with respect to the catalyst used for the acetone hydrogenation reaction, even if the reaction conditions are constant, there is a difference in by-product species due to the difference in selectivity of the reaction in which the catalyst species differs. As a specific example, since the platinum catalyst has a higher activity of hydrogenolyzing acetone than a palladium catalyst, the platinum catalyst is more likely to generate propane as a by-product. FIG. 3 is a schematic diagram showing one embodiment of a catalytic reaction apparatus for performing the catalytic reaction method of the present invention. In FIG. 3, 1 is a first container that contains a reactant A,
2 is a second container containing the reactant B, 3 is a third container containing the heat transfer medium F, 4
Is a fourth container for accommodating the product substances C and D, 5 is a first heat exchanger for transmitting the heat generated in the catalytic reaction tube 10 to the heat medium substance F, and 6 is the heat obtained in the first heat exchanger 5. A second heat exchanger for supplying the target heat radiation target, a channel means 7 for returning the heat medium substance F to the third container 3, and a catalyst reaction tube 10 shown in FIGS. Next, the operation will be described. Reactants A and B are contained in a first container 1 and a second container 2. Each of the reactants A and B is supplied into the catalyst reaction tube 10, where the reactants A and B are converted into the products C and D by the catalyst X and stored in the fourth container 4. The heat medium substance F is supplied from the third container 3 to the first heat exchanger 5 in order to recover the reaction heat Q generated during the reaction. After recovering the heat generated by the chemical reaction in the first heat exchanger 5, the heat medium substance F performs heat exchange in the second heat exchanger 6 so as to apply heat to the heat radiation target, and is returned to the third container 3. If a device for separating the products C and D is provided between the catalyst reaction tube 10 and the fourth container 4, the products C and D can be stored separately. In the present invention, by disposing at least two types of catalysts having different activities, the temperature distribution in the catalyst reaction tube 10 is controlled to obtain a temperature distribution as shown in FIG. The reaction heat generated in the above can be more effectively supplied to the outside. Further, unnecessary reaction by-products can be suppressed by controlling the temperature distribution. Incidentally, in the acetone hydrogenation reaction as one embodiment of the present invention, if the temperature distribution shown in FIG. It is not preferable from the viewpoint of suppression. Therefore using <br/> the catalysis how according to the invention prevents partial temperature rise by lowering the catalyst concentration in the vicinity of the inlet side 11, increasing the amount of heat generated by increasing the catalyst concentration according to the reactant flow proceeds I do. Thereby, it is possible to take a temperature distribution such that heat transfer from the catalytic reaction tube to the heat medium material always occurs. In one embodiment of the present invention, in the acetone hydrogenation reaction, the equilibrium conversion decreases as the reaction temperature increases. Therefore, when the reaction temperature is too high, the calorific value decreases and the amount of unreacted substances increases. In this case, it is necessary to obtain a large amount of heat while maintaining a high conversion, and the catalytic reaction method according to the present invention is also effective for achieving uniform heat generation. In this case, unlike the temperature distribution shown in FIG. 4, it is necessary to arrange the catalyst so that the temperature distribution in the catalyst reaction tube is made as uniform as possible. In accordance with the principles of the present invention, the reactants need not necessarily be of the A and B types, and the produced materials need not be of the C and D types. As long as there is at least one kind of reactant and at least one kind of product, the temperature distribution desired for the reaction can be determined by applying the principle of the present invention. Further, by selecting three or more types of catalyst concentrations or types of catalyst, it is possible to determine a more finely divided temperature distribution. The temperature distribution inside and outside the catalytic reactor can be determined by applying the principle of the present invention not only to the tubular catalytic reactor 10 but also to a flat catalytic reactor. According to the catalytic reaction method of the present invention, as a reaction catalyst, a relatively low concentration catalyst and a relatively high concentration catalyst, or a relatively low activity catalyst and a relatively high activity catalyst are used. Since at least two types of active catalysts are used, the temperature distribution in the catalyst reaction tube can be controlled as specified, so that the heat of reaction due to the catalytic chemical reaction can be effectively used, and the by-products can be suppressed. Can also have. Therefore, a very desirable result can be obtained in the operation of the chemical reaction process.

