JP2024062415A - Improved back barrier for gallium nitride-based high electron mobility transistors - Google Patents

Improved back barrier for gallium nitride-based high electron mobility transistors Download PDF

Info

Publication number
JP2024062415A
JP2024062415A JP2023182388A JP2023182388A JP2024062415A JP 2024062415 A JP2024062415 A JP 2024062415A JP 2023182388 A JP2023182388 A JP 2023182388A JP 2023182388 A JP2023182388 A JP 2023182388A JP 2024062415 A JP2024062415 A JP 2024062415A
Authority
JP
Japan
Prior art keywords
layer
ingan
gan
algan
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023182388A
Other languages
Japanese (ja)
Inventor
ロバート・コッフィー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Systems Corp
Original Assignee
Northrop Grumman Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/049,064 external-priority patent/US20240136431A1/en
Application filed by Northrop Grumman Systems Corp filed Critical Northrop Grumman Systems Corp
Publication of JP2024062415A publication Critical patent/JP2024062415A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】窒化ガリウムベースの高電子移動度トランジスタの改良型バックバリアを提供すること。【解決手段】基板と、基板の上の1%から6%の間のAlの含有率を有するAlGaNバッファ層と、バッファ層の上の約10%のInを有するInGaN層と、InGaN層の上のGaNチャネル層と、チャネル層の上のAlGaNバリア層とを含む、高電子移動度トランジスタ(HEMT)デバイス。一実施形態では、バッファ層がAl0.04Ga0.96Nであり、InGaN層が厚さ約2nmであり、バリア層がAl0.34Ga0.66Nである。HEMTデバイスは、基板とバッファ層との間の核形成層、バッファ層とInGaN層との間のGaNスペーサ層、および/または、チャネル層とバリア層との間のAlN中間層を含み得る。【選択図】なしThe present invention provides an improved back barrier for gallium nitride based high electron mobility transistors. A high electron mobility transistor (HEMT) device includes a substrate, an AlGaN buffer layer having an Al content between 1% and 6% above the substrate, an InGaN layer having about 10% In above the buffer layer, a GaN channel layer above the InGaN layer, and an AlGaN barrier layer above the channel layer. In one embodiment, the buffer layer is Al0.04Ga0.96N, the InGaN layer is about 2 nm thick, and the barrier layer is Al0.34Ga0.66N. The HEMT device may include a nucleation layer between the substrate and the buffer layer, a GaN spacer layer between the buffer layer and the InGaN layer, and/or an AlN intermediate layer between the channel layer and the barrier layer.

Description

[0001]本開示は、一般には窒化ガリウム(GaN)ベースの高電子移動度トランジスタ(HEMT)に関し、より具体的には、低Al%AlGaNバッファ層と薄いInGaN層とを含むGaNベースのHEMTに関する。 [0001] This disclosure relates generally to gallium nitride (GaN)-based high electron mobility transistors (HEMTs), and more specifically to GaN-based HEMTs that include a low Al% AlGaN buffer layer and a thin InGaN layer.

[0002]トランジスタの技術分野では電解効果トランジスタ(FET)がよく知られており、HEMT、MOSFET、MISFET、FinFETなどの様々な種類がある。典型的なFETは、シリコン、ガリウムヒ素(GaAs)、インジウムガリウムヒ素(InGaAs),インジウムアルミニウムヒ素(InAlAs)、窒化ガリウム(GaN)、リン化インジウム(InP)などの様々な半導体層を含む。場合によっては、半導体層は、層内のキャリアの数を増大させるためにボロンおよびシリコンなどの様々な不純物でドーピングされ、層のドーピングレベルが高いほどその特定の半導体材料の導電率が高くなる。FETは、ソース端子とドレイン端子とゲート端子も含み、半導体層のうちの1つまたは複数の層がチャネル層であり、ソース端子とドレイン端子とに電気的に接続している。ソース端子とドレイン端子との間に印加された電位差が、ソース端子とドレイン端子との間のチャネル層をN型またはP型の電気キャリアが流れることを可能にする。ゲート端子に印加された電気信号が、チャネル層におけるキャリアを変化させる電界を形成し、ゲート電圧のわずかな変化がチャネル層におけるキャリアの数の大きな変動を生じさせて、ソース端子とドレイン端子との間からの電流の流れを変化させる。 [0002] Field-effect transistors (FETs) are well known in the transistor art and come in various varieties, such as HEMTs, MOSFETs, MISFETs, and FinFETs. A typical FET includes various semiconductor layers, such as silicon, gallium arsenide (GaAs), indium gallium arsenide (InGaAs), indium aluminum arsenide (InAlAs), gallium nitride (GaN), and indium phosphide (InP). In some cases, the semiconductor layers are doped with various impurities, such as boron and silicon, to increase the number of carriers in the layers, with higher doping levels of a layer resulting in higher electrical conductivity for that particular semiconductor material. A FET also includes source, drain, and gate terminals, with one or more of the semiconductor layers being a channel layer, electrically connecting the source and drain terminals. A potential difference applied between the source and drain terminals allows N-type or P-type electrical carriers to flow through the channel layer between the source and drain terminals. An electrical signal applied to the gate terminal creates an electric field that changes the carriers in the channel layer, and small changes in the gate voltage cause large fluctuations in the number of carriers in the channel layer, changing the current flow from between the source and drain terminals.

[0003]HEMTデバイスは、多くの用途、特に高周波用途または高速用途を有する広く普及しているトランジスタデバイスである。GaN HEMTデバイスは、典型的には、すべて当業者にはよく知られている、シリコンカーバイド(SiC)、サファイア、シリコンなどの適切な基板上にエピタキシャル成長される。典型的なHEMTデバイスは、交互になったシリコンと炭素の結晶層を含むSiC基板を有する場合がある。エピタキシャル成長を促進するのを助けるためにSiC基板上に、多くの場合、AlN層などの核形成層が堆積され、核形成層は、核形成層と後続のデバイス層の結晶構造の配向がガリウム配向を有するように、基板のシリコン面を有する側に成長させる。典型的には核形成層の上に、限られた欠陥を有する結晶構造を与えるバッファ層を成長させ、バッファ層は典型的にはGaNまたは低Al%AlGaNである。バッファ層上にGaNチャネル層が堆積され、チャネル層上にAlGaNバリア層が堆積され、チャネル層とバリア層との界面に電子の流れのための2次元電子ガス(2-DEG)層が形成される。 [0003] HEMT devices are widespread transistor devices with many applications, particularly high frequency or high speed applications. GaN HEMT devices are typically epitaxially grown on a suitable substrate, such as silicon carbide (SiC), sapphire, or silicon, all of which are well known to those skilled in the art. A typical HEMT device may have a SiC substrate, which includes alternating crystalline layers of silicon and carbon. A nucleation layer, such as an AlN layer, is often deposited on the SiC substrate to help promote epitaxial growth, and the nucleation layer is grown on the silicon-facing side of the substrate, such that the orientation of the crystal structure of the nucleation layer and subsequent device layers has a gallium orientation. A buffer layer is typically grown on the nucleation layer, which provides a crystal structure with limited defects, and the buffer layer is typically GaN or low Al% AlGaN. A GaN channel layer is deposited on the buffer layer, and an AlGaN barrier layer is deposited on the channel layer, forming a two-dimensional electron gas (2-DEG) layer for electron flow at the interface between the channel layer and the barrier layer.

[0004]現在、この技術分野ではAlGaN/GaN HEMTのバックバリアを形成するために2つの手法が使用されている。第1の手法は、GaNチャネル層とGaNバッファ層との間に薄いInGaN層を採用し、第2の手法は、低Al%AlGaNバッファ層の上にGaNチャネル層を成長させる。第1の手法は、第2の手法より高いブレークダウン電圧と、チャネル層からウエハの裏側までのより低い熱抵抗を生じさせる。第1の手法のHEMTのターンオフ特性は、第2の手法ほど鋭くない。低電圧では、これはHEMTの第2の手法より低い相互コンダクタンスと、より負のピンチオフ電圧と、より低いRFゲインにつながる。しかし、第2の手法は、第1の手法と比較して、より低いブレークダウン電圧と、チャネル層からウエハの裏側までのより高い熱抵抗を生じさせる。 [0004] Currently, two approaches are used in the art to form the back barrier of AlGaN/GaN HEMTs. The first approach employs a thin InGaN layer between the GaN channel layer and the GaN buffer layer, and the second approach grows the GaN channel layer on top of a low Al% AlGaN buffer layer. The first approach produces a higher breakdown voltage and a lower thermal resistance from the channel layer to the backside of the wafer than the second approach. The turn-off characteristics of the HEMTs of the first approach are not as sharp as the second approach. At low voltages, this leads to a lower transconductance, a more negative pinch-off voltage, and a lower RF gain than the second approach for the HEMTs. However, the second approach produces a lower breakdown voltage and a higher thermal resistance from the channel layer to the backside of the wafer compared to the first approach.

[0005]第1の手法は、電圧に依存しない伝導バンドバックバリアを形成するために薄いInGaN層における分極を使用し、これは典型的にはAlGaN/GaN界面から少なくとも10nmに位置する。伝導バンドにおいて十分に大きいバリアを生じさせるためには、フェルミ準位と交差するかまたは交差しそうなInGaNにおける伝導バンドを生じさせる厚さとIn含有率を使用する必要がある。InGaN伝導バンドがフェルミ準位と交差するため、InGaN層にはいくらかの電子が存在し、その結果、InGaN層のないHEMTと比較して、ゲート電圧によるHEMTのより急峻でないオフ状態からオン状態への遷移が起こる。 [0005] The first approach uses polarization in a thin InGaN layer, typically located at least 10 nm from the AlGaN/GaN interface, to create a voltage-independent conduction band back barrier. To create a large enough barrier in the conduction band, one must use a thickness and In content that results in the conduction band in the InGaN crossing or nearly crossing the Fermi level. Because the InGaN conduction band crosses the Fermi level, there are some electrons in the InGaN layer, which results in a less steep off-to-on transition of the HEMT with gate voltage compared to a HEMT without an InGaN layer.

[0006]第2の手法は、低Al%AlGaN上にGaNチャネル層を成長させる。AlGaNとGaNとの格子定数の差が、GaNチャネル/AlGaNバッファ界面において正味分極電荷を生じさせる。この分極電荷が、チャネル層に、AlGaNバリア/GaNチャネル界面に電子をさらに閉じ込める電界を生じさせる。チャネル層における伝導バンドの上昇は、分極電界にチャネル層の厚さを乗じた値である。この結果、チャネル層において大きな伝導バンド上昇を生じさせる約50nmの厚さとなる。AlGaNバッファ層における低Al%に起因して、AlGaNバッファ層とGaNチャネル層との伝導バンド不連続は、チャネル層における電子の閉じ込めにごくわずかしか寄与しない。ドレイン電圧が上昇するにつれて、短チャネル効果が発生する可能性があり、ドレイン電圧に起因する電界が分極に起因する電界を相殺する可能性がある。これが起こると、チャネル層における電子の閉じ込めが低下し、AlGaNバッファ層手法は有効でなくなる。この結果、第1の手法と比較してブレークダウン電圧が低くなる。 [0006] The second approach grows a GaN channel layer on low Al% AlGaN. The difference in lattice constants between AlGaN and GaN creates a net polarization charge at the GaN channel/AlGaN buffer interface. This polarization charge creates an electric field in the channel layer that further confines electrons at the AlGaN barrier/GaN channel interface. The conduction band lift in the channel layer is the polarization field multiplied by the thickness of the channel layer. This results in a thickness of about 50 nm that creates a large conduction band lift in the channel layer. Due to the low Al% in the AlGaN buffer layer, the conduction band discontinuity between the AlGaN buffer layer and the GaN channel layer contributes only slightly to the electron confinement in the channel layer. As the drain voltage increases, short channel effects can occur and the electric field due to the drain voltage can offset the electric field due to the polarization. When this happens, the electron confinement in the channel layer is reduced and the AlGaN buffer layer approach becomes ineffective. This results in a lower breakdown voltage compared to the first method.

低Al%AlGaNバッファ層と薄いInGaN層とを有するAlGaN HEMTデバイスを示す断面図である。FIG. 2 is a cross-sectional view of an AlGaN HEMT device having a low Al % AlGaN buffer layer and a thin InGaN layer. 薄いInGaNバッファ層が除去された図1に示すAlGaN HEMTデバイスの伝導バンド図である。FIG. 2 is a conduction band diagram for the AlGaN HEMT device shown in FIG. 1 with the thin InGaN buffer layer removed. 低Al%AlGaNバッファ層がGaNバッファ層に置き換えられた、図1に示すAlGaN HEMTデバイスの伝導バンド図である。FIG. 2 is a conduction band diagram for the AlGaN HEMT device shown in FIG. 1, where the low Al % AlGaN buffer layer is replaced with a GaN buffer layer. 図1に示すAlGaN HEMTデバイスの伝導バンド図である。FIG. 2 is a conduction band diagram for the AlGaN HEMT device shown in FIG.

[0011]低Al%AlGaNバッファ層と薄いInGaN層とを含むGaNベースのHEMTに関する本開示の実施形態の以下の説明は、例示的な性質のものに過ぎず、いかなる点でも本開示またはその適用または用途を限定することは意図されていない。 [0011] The following description of embodiments of the present disclosure relating to GaN-based HEMTs with low Al% AlGaN buffer layers and thin InGaN layers is merely exemplary in nature and is not intended to limit in any way the present disclosure or its application or uses.

[0012]以下で詳述するように、本開示は、HEMTの動作時のすべての電圧について、知られているデバイスに優るHEMTのRFパフォーマンス向上につながるデバイスチャネル層における電子の閉じ込めの向上をもたらすHEMTを提案する。この新規な手法は、低Al%AlGaNバッファ層上に成長させたGaNチャネル層に薄いInGaN層を挿入する。GaN層とAlGaNバッファ層との格子定数の差に起因する分極電界が、InGaN層の伝導バンドがフェルミ準位と交差するのを防ぎ、上述の第2の手法から得られるゲート電圧によるオフ状態からオン状態への急峻な遷移を維持する。ドレイン電圧を上昇させると、分極電界をドレイン電圧によって生じた電界によって相殺することができ、これで薄いInGaN層によって生じる伝導バンドバリアによってチャネル層への電子の閉じ込めがもたらされることになる。この結果として、第2の手法が同じ設計について生じさせることができるよりも高いブレークダウン電圧となる。 [0012] As detailed below, the present disclosure proposes a HEMT that provides improved confinement of electrons in the device channel layer leading to improved RF performance of the HEMT over known devices for all voltages at which the HEMT is operated. The novel approach inserts a thin InGaN layer into a GaN channel layer grown on a low Al% AlGaN buffer layer. The polarization field caused by the difference in lattice constants between the GaN layer and the AlGaN buffer layer prevents the conduction band of the InGaN layer from crossing the Fermi level, preserving the sharp transition from the off state to the on state with gate voltage resulting from the second approach described above. When the drain voltage is increased, the polarization field can be countered by the field created by the drain voltage, which results in confinement of electrons in the channel layer due to the conduction band barrier created by the thin InGaN layer. This results in a higher breakdown voltage than the second approach can produce for the same design.

[0013]図1は、知られているエピタキシャル成長技術を使用してHEMTデバイス10の様々なエピタキシャル層またはデバイス層を上に堆積または成長させる基板12を含むHEMTデバイス10のデバイス断面図である。基板12は、SiC、サファイア、GaN、AlN、Siなど、本明細書で説明されている目的に適した任意の基板とすることができる。デバイス層の適正なエピタキシャル成長のための基礎層を設けるために、基板12上に核形成層14を成長させ、この層14はたとえばGaN、AlGaNまたはAlNとすることができる。核形成層14上にAlGaNバッファ層16を成長させ、バッファ層16は以下で説明する理由で、低い含有率、たとえば1%~6%のAlを有する。非限定的な一実施形態では、バッファ層16はAl0.04Ga0.96Nである。バッファ層16上にGaNスペーサ層18を成長させ、スペーサ層18上に20nm未満の厚さを有する薄いInGaN層20を成長させる。一実施形態では、薄い層20は、In0.1Ga0.9Nであり、厚さが約2nmで、約10%のIn組成を有する。薄い層20上にGaNチャネル層22を成長させ、チャネル層22上に任意によるAlN中間層24を成長させる。中間層24上にAlGaNバリア層26を成長させ、AlGaNバリア層26とGaNチャネル層22との間の圧電分極/自発分極効果が、中間層24とチャネル層22との間に2-DEG層28を生じさせる。非限定的な一実施形態では、バリア層26はAl0.34Ga0.66Nである。バリア層26上にソース端子30とドレイン端子32とゲート端子34とを設けるために、適切なパターン形成ステップと金属堆積ステップが行われる。 [0013] Figure 1 is a cross-sectional device view of a HEMT device 10 including a substrate 12 on which various epitaxial or device layers of the HEMT device 10 are deposited or grown using known epitaxial growth techniques. The substrate 12 can be any substrate suitable for the purposes described herein, such as SiC, sapphire, GaN, AlN, Si, etc. A nucleation layer 14 is grown on the substrate 12 to provide a base layer for proper epitaxial growth of the device layers, which layer 14 can be, for example, GaN, AlGaN or AlN. An AlGaN buffer layer 16 is grown on the nucleation layer 14, which has a low Al content, for example 1% to 6 % , for reasons described below. In one non-limiting embodiment, the buffer layer 16 is Al0.04Ga0.96N . A GaN spacer layer 18 is grown on the buffer layer 16, and a thin InGaN layer 20 is grown on the spacer layer 18, having a thickness of less than 20 nm. In one embodiment, the thin layer 20 is In 0.1 Ga 0.9 N, having a thickness of about 2 nm and an In composition of about 10%. A GaN channel layer 22 is grown on the thin layer 20, and an optional AlN intermediate layer 24 is grown on the channel layer 22. An AlGaN barrier layer 26 is grown on the intermediate layer 24, and the piezoelectric/spontaneous polarization effect between the AlGaN barrier layer 26 and the GaN channel layer 22 creates a 2-DEG layer 28 between the intermediate layer 24 and the channel layer 22. In one non-limiting embodiment, the barrier layer 26 is Al 0.34 Ga 0.66 N. Appropriate patterning and metal deposition steps are performed to provide a source terminal 30, a drain terminal 32, and a gate terminal 34 on the barrier layer 26.

[0014]図2は、AlGaN HEMTデバイス10の伝導バンド図であるが、ここでは薄いInGaN層20が除去されており、図3は、AlGaN HEMTデバイス10の伝導バンド図であるが、ここでは低Al%AlGaNバッファ層16がGaNバッファ層に置き換えられており、図4はAlGaN HEMTデバイス10の伝導バンド図である。 [0014] FIG. 2 is a conduction band diagram for an AlGaN HEMT device 10 with the thin InGaN layer 20 removed, FIG. 3 is a conduction band diagram for an AlGaN HEMT device 10 with the low Al % AlGaN buffer layer 16 replaced with a GaN buffer layer, and FIG. 4 is a conduction band diagram for an AlGaN HEMT device 10.

[0015]図2に示すように、バリア層26と中間層24との界面に電子を保持するための主要閉じ込めメカニズムは、GaNチャネル層22と低Al%AlGaNバッファ層16との間の格子定数不一致によって生じる分極誘導電界である。この電界は、高ドレイン電圧における短チャネル効果によって相殺することができ、その結果として低ブレークダウン電圧となる。 [0015] As shown in FIG. 2, the primary confinement mechanism for retaining electrons at the interface between the barrier layer 26 and the intermediate layer 24 is the polarization-induced electric field caused by the lattice constant mismatch between the GaN channel layer 22 and the low Al % AlGaN buffer layer 16. This electric field can be countered by short channel effects at high drain voltages, resulting in a low breakdown voltage.

[0016]図3に示すように、薄いInGaN層20は、GaNチャネル層22と、バッファ層16を置き換えたGaNバッファ層との間の伝導バンドにおいてバリアを生じさせる。十分に大きいバリアを生じさせるために、層20において約10%のIn含有率が使用されるが、この結果としてフェルミ準位と交差するInGaN層20における伝導バンドとなる。InGaN層20の伝導バンドがフェルミ準位に近い場合、層20を電子が占め始め、それによって、ゲート電圧によるオフ状態からオン状態へのより急峻でない遷移を生じさせる。この結果、より負のピンチオフ電圧とより小さい相互コンダクタンスとより小さいRFゲインになる。薄いInGaN層20の伝導バンドにおけるこのシフトは、ドレイン電圧によって影響されない薄いInGaN層20における分極に起因する。これは、(AlGaNバッファ閉じ込め手法とは異なり)高電圧への閉じ込めを可能にし、その結果、高ブレークダウン電圧となる。 [0016] As shown in FIG. 3, the thin InGaN layer 20 creates a barrier in the conduction band between the GaN channel layer 22 and the GaN buffer layer that replaces the buffer layer 16. To create a large enough barrier, an In content of about 10% is used in the layer 20, which results in the conduction band in the InGaN layer 20 crossing the Fermi level. When the conduction band of the InGaN layer 20 is close to the Fermi level, electrons begin to populate the layer 20, thereby creating a less steep transition from the off state to the on state with the gate voltage. This results in a more negative pinch-off voltage, a smaller transconductance, and a smaller RF gain. This shift in the conduction band of the thin InGaN layer 20 is due to polarization in the thin InGaN layer 20, which is not affected by the drain voltage. This allows for confinement to higher voltages (unlike the AlGaN buffer confinement approach), which results in a higher breakdown voltage.

[0017]図4に示すように、薄いInGaN層20は、GaNチャネル層22とGaNスペーサ層18との間の伝導バンドにおいて、外部電界に依存しないバリアを生じさせる。低Al%AlGaNバッファ層16上にスペーサ層18を成長させることで、GaNチャネル層22とInGaN層20とGaNスペーサ層18に存在する分極電界が生じる。この分極電界は、低電圧において電子がInGaN層26を占めるのを防ぎ、それによってゲート電圧によるオフ状態からオン状態への望まれる急峻な遷移と、高い相互コンダクタンスと、より低電圧における高いRFゲインとを生じさせる。低Al%AlGaNバッファ層16上の成長に起因する分極電界を短チャネル効果からのドレイン電圧によって相殺することができる高電圧において、GaNチャネル層22とGaNスペーサ層18との間のInGaN層20によって伝導バンドにおいて生じるバリアが依然として存在し、その結果、高いブレークダウン電圧となる。 [0017] As shown in FIG. 4, the thin InGaN layer 20 creates a barrier in the conduction band between the GaN channel layer 22 and the GaN spacer layer 18 that is independent of the external electric field. Growing the spacer layer 18 on the low Al% AlGaN buffer layer 16 creates a polarization field that exists in the GaN channel layer 22, the InGaN layer 20, and the GaN spacer layer 18. This polarization field prevents electrons from populating the InGaN layer 26 at low voltages, thereby creating the desired sharp transition from the off state to the on state with the gate voltage, high transconductance, and high RF gain at lower voltages. At high voltages, where the polarization field caused by growth on the low Al% AlGaN buffer layer 16 can be offset by the drain voltage from the short channel effect, the barrier created in the conduction band by the InGaN layer 20 between the GaN channel layer 22 and the GaN spacer layer 18 still exists, resulting in a high breakdown voltage.

[0018]以上の説明は、本開示の単なる例示の実施形態を開示し、説明している。当業者は、このような説明からと、添付図面および特許請求の範囲から、以下の特許請求の範囲で定義されている本開示の思想および範囲から逸脱することなくこれに様々な変更、修正および変形を加えることができることが容易にわかるであろう。 [0018] The foregoing disclosure discloses and describes merely exemplary embodiments of the present disclosure. Those skilled in the art will readily appreciate from such description and the accompanying drawings and claims that various changes, modifications, and variations can be made therein without departing from the spirit and scope of the present disclosure, as defined in the following claims.

10 HEMTデバイス
12 基板
14 核形成層
16 AlGaNバッファ層
18 GaNスペーサ層
20 薄いInGaN層
22 GaNチャネル層
24 AlN中間層
26 AlGaNバリア層
28 2-DEG層
30 ソース端子
32 ドレイン端子
34 ゲート端子
10 HEMT device 12 Substrate 14 Nucleation layer 16 AlGaN buffer layer 18 GaN spacer layer 20 Thin InGaN layer 22 GaN channel layer 24 AlN intermediate layer 26 AlGaN barrier layer 28 2-DEG layer 30 Source terminal 32 Drain terminal 34 Gate terminal

Claims (20)

基板と、
前記基板の上の、10%未満のAlの含有率を有するAlGaNバッファ層と、
前記バッファ層の上の、20nm未満の厚さを有するInGaN層と、
前記InGaN層の上のチャネル層と、
前記チャネル層の上のバリア層とを含む、電界効果トランジスタ(FET)デバイス。
A substrate;
an AlGaN buffer layer having an Al content of less than 10% on the substrate;
an InGaN layer over the buffer layer, the InGaN layer having a thickness of less than 20 nm;
a channel layer on the InGaN layer;
a barrier layer over the channel layer.
前記バッファ層内の前記Alの含有率が1%から6%の間である、請求項1に記載のFETデバイス。 The FET device of claim 1, wherein the Al content in the buffer layer is between 1% and 6%. 前記バッファ層がAl0.04Ga0.96Nである、請求項3に記載のFETデバイス。 The FET device of claim 3 , wherein the buffer layer is Al 0.04 Ga 0.96 N. 前記InGaN層が約10%のInの含有率を有する、請求項1に記載のFETデバイス。 The FET device of claim 1, wherein the InGaN layer has an In content of about 10%. 前記InGaN層がIn0.1Ga0.9Nである、請求項4に記載のFETデバイス。 The FET device of claim 4, wherein the InGaN layer is In0.1Ga0.9N . 前記InGaN層が約2nmの厚さを有する、請求項1に記載のFETデバイス。 The FET device of claim 1, wherein the InGaN layer has a thickness of about 2 nm. 前記チャネル層がGaNである、請求項1に記載のFETデバイス。 The FET device of claim 1, wherein the channel layer is GaN. 前記バリア層がAlGaNである、請求項1に記載のFETデバイス。 The FET device of claim 1, wherein the barrier layer is AlGaN. 前記バリア層がAl0.34Ga0.66Nである、請求項8に記載のFETデバイス。 The FET device of claim 8 , wherein the barrier layer is Al 0.34 Ga 0.66 N. 前記基板と前記バッファ層との間の核形成層をさらに含む、請求項1に記載のFETデバイス。 The FET device of claim 1, further comprising a nucleation layer between the substrate and the buffer layer. 前記バッファ層とInGaN層との間のGaNスペーサ層をさらに含む、請求項1に記載のFETデバイス。 The FET device of claim 1, further comprising a GaN spacer layer between the buffer layer and the InGaN layer. 前記チャネル層と前記バリア層との間のAlN中間層をさらに含む、請求項1に記載のFETデバイス。 The FET device of claim 1, further comprising an AlN intermediate layer between the channel layer and the barrier layer. 前記基板がSiC、サファイア、GaN、AlNまたはSi基板である、請求項1に記載のFETデバイス。 The FET device of claim 1, wherein the substrate is a SiC, sapphire, GaN, AlN or Si substrate. 前記FETデバイスが高電子移動度トランジスタデバイスである、請求項1に記載のFETデバイス。 The FET device of claim 1, wherein the FET device is a high electron mobility transistor device. 基板と、
前記基板の上の、1%から6%の間のAlの含有率を有するAlGaNバッファ層と、
前記バッファ層の上の、約10%のInを有するInGaN層と、
前記InGaN層の上のGaNチャネル層と、
前記チャネル層の上のAlGaNバリア層とを含む、高電子移動度トランジスタ(HEMT)デバイス。
A substrate;
an AlGaN buffer layer having an Al content between 1% and 6% on the substrate;
an InGaN layer having about 10% In on the buffer layer;
a GaN channel layer on the InGaN layer;
and an AlGaN barrier layer over the channel layer.
前記バッファ層がAl0.04Ga0.96Nである、請求項15に記載のHEMTデバイス。 The HEMT device of claim 15, wherein the buffer layer is Al0.04Ga0.96N . 前記InGaN層が約2nmの厚さである、請求項15に記載のHEMTデバイス。 The HEMT device of claim 15, wherein the InGaN layer is about 2 nm thick. 前記バリア層がAl0.34Ga0.66Nである、請求項15に記載のHEMTデバイス。 The HEMT device of claim 15, wherein the barrier layer is Al0.34Ga0.66N . 前記基板と前記バッファ層との間の核形成層と、前記バッファ層と前記InGaN層との間のGaNスペーサ層と、前記チャネル層と前記バリア層との間のAlN中間層とをさらに含む、請求項15に記載のHEMTデバイス。 The HEMT device of claim 15, further comprising a nucleation layer between the substrate and the buffer layer, a GaN spacer layer between the buffer layer and the InGaN layer, and an AlN intermediate layer between the channel layer and the barrier layer. 基板と、
前記基板の上の核形成層と、
前記核形成層の上の、約4%のAlの含有率を有するAlGaNバッファ層と、
前記バッファ層の上のGaNスペーサ層と、
前記スペーサ層の上の、約10%のInと約2nmの厚さを有するInGaN層と、
前記InGaN層の上のGaNチャネル層と、
前記チャネル層の上のAlN中間層と、
前記中間層の上のAlGaNバリア層とを含む、高電子移動度トランジスタ(HEMT)デバイス。
A substrate;
a nucleation layer on the substrate;
an AlGaN buffer layer having an Al content of about 4% on the nucleation layer;
a GaN spacer layer on the buffer layer;
an InGaN layer having about 10% In and a thickness of about 2 nm on the spacer layer;
a GaN channel layer on the InGaN layer;
an AlN intermediate layer on the channel layer;
and an AlGaN barrier layer over the intermediate layer.
JP2023182388A 2022-10-24 2023-10-24 Improved back barrier for gallium nitride-based high electron mobility transistors Pending JP2024062415A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18/049,064 US20240136431A1 (en) 2022-10-23 Back-barrier for gallium nitride based high electron mobility transistors
US18/049,064 2022-10-24

Publications (1)

Publication Number Publication Date
JP2024062415A true JP2024062415A (en) 2024-05-09

Family

ID=88412204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023182388A Pending JP2024062415A (en) 2022-10-24 2023-10-24 Improved back barrier for gallium nitride-based high electron mobility transistors

Country Status (2)

Country Link
EP (1) EP4362105A2 (en)
JP (1) JP2024062415A (en)

Also Published As

Publication number Publication date
EP4362105A2 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP4469139B2 (en) Compound semiconductor FET
JP5004403B2 (en) High electron mobility transistor (HEMT)
JP5580602B2 (en) Cascode circuit using depletion mode GaN-based FET
Higashiwaki et al. AlN/GaN insulated-gate HFETs using cat-CVD SiN
US7956383B2 (en) Field effect transistor
JP4744109B2 (en) Semiconductor device and manufacturing method thereof
US10109728B2 (en) Transistor structure including a scandium gallium nitride back-barrier layer
US8669592B2 (en) Compound semiconductor device and method for fabricating the same
US8835986B2 (en) Method for fabrication of III-nitride device and the III-nitride device thereof
KR101092467B1 (en) Enhancement normally off nitride semiconductor device and manufacturing method thereof
US20130221371A1 (en) Semiconductor device
JP2007109830A (en) Field effect transistor
JP2002016087A (en) Semiconductor device
JP2009231395A (en) Semiconductor device and method for manufacturing semiconductor device
US7355215B2 (en) Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies
US9679762B2 (en) Access conductivity enhanced high electron mobility transistor
JP4474292B2 (en) Semiconductor device
WO2017113484A1 (en) High electron mobility transistor and method for manufacturing same
JP7257498B2 (en) Nitride semiconductor device
JP2012049170A (en) Nitride semiconductor device
US20230223467A1 (en) HIGH ELECTRON MOBILITY TRANSISTORS (HEMTS) INCLUDING A YTTRIUM (Y) AND ALUMINUM NITRIDE (AlN) (YAlN) ALLOY LAYER
JP2011108712A (en) Nitride semiconductor device
KR101200274B1 (en) Enhancement normally off nitride vertical semiconductor device and manufacturing method thereof
US20240136431A1 (en) Back-barrier for gallium nitride based high electron mobility transistors
JP2024062415A (en) Improved back barrier for gallium nitride-based high electron mobility transistors