JP2023155635A - Insulation monitoring device - Google Patents

Insulation monitoring device Download PDF

Info

Publication number
JP2023155635A
JP2023155635A JP2022065072A JP2022065072A JP2023155635A JP 2023155635 A JP2023155635 A JP 2023155635A JP 2022065072 A JP2022065072 A JP 2022065072A JP 2022065072 A JP2022065072 A JP 2022065072A JP 2023155635 A JP2023155635 A JP 2023155635A
Authority
JP
Japan
Prior art keywords
phase
leakage current
ground
zero
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022065072A
Other languages
Japanese (ja)
Inventor
文典 阿部
Fuminori Abe
孝志 梅田
Takashi Umeda
直之 佐藤
Naoyuki Sato
桂祐 丹野
Keisuke Tanno
公洋 椀澤
Kimihiro Wanzawa
健太 浅利
Kenta Asari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electrical Safety Inspection Association
NEC Magnus Communications Ltd
Original Assignee
Tohoku Electrical Safety Inspection Association
NEC Magnus Communications Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electrical Safety Inspection Association, NEC Magnus Communications Ltd filed Critical Tohoku Electrical Safety Inspection Association
Priority to JP2022065072A priority Critical patent/JP2023155635A/en
Publication of JP2023155635A publication Critical patent/JP2023155635A/en
Pending legal-status Critical Current

Links

Images

Abstract

To obtain a leakage current caused by insulation-to-ground resistance with good accuracy, irrespective of the disequilibrium of ground capacitance of an electrical circuit to be measured or the presence or absence of grounding resistance.SOLUTION: An insulation monitoring device according to the present invention includes leakage current value computation means 40 that obtains a leakage current value caused by insulation-to-ground resistance, on the basis of the voltage waveform of R phase of a three-phase three-wire type or a single-phase three-wire type electric circuit to be measured 2, a T-phase voltage waveform, and a zero-phase current waveform. The leakage current value computation means 40 obtains a plurality of circuit equations regarding the sine and cosine components of the zero-phase current, on the basis of the fundamental wave and plurality of odd harmonic components of the R-phase voltage waveform, T-phase voltage waveform, and zero-phase current waveform, obtains the insulation-to-ground resistance values of the R-phase and the T-phase, respectively, by matrix operation of a simultaneous equation composed of the plurality of circuit equations, and obtains a leakage current value caused by insulation-to-ground resistance from the R-phase insulation-to-ground resistance value, the T-phase insulation-to-ground resistance value, the effective value of R-phase voltage, and the effective value of T-phase voltage.SELECTED DRAWING: Figure 1

Description

本発明は、三相3線式又は単相3線式電路の漏洩電流を監視するための絶縁監視装置に関するものである。 The present invention relates to an insulation monitoring device for monitoring leakage current in a three-phase three-wire or single-phase three-wire electrical circuit.

電路の漏洩電流を監視するための絶縁監視装置が知られている。漏洩電流には対地静電容量に起因する地絡電流と絶縁抵抗に起因する地絡電流が含まれるが、漏電火災等を引き起こす原因は絶縁抵抗の低下であるため、絶縁抵抗に起因する漏洩電流を正確に検出できれば電路の絶縁状態を正確に把握でき、漏電火災等の大惨事を未然に防止することが可能である。 Insulation monitoring devices for monitoring leakage current in electrical circuits are known. Leakage current includes ground fault current caused by ground capacitance and ground fault current caused by insulation resistance. However, since the cause of leakage fires, etc. is a decrease in insulation resistance, leakage current caused by insulation resistance If this can be detected accurately, the insulation state of the electrical circuit can be accurately determined, and catastrophes such as electric leakage fires can be prevented.

絶縁抵抗に起因する漏洩電流の測定方法に関し、例えば特許文献1には、接地系電路の零相電流を計測する零相電流センサにより計測された零相電流と、電路の接地相に応じて所定の位相を有する位相判定信号をベクトル的に加算及び減算してXYベクトル成分を作り、これらのベクトル成分及び位相判定信号の実効値を用いて、抵抗性地絡電流を求めることが記載されている。 Regarding a method for measuring leakage current caused by insulation resistance, for example, Patent Document 1 describes a zero-sequence current measured by a zero-sequence current sensor that measures the zero-sequence current of a grounding system electric circuit, and a predetermined method according to the grounding phase of the electric circuit. It is described that XY vector components are created by vectorial addition and subtraction of phase determination signals having a phase of .

また、特許文献2には、三相電路の零相電流を零相変流器にて測定し、各相の電圧を電圧測定器にて測定し、零相変流器及び電圧測定器の出力から基本波成分及び5次高調波成分をバンドパスフィルタにて抽出して、抽出した周波数成分の電流と電圧の位相関係を演算処理装置にて求め、三相電路の漏れ電流から対地静電容量による漏れ電流分を除き、対地絶縁抵抗による漏れ電流分を算出する方法が記載されている。 Furthermore, Patent Document 2 discloses that the zero-phase current of a three-phase electric circuit is measured with a zero-phase current transformer, the voltage of each phase is measured with a voltage measuring device, and the output of the zero-phase current transformer and the voltage measuring device is measured. The fundamental wave component and the fifth harmonic component are extracted using a band-pass filter, and the phase relationship between the current and voltage of the extracted frequency component is determined using an arithmetic processing unit, and the ground capacitance is determined from the leakage current of the three-phase circuit. It describes a method for calculating the leakage current due to ground insulation resistance, excluding the leakage current due to the ground insulation resistance.

特開2002-125313号公報Japanese Patent Application Publication No. 2002-125313 特開2004-317466号公報Japanese Patent Application Publication No. 2004-317466

しかしながら、特許文献1に記載の方法は、単相3線式電路については接地抵抗が0Ωという条件の下、また三相3線式電路については接地抵抗が0Ωかつ各相の対地静電容量が平衡という条件の下で漏電監視を行うので、電路の接地抵抗が高い場合や対地静電容量が不平衡である場合に漏洩電流の測定誤差が大きく、誤警報または未警報の可能性がある。 However, the method described in Patent Document 1 is based on the condition that the grounding resistance is 0Ω for a single-phase 3-wire circuit, and that the grounding resistance is 0Ω and the ground capacitance of each phase is 0Ω for a 3-phase 3-wire circuit. Since leakage monitoring is performed under the condition of balance, there is a large error in leakage current measurement when the ground resistance of the electrical circuit is high or the ground capacitance is unbalanced, which may result in false alarms or no alarms.

特許文献2に記載の方法は、基本波成分のみならず5次高調波成分を用いることで三相3線式電路の対地静電容量が不平衡である場合にも適用可能であるが、接地抵抗が高い場合には漏洩電流の測定誤差が大きくなる。また、高調波成分は揺らぎが大きいため、単に高調波成分を用いるだけでは漏洩電流の測定誤差を小さくすることが難しく、改善が必要である。 The method described in Patent Document 2 is applicable even when the ground capacitance of a three-phase three-wire circuit is unbalanced by using not only the fundamental wave component but also the fifth harmonic component. If the resistance is high, the leakage current measurement error will be large. Further, since the harmonic components have large fluctuations, it is difficult to reduce the leakage current measurement error by simply using the harmonic components, and improvements are needed.

また、平衡な線路と不平衡な線路との比較において、線間電圧、相電圧、対地電圧、線電流・零相電流の商用周波数におけるすべての波形が完全に一致する場合には、両者を区別できないため、漏洩電流値を測定することができないという問題がある。 In addition, when comparing a balanced line and an unbalanced line, if all waveforms at the commercial frequency of line voltage, phase voltage, ground voltage, line current, and zero-sequence current match completely, it is possible to distinguish between the two. Therefore, there is a problem that the leakage current value cannot be measured.

本発明は上記課題を解決するためになされたものであり、被測定電路の対地静電容量の不平衡度や接地抵抗の有無によらず、対地絶縁抵抗に起因する漏洩電流を精度良く求めることが可能な絶縁監視装置を提供することを目的とする。 The present invention has been made to solve the above problems, and it is possible to accurately determine leakage current caused by ground insulation resistance, regardless of the degree of unbalance of the ground capacitance of the electrical circuit to be measured or the presence or absence of ground resistance. The purpose is to provide an insulation monitoring device that is capable of

上記課題を解決するため、本発明による絶縁監視装置は、三相3線式又は単相3線式の被測定電路の対地絶縁抵抗に起因する漏洩電流を監視する絶縁監視装置であって、S相又はN相を基準としてR相の電圧波形を取り込む電圧R相取込手段と、前記S相又は前記N相を基準としてT相の電圧波形を取り込む電圧T相取込手段と、前記被測定電路の接地相の零相電流波形を取り込む零相電流取込手段と、前記R相の電圧波形、前記T相の電圧波形及び前記零相電流波形に基づいて、前記対地絶縁抵抗に起因する漏洩電流値を求める漏洩電流値演算手段とを備え、前記漏洩電流値演算手段は、前記R相の電圧波形、前記T相の電圧波形及び前記零相電流波形の基本波及び複数の奇数次高調波成分に基づいて、前記零相電流の正弦成分及び余弦成分に関する複数の回路方程式を求め、前記複数の回路方程式で構成される連立方程式の行列演算により前記R相の対地絶縁抵抗値及び前記T相の対地絶縁抵抗値をそれぞれ求め、前記R相の対地絶縁抵抗値、前記T相の対地絶縁抵抗値、前記R相の電圧の実効値及び前記T相の電圧の実効値から、前記対地絶縁抵抗に起因する前記漏洩電流値を求めることを特徴とする。 In order to solve the above problems, an insulation monitoring device according to the present invention is an insulation monitoring device that monitors leakage current caused by the insulation resistance to ground of a three-phase three-wire system or a single-phase three-wire system to be measured, voltage R-phase capturing means for capturing an R-phase voltage waveform with reference to the S-phase or N-phase as a reference; voltage T-phase capturing means that captures a T-phase voltage waveform with the S-phase or the N-phase as a reference; A zero-sequence current capturing means that captures a zero-sequence current waveform of the ground phase of the electric circuit, and a zero-sequence current capturing means that captures leakage caused by the ground insulation resistance based on the R-phase voltage waveform, the T-phase voltage waveform, and the zero-phase current waveform. leakage current value calculating means for calculating a current value, the leakage current value calculating means calculating a fundamental wave and a plurality of odd-order harmonics of the R-phase voltage waveform, the T-phase voltage waveform, and the zero-phase current waveform. Based on the components, a plurality of circuit equations regarding the sine component and cosine component of the zero-sequence current are determined, and the ground insulation resistance value of the R phase and the T phase are calculated by matrix calculation of simultaneous equations constituted by the plurality of circuit equations. The earth insulation resistance values are calculated from the R phase earth insulation resistance value, the T phase earth insulation resistance value, the R phase voltage effective value, and the T phase voltage effective value. The present invention is characterized in that the leakage current value caused by the leakage current value is determined.

本発明によれば、被測定電路の各相の対地静電容量が不平衡な場合や接地抵抗が高い場合でも、漏洩電流を精度良く求めることができる。したがって、絶縁監視の誤警報や未警報を防止することができる。 According to the present invention, even when the ground capacitance of each phase of the electrical path to be measured is unbalanced or the ground resistance is high, leakage current can be determined with high accuracy. Therefore, false alarms and non-alarms in insulation monitoring can be prevented.

本発明において、前記漏洩電流値演算手段は、前記R相の電圧波形、前記T相の電圧波形及び前記零相電流波形をフーリエ変換することにより前記R相の電圧、前記T相の電圧及び前記零相電流の各々の前記複数の奇数次高調波成分の正弦成分及び余弦成分を求めることが好ましい。本発明によれば、漏洩電流値の演算に必要な複数の回路方程式を容易に生成することができる。 In the present invention, the leakage current value calculation means performs a Fourier transform on the R-phase voltage waveform, the T-phase voltage waveform, and the zero-phase current waveform to calculate the R-phase voltage, the T-phase voltage, and the zero-phase current waveform. It is preferable to obtain a sine component and a cosine component of each of the plurality of odd harmonic components of the zero-sequence current. According to the present invention, it is possible to easily generate a plurality of circuit equations necessary for calculating a leakage current value.

本発明において、前記漏洩電流値演算手段は、8個以上の前記回路方程式を求めることが好ましい。これにより、高調波の揺らぎの影響を抑えて漏洩電流値を精度良く求めることができる。 In the present invention, it is preferable that the leakage current value calculating means calculates eight or more of the circuit equations. Thereby, it is possible to suppress the influence of harmonic fluctuations and obtain the leakage current value with high accuracy.

前記漏洩電流値演算手段は、前記8個以上の回路方程式で構成される前記連立方程式の行列演算に最尤推定法を適用して前記R相の対地絶縁抵抗値の最尤解及び前記T相の対地絶縁抵抗値の最尤解をそれぞれ求めることが好ましい。これにより、高調波の揺らぎの影響を最小限に抑えて漏洩電流値を精度良く求めることができる。 The leakage current value calculation means applies a maximum likelihood estimation method to the matrix calculation of the simultaneous equations composed of the eight or more circuit equations, and calculates a maximum likelihood solution of the R-phase ground insulation resistance value and the T-phase It is preferable to find the maximum likelihood solution of each ground insulation resistance value. Thereby, it is possible to minimize the influence of harmonic fluctuations and obtain the leakage current value with high accuracy.

前記漏洩電流値演算手段は、前記最尤推定法による最尤解にリッジ回帰を適用して前記R相の対地絶縁抵抗値及び前記T相の対地絶縁抵抗値をそれぞれ求めることが好ましい。これにより、高調波の揺らぎの影響を最小限に抑えて安定した漏洩電流値を求めることができる。 Preferably, the leakage current value calculating means applies ridge regression to the maximum likelihood solution obtained by the maximum likelihood estimation method to obtain the R-phase ground insulation resistance value and the T-phase ground insulation resistance value, respectively. This makes it possible to minimize the influence of harmonic fluctuations and obtain a stable leakage current value.

前記複数の奇数次高調波成分は、5次高調波、7次高調波及び9次高調波であり、前記複数の回路方程式の個数は8個であることが好ましい。3次高調波は基本波に一番近い奇数次高調波であるため、零相電流センサを構成するカレントトランスや回路内で発生する基本波歪における高調波の影響が強く、漏洩電流値の精度に影響することによる。また、偶数次高調波や11次以降の奇数次高調波がないのは、被測定電路から得られる波形が小さく精度が得られにくいことによる。 Preferably, the plurality of odd harmonic components are a fifth harmonic, a seventh harmonic, and a ninth harmonic, and the number of the plurality of circuit equations is eight. Since the third harmonic is the odd harmonic closest to the fundamental wave, the harmonic has a strong influence on the fundamental wave distortion generated in the current transformer and circuit that constitute the zero-sequence current sensor, and the accuracy of the leakage current value is affected. By influencing. Furthermore, the reason why there are no even-order harmonics or odd-order harmonics after the 11th order is that the waveform obtained from the electrical circuit under test is small and it is difficult to obtain accuracy.

前記行列演算は、前記基本波に対する重み付けを1とし、前記奇数次高調波に対する重み付けを1未満とする重み行列を含むことが好ましい。各高調波の実効値や位相差は一定の値に留まっておらず、揺らぎの大きさは高調波の次数によっても異なる。しかし、高調波に重みを付けた場合には、漏洩電流値の計測精度を向上させることができる。 Preferably, the matrix calculation includes a weighting matrix in which the fundamental wave is weighted at 1 and the odd harmonics are weighted at less than 1. The effective value and phase difference of each harmonic do not remain constant, and the magnitude of fluctuation varies depending on the order of the harmonic. However, when the harmonics are weighted, the measurement accuracy of the leakage current value can be improved.

前記漏洩電流値又は前記漏洩電流値に基づく警報を報知する報知手段をさらに備えることが好ましい。これにより、監視員に対して監視結果を通報することができる。 It is preferable to further include a notification means for notifying the leakage current value or an alarm based on the leakage current value. This allows the monitoring results to be reported to the monitoring staff.

本発明によれば、被測定電路の対地静電容量の不平衡度や接地抵抗の有無によらず、対地絶縁抵抗に起因する漏洩電流を精度良く求めることが可能な絶縁監視装置を提供することを目的とする。 According to the present invention, there is provided an insulation monitoring device that can accurately determine leakage current caused by insulation resistance to ground, regardless of the degree of unbalance of ground capacitance of the electrical circuit to be measured or the presence or absence of ground resistance. With the goal.

図1は、本発明の実施の形態による絶縁監視装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an insulation monitoring device according to an embodiment of the present invention. 図2は、絶縁監視装置の詳細なブロック図である。FIG. 2 is a detailed block diagram of the insulation monitoring device. 図3は、絶縁監視装置による被測定電路の漏洩電流の演算方法の説明図である。FIG. 3 is an explanatory diagram of a method for calculating leakage current in a measured electrical circuit by the insulation monitoring device. 図4は、S相の対地絶縁抵抗を高抵抗値として扱ったときの被測定電路の等価回路図である。FIG. 4 is an equivalent circuit diagram of the electrical circuit to be measured when the S-phase ground insulation resistance is treated as a high resistance value.

以下、添付図面を参照しながら、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の実施の形態による絶縁監視装置の概略構成を示すブロック図である。また、図2は、絶縁監視装置の詳細なブロック図である。 FIG. 1 is a block diagram showing a schematic configuration of an insulation monitoring device according to an embodiment of the present invention. Moreover, FIG. 2 is a detailed block diagram of the insulation monitoring device.

図1及び図2に示すように、本実施形態による絶縁監視装置1は三相3線式(又は単相3線式)の被測定電路2を監視対象とするものであり、S相(又はN相)の線路2S及びR相の線路2Rに接続され、S相(又はN相)を基準としてR相の電圧波形vを取り込む電圧R相取込手段10と、S相(又はN相)の線路2S及びT相の線路2Tに接続され、S相(又はN相)を基準としてT相の電圧波形vを取り込む電圧T相取込手段20と、S相の接地線4Sに磁気結合された零相電流センサZCTを介して被測定電路2の接地相の零相電流波形iを取り込む零相電流取込手段30と、電圧R相取込手段10、電圧T相取込手段20、及び零相電流取込手段30の出力波形の基本波及び高調波成分を抽出し、周波数成分ごとに作成した被測定電路2の電圧と電流との連立方程式の演算により対地絶縁抵抗に起因する漏洩電流の実効値Iorを求める漏洩電流値演算手段40と、漏洩電流値又はこれに基づく警報を報知する報知手段50とを備えている。 As shown in FIGS. 1 and 2, the insulation monitoring device 1 according to the present embodiment monitors a three-phase, three-wire (or single-phase, three-wire) electrical circuit 2 to be measured. A voltage R-phase capturing means 10 is connected to the line 2S of the N-phase) and the line 2R of the R-phase, and captures the voltage waveform vR of the R-phase with the S-phase (or N-phase) as a reference; ) is connected to the line 2S of the T-phase and the line 2T of the T-phase, and a voltage T-phase capturing means 20 that captures the voltage waveform vT of the T-phase with the S-phase (or N-phase) as a reference, and a magnetic A zero-phase current capturing means 30 that captures the zero-phase current waveform iO of the ground phase of the electrical circuit under test 2 via the coupled zero-phase current sensor ZCT, a voltage R-phase capturing means 10, and a voltage T-phase capturing means. 20, and the fundamental wave and harmonic components of the output waveform of the zero-sequence current acquisition means 30, and calculate the simultaneous equations of the voltage and current of the circuit under test 2 created for each frequency component to determine the cause of the ground insulation resistance. The leakage current value calculation means 40 calculates the effective value Ior of the leakage current, and the notification means 50 reports the leakage current value or an alarm based on the leakage current value.

絶縁監視装置1は、零相電流センサZCTによって検出された零相電流iから抵抗性地絡電流成分iOrを抽出して被測定電路2の絶縁監視を行う。被測定電路2の漏洩電流には各相の対地静電容量C、C、Cに起因する地絡電流iOCと各相の対地絶縁抵抗R、R、Rに起因する地絡電流iOrが含まれるが、漏電火災等を引き起こす原因は対地絶縁抵抗R、R、Rの低下であるため、絶縁監視装置1は対地絶縁抵抗R、R、Rに起因する地絡電流iOrを監視する。 The insulation monitoring device 1 extracts a resistive ground fault current component i Or from the zero-sequence current i O detected by the zero-sequence current sensor ZCT, and monitors the insulation of the electrical circuit under test 2 . The leakage current of the circuit under test 2 includes a ground fault current i OC caused by the ground capacitance C R , C S , CT of each phase and a ground fault current i OC caused by the ground insulation resistance R R , R S , RT of each phase. Although the ground fault current i Or is included, the cause of electric leakage fires, etc. is a decrease in the ground insulation resistances R R , R S , RT , so the insulation monitoring device 1 measures the ground insulation resistances R R , R S , RT Monitor the ground fault current i Or caused by

図2に示すように、絶縁監視装置1の電圧R相取込手段10は、1次側と2次側を分離するトランスや保護回路等が実装された1次電源入力部11と、基本波を抽出するためのローパスフィルタ(LPF)が実装されたフィルタ部12と、基本波のアナログ波形をデジタル波形に変換するA/D部13と、高調波を抽出するためのHPFとLPFとが実装されたフィルタ部14と、高調波のアナログ波形をデジタル波形に変換するA/D部15とを備えている。 As shown in FIG. 2, the voltage R-phase input unit 10 of the insulation monitoring device 1 includes a primary power input unit 11 in which a transformer for separating the primary side and the secondary side, a protection circuit, etc. are mounted, and a fundamental voltage input unit 11. A filter unit 12 is equipped with a low-pass filter (LPF) for extracting the fundamental wave, an A/D unit 13 is installed for converting the analog waveform of the fundamental wave into a digital waveform, and an HPF and LPF are installed for extracting the harmonics. and an A/D section 15 that converts a harmonic analog waveform into a digital waveform.

電圧T相取込手段20は上記電圧R相取込手段10と同一の回路構成を有している。すなわち、電圧T相取込手段20は、トランスや保護回路等が実装された1次電源入力部21と、基本波を抽出するためのLPFが実装されたフィルタ部22と、基本波のアナログ波形をデジタル波形に変換するA/D部23と、高調波を抽出するためのHPFとLPFとが実装されたフィルタ部24と、高調波のアナログ波形をデジタル波形に変換するA/D部25とを備えている。 The voltage T-phase acquisition means 20 has the same circuit configuration as the voltage R-phase acquisition means 10 described above. That is, the voltage T-phase acquisition means 20 includes a primary power input section 21 in which a transformer, a protection circuit, etc. are mounted, a filter section 22 in which an LPF for extracting the fundamental wave is mounted, and an analog waveform of the fundamental wave. an A/D section 23 that converts the harmonic into a digital waveform, a filter section 24 equipped with an HPF and an LPF for extracting harmonics, and an A/D section 25 that converts the analog waveform of the harmonic into a digital waveform. It is equipped with

零相電流取込手段30は、1次電源入力部11、21の代わりに電流入力部31を備えている点以外は電圧R相取込手段10及び電圧T相取込手段20と同様の構成を有している。すなわち、零相電流取込手段30は、零相電流センサZCTの電流を電圧に変換するIV変換部が実装された電流入力部31と、基本波を抽出するためのLPFが実装されたフィルタ部32と、基本波のアナログ波形をデジタル波形に変換するA/D部33と、高調波を抽出するためのHPFとLPFとが実装されたフィルタ部34と、高調波のアナログ波形をデジタル波形に変換するA/D部35とを備えている。 The zero-phase current acquisition means 30 has the same configuration as the voltage R-phase acquisition means 10 and the voltage T-phase acquisition means 20, except that it includes a current input section 31 instead of the primary power supply input sections 11 and 21. have. That is, the zero-sequence current acquisition means 30 includes a current input section 31 equipped with an IV conversion section that converts the current of the zero-phase current sensor ZCT into a voltage, and a filter section equipped with an LPF for extracting the fundamental wave. 32, an A/D section 33 that converts the analog waveform of the fundamental wave into a digital waveform, a filter section 34 that is equipped with an HPF and an LPF for extracting harmonics, and converts the analog waveform of the harmonics into a digital waveform. It also includes an A/D section 35 for conversion.

漏洩電流値演算手段40は、各相の電圧波形及び電流波形の基本波及び高調波成分に基づいて係数行列を設定する係数行列設定部41と、各相の対地絶縁抵抗及び対地静電容量に基づいて定数項を設定する定数項ベクトル設定部42と、各高調波に対する重み行列を設定する重み行列設定部43と、行列方程式を演算して漏洩電流値IOrを求める行列演算部44とを備えている。特に限定されるものではないが、報知手段50は、算出された漏洩電流値を遠隔で知らせるためのサーバ出力51と、PC等のツールで漏洩電流値を表示するモニタ出力52と、絶縁監視装置本体で漏洩電流値を確認するための7セグメント表示出力53と、漏洩電流値が閾値を超えたことを知らせるランプ出力54とを備えている。 The leakage current value calculation means 40 includes a coefficient matrix setting section 41 that sets a coefficient matrix based on the fundamental wave and harmonic components of the voltage waveform and current waveform of each phase, and a coefficient matrix setting section 41 that sets a coefficient matrix based on the fundamental wave and harmonic components of the voltage waveform and current waveform of each phase, and a coefficient matrix setting section 41 that sets a coefficient matrix based on the ground insulation resistance and ground capacitance of each phase. a constant term vector setting section 42 that sets a constant term based on the above, a weight matrix setting section 43 that sets a weight matrix for each harmonic, and a matrix calculation section 44 that calculates a leakage current value I Or by calculating a matrix equation. We are prepared. Although not particularly limited, the notification means 50 includes a server output 51 for remotely notifying the calculated leakage current value, a monitor output 52 for displaying the leakage current value using a tool such as a PC, and an insulation monitoring device. It is equipped with a 7-segment display output 53 for checking the leakage current value on the main body, and a lamp output 54 for notifying that the leakage current value exceeds a threshold value.

次に、図3を参照しながら、上記絶縁監視装置1による被測定電路2の漏洩電流Iorの演算方法について説明する。 Next, with reference to FIG. 3, a method of calculating the leakage current Ior of the electrical circuit under test 2 using the insulation monitoring device 1 will be described.

電路に生じている高調波を使用するので図3では下記のように各波形を定義できる。添え字のkは、k=1で基本波(商用周波数)、k=5で5次高調波、k=7で7次高調波のように表す。総称として、基本波及びk次高調波を第k周波数として以降表現する。また、添え字のない電流iocやiorは基本波の電流であることを表している。 Since harmonics occurring in the electric circuit are used, each waveform can be defined as shown below in FIG. The subscript k represents the fundamental wave (commercial frequency) when k=1, the 5th harmonic when k=5, and the 7th harmonic when k=7. As a general term, the fundamental wave and the k-th harmonic will be hereinafter expressed as the k-th frequency. Furthermore, the currents i oc and i or without subscripts represent fundamental wave currents.

VRk:電圧R相実効値、VTk:電圧T相実効値、βRk:電圧R相の理論上の位相、βTk:電圧T相の理論上の位相、αRk:電圧R相の固有の位相誤差、αTk:電圧T相の固有の位相誤差と定義すると、第k周波数のR相、T相の電圧波形vRk, vTkは次のようになる。

Figure 2023155635000002
V Rk : Voltage R phase effective value, V Tk : Voltage T phase effective value, β Rk : Theoretical phase of voltage R phase, β Tk : Theoretical phase of voltage T phase, α Rk : Specific voltage R phase α Tk : Defining the phase error inherent in the voltage T phase, the voltage waveforms v Rk and v Tk of the R phase and T phase of the k-th frequency are as follows.
Figure 2023155635000002

また第k周波数のR相、S相、T相の電流波形iRk, iSk, iTkは次のようになる。

Figure 2023155635000003
Further, the current waveforms i Rk , i Sk , i Tk of the R phase, S phase, and T phase of the k-th frequency are as follows.
Figure 2023155635000003

さらに第k周波数の零相電流iOkは次のように表せる。

Figure 2023155635000004
Furthermore, the zero-sequence current i Ok at the k-th frequency can be expressed as follows.
Figure 2023155635000004

これら(1)~(6)式は、以下のようにまとめることができる。

Figure 2023155635000005
These formulas (1) to (6) can be summarized as follows.
Figure 2023155635000005

次に測定可能な電圧波形と電流波形をフーリエ変換すると、次のようになる。

Figure 2023155635000006
Next, when the measurable voltage and current waveforms are Fourier transformed, they become as follows.
Figure 2023155635000006

これらを元の式に代入すると、以下の2つの関係式が得られる。

Figure 2023155635000007
By substituting these into the original equation, the following two relational equations are obtained.
Figure 2023155635000007

ここで高調波の次数k=1(基本波)とすると未知パラメータの数に対して方程式の数が足りないため、条件を与えない限り、未知パラメータを求めることはできない。したがって、k=1,5,7,9として方程式を増やすと、下記の8個の方程式が出来上がる。

Figure 2023155635000008
If the harmonic order k=1 (fundamental wave), the number of equations is insufficient for the number of unknown parameters, so the unknown parameters cannot be found unless conditions are given. Therefore, by increasing the number of equations by setting k=1,5,7,9, the following eight equations will be created.
Figure 2023155635000008

r(1/RR+1/RS+1/RT)の解については、ベクトル(IC1, IS1, IC5, IS5, IC7, IS7, IC9, IS9)' が平行であるため、測定値に依存しない自明な解となり、正常な解を求めることができない。(ここでプライム記号「'」は行列の転置を意味する。)つまり、Ior方式ではS相の対地絶縁抵抗は理論上求めることができないことを示している。 For the solution of r(1/R R +1/R S +1/R T ), the vector (I C1 , I S1 , I C5 , I S5 , I C7 , I S7 , I C9 , I S9 )' is Since they are parallel, the solution becomes obvious and does not depend on the measured value, and a normal solution cannot be found. (Here, the prime sign "'" means the transposition of the matrix.) In other words, it is shown that the S-phase ground insulation resistance cannot be determined theoretically using the Ior method.

例えば、簡単な例として下記のような連立方程式が挙げられる。

Figure 2023155635000009
ここで、a, b, c, dは測定値とし、x, yは求める解とする。この解は、x=0 , y=-1となるが、明らかにa , b , c , dの値とは無関係に成立している。したがって、r(1/RR+1/RS+1/RT)は正常に求まらないため、以降はr(1/RR+1/RS+1/RT)=0と近似する。実際、接地抵抗より対地絶縁抵抗のほうが十分に大きいのでゼロ近似の影響は少ないと言える。 For example, a simple example is the following simultaneous equations.
Figure 2023155635000009
Here, a, b, c, and d are measured values, and x and y are the solutions to be obtained. This solution becomes x=0, y=-1, but it clearly holds true regardless of the values of a, b, c, and d. Therefore, r(1/R R +1/R S +1/R T ) cannot be found correctly, so from now on, r(1/R R +1/R S +1/R T )=0. Approximate. In fact, since the ground insulation resistance is sufficiently larger than the ground resistance, it can be said that the influence of zero approximation is small.

次に、高調波を用いたIor方式の演算方法として接地相の対地絶縁抵抗を高抵抗として扱った方法について説明する。 Next, as an Ior method calculation method using harmonics, a method in which the ground insulation resistance of the ground phase is treated as a high resistance will be described.

先の被測定電路2のS相の対地絶縁抵抗Rを高抵抗値として扱ったときの等価回路は図4のようになる。上述のように、添え字のkは、k=1で基本波(商用周波数)、k=5で5次高調波、k=7で7次高調波のように表す。総称として、基本波及び高調波を第k周波数として以降表現する。また、添え字のない電流iocやiorは基本波の電流であることを表している。 FIG. 4 shows an equivalent circuit when the S-phase ground insulation resistance R S of the electrical circuit under test 2 is treated as a high resistance value. As mentioned above, the subscript k represents the fundamental wave (commercial frequency) when k=1, the 5th harmonic when k=5, and the 7th harmonic when k=7. Hereafter, the fundamental wave and harmonics will be collectively expressed as the k-th frequency. Also, currents ioc and ior without subscripts indicate fundamental wave currents.

ゆえに上記8個の方程式は下記のようになる。

Figure 2023155635000010
Therefore, the above eight equations become as follows.
Figure 2023155635000010

未知パラメータは下記5個で設定できる。

Figure 2023155635000011
The following five unknown parameters can be set.
Figure 2023155635000011

5個の未知パラメータに対して方程式が8個ある理由は、基本波に比べて高調波は絶えず揺らぎがあり、平均的な解を求める必要があるからである。また、3次高調波がないのは基本波に一番近い奇数次高調波であるため零相電流センサを構成するカレントトランスや回路内で発生する基本波歪における高調波の影響が強く精度に影響することによる。また、偶数次高調波や11次以降の奇数次高調波がないのは、電路から得られる高調波が小さく精度が得られにくいことによる。 The reason why there are 8 equations for 5 unknown parameters is that harmonics constantly fluctuate compared to the fundamental wave, and it is necessary to find an average solution. In addition, since there is no third harmonic, it is the odd harmonic closest to the fundamental wave, so the harmonics have a strong influence on the fundamental wave distortion generated in the current transformer and circuit that make up the zero-phase current sensor, resulting in poor accuracy. By influencing. Further, the reason why there are no even harmonics or odd harmonics after the 11th order is because the harmonics obtained from the electric circuit are small and it is difficult to obtain precision.

上記8個の方程式を行列とベクトルで表現すると下記のようにできる。

Figure 2023155635000012
The above eight equations can be expressed as a matrix and vector as follows.
Figure 2023155635000012

この方程式は、誤差が正規分布に従う条件下では重回帰モデルとなり、最尤推定法を行うと、

Figure 2023155635000013
のように最尤解を得ることができる。ここでプライム記号「'」は行列の転置を意味する。この最尤解は不偏推定量でありクラメール・ラオの下限に達していることから、分散は最小化される。つまり、揺らぎの度合いは理論上最小となる。 This equation becomes a multiple regression model under the condition that the error follows a normal distribution, and when the maximum likelihood estimation method is performed,
Figure 2023155635000013
The maximum likelihood solution can be obtained as follows. Here, the prime sign "'" means transposition of the matrix. This maximum likelihood solution is an unbiased estimator and reaches the Cramer-Rao lower bound, so the variance is minimized. In other words, the degree of fluctuation is theoretically minimum.

このようにして得られた1/RRと1/RTに電圧実効値をそれぞれ掛けると、

Figure 2023155635000014
のように対地静電容量の平衡不平衡によらず、対地絶縁抵