【図面の簡単な説明】 【図1】本発明の触媒反応方法の一実施例を説明するための触媒反応管を示す概
略構成図である。 【図2】本発明の触媒反応方法の他の実施例を説明するための触媒反応管の概略
構成図である。 【図3】本発明の触媒反応方法を実施する触媒反応装置の一実施例を示す概略構
成図である。 【図4】本発明により得られる温度分布例を示す図である。 【図5】従来の触媒反応装置の触媒反応管の一例を示す概略構成図である。 【図6】従来の触媒反応管における温度分布例を示す図である。 【符号の説明】 1 第1容器 2 第2容器 3 第3容器 4 第4容器 5 第1熱交換器 6 第2熱交換器 10 触媒反応管 11 入口側 12 出口側 X 触媒 XDL 低濃度触媒 XDH 高濃度触媒 XAL 低活性触媒 XAH 高活性触媒
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing a catalyst reaction tube for explaining one embodiment of a catalyst reaction method of the present invention. FIG. 2 is a schematic configuration diagram of a catalyst reaction tube for explaining another embodiment of the catalyst reaction method of the present invention. FIG. 3 is a schematic configuration diagram showing one embodiment of a catalytic reaction device for performing the catalytic reaction method of the present invention. FIG. 4 is a diagram showing an example of a temperature distribution obtained by the present invention. FIG. 5 is a schematic configuration diagram showing an example of a catalyst reaction tube of a conventional catalyst reaction device. FIG. 6 is a diagram showing an example of a temperature distribution in a conventional catalyst reaction tube. [Description of Signs] 1 First container 2 Second container 3 Third container 4 Fourth container 5 First heat exchanger 6 Second heat exchanger 10 Catalyst reaction tube 11 Inlet side 12 Outlet side X catalyst XDL Low concentration catalyst XDH High concentration catalyst XAL Low activity catalyst XAH High activity catalyst

Claims (1)

【特許請求の範囲】 【請求項1】反応触媒を用いる発熱反応によって触媒反応管内に生じる熱エネ
ルギーを熱媒体物質により吸収する触媒反応方法であって、前記反応触媒として
、相対的に低濃度の触媒と相対的に高濃度の触媒の少なくとも2種類の触媒を用
い、触媒反応管内の温度分布が反応管入口から反応管出口に向かって上昇させる
ようにし、反応管出口温度が最高温度となるように前記触媒反応管の入口側から
出口側に向かって濃度を変化させて配置したことを特徴とする触媒反応方法。 【請求項2】反応触媒を用いる発熱反応によって触媒反応管内に生じる熱エネ
ルギーを熱媒体物質により吸収する触媒反応方法であって、前記反応触媒として
相対的に低濃度の触媒と相対的に高濃度の触媒の少なくとも2種類の触媒を用い
、触媒反応管内の温度分布が反応管入口から反応管出口に向かって上昇させるよ
うにし、反応管出口温度が最高温度になるように前記触媒反応管の入り口側から
出口側に向かって濃度を変化させて配置し、その反応条件に応じて反応生成物の
組成を可変とすることを特徴とする触媒反応方法。 【請求項3】反応触媒を用いる発熱反応によって触媒反応管内に生じる熱エネ
ルギーを熱媒体物質により吸収する触媒反応方法であって、前記反応触媒として
、相対的に低活性の触媒と相対的に高活性の触媒の少なくとも2種類の触媒を用
い、触媒反応管内の温度分布が反応管入口から反応管出口に向かって上昇させる
ようにし、反応管出口温度が最高温度となるように前記触媒反応官管の入り口側
から出口側に向かって活性を変化させて配置したことを特徴とする触媒反応方法
。 【請求項4】反応触媒を用いる発熱反応によって触媒反応管内に生じる熱エネ
ルギーを熱媒体物質により吸収する触媒化学反応方法であって、前記反応触媒と
して、相対的に低活性の触媒と相対的に高活性の触媒の少なくとも2種類の触媒
を用い、触媒反応管内の温度分布が反応管入口から反応管出口に向かって上昇さ
せるようにし、反応管出口温度が最高温度であるように、前記触媒反応管内の入
口側から出口側に向かって活性を変化させて配置し、その反応条件に応じて反応
生成物の組成を可変とすることを特徴とする触媒反応方法。
Claims: 1. A catalytic reaction method in which heat energy generated in a catalytic reaction tube by an exothermic reaction using a reaction catalyst is absorbed by a heat medium substance, wherein the reaction catalyst has a relatively low concentration. Using at least two types of catalysts, a catalyst and a catalyst having a relatively high concentration, the temperature distribution in the catalyst reaction tube is increased from the reaction tube inlet to the reaction tube outlet so that the reaction tube outlet temperature becomes the maximum temperature. Wherein the concentration is changed from the inlet side to the outlet side of the catalyst reaction tube. 2. A catalytic reaction method in which a heat medium material absorbs heat energy generated in a catalytic reaction tube by an exothermic reaction using a reaction catalyst, wherein the reaction catalyst has a relatively low concentration of catalyst and a relatively high concentration of catalyst. Using at least two kinds of catalysts, the temperature distribution in the catalyst reaction tube is increased from the reaction tube inlet to the reaction tube outlet, and the entrance of the catalyst reaction tube is set so that the reaction tube outlet temperature becomes the maximum temperature. A catalytic reaction method characterized in that the concentration is changed from the side to the outlet side, and the composition of the reaction product is variable according to the reaction conditions. 3. A catalytic reaction method in which heat energy generated in a catalytic reaction tube by an exothermic reaction using a reaction catalyst is absorbed by a heat medium material, wherein the reaction catalyst has a relatively low activity and a relatively high activity. Using at least two types of active catalysts, the temperature distribution in the catalyst reaction tube is increased from the reaction tube inlet to the reaction tube outlet, and the catalyst reaction tube is controlled so that the reaction tube outlet temperature becomes the maximum temperature. A catalytic reaction method wherein the activity is changed from the entrance side to the exit side. 4. A catalytic chemical reaction method in which heat energy generated in a catalytic reaction tube by an exothermic reaction using a reaction catalyst is absorbed by a heat medium material, wherein the reaction catalyst is a relatively low activity catalyst. Using at least two kinds of high activity catalysts, the temperature distribution in the catalyst reaction tube is increased from the reaction tube inlet to the reaction tube outlet, and the catalyst reaction is performed so that the reaction tube outlet temperature is the highest temperature. A catalytic reaction method, wherein the activity is changed from the inlet side to the outlet side in a tube, and the composition of the reaction product is variable according to the reaction conditions.

Family

ID=

Similar Documents

Publication Publication Date Title
CA2960556C (en) Annular catalyst carrier container for use in a tubular reactor
JP3893092B2 (en) Monolith catalytic reactor combined with static mixer
US7332139B2 (en) Process and device for carrying out reactions in reactor with slot-shaped reaction spaces
EP2249958B1 (en) Reactor for the preparation of methanol
US5672629A (en) Two-stage reforming of methanol
JP2526404B2 (en) Catalytic reaction method
CN1031110C (en) Process and apparatus for exothermic reactions
Hwang et al. Heterogeneous catalytic reactor design with optimum temperature profile I: application of catalyst dilution and side-stream distribution
AU2001279798A1 (en) Process and device for carrying out reactions in a reactor with slot-shaped reaction spaces
US8338647B2 (en) Method for producing tertiary amine
CN101012172B (en) Method of preparing tertiary amine
US4576573A (en) Heating a fixed-bed charge in a tube reactor, and an arrangement for carrying out the method
WO2009082930A1 (en) Methods and apparatus for exothermic catalystic process
JP2526404C (en)
CN113908778A (en) Apparatus and method
CN107698421A (en) A kind of method for preparing 1,1,1,2,3 pentafluoropropanes
US9079769B2 (en) Method and apparatus for producing gasoline and hydrogen from methanol
CN201598244U (en) Tube-shell type fixed-bed reaction device utilizing coal and natural gas to prepare ethylene glycol
WO1996016007A1 (en) A novel reverse flow strategy for ethylbenzene dehydrogenation in a packed-bed reactor
Dehnamaki et al. Simultaneous synthesis and oxidation of methanol to formaldehyde, thermally coupled with cyclohexane dehydrogenation in a trifunctional reactor
AU2003231323A1 (en) Method for carrying out chemical reactions in pseudo-isothermal conditions
US20180214837A1 (en) Two-stage reactor for exothermal and reversible reactions and methods thereof
KR100663218B1 (en) Isothermal Operation of Heterogeneously Catalyzed Three Phase Reactions
da Fonseca Dias et al. Mathematical modelling of the solar-driven steam reforming of methanol for a solar thermochemical micro-fluidized bed reformer: thermal performance and thermochemical conversion
JPH084104Y2 (en) Exothermic reactor that doubles as a heat exchanger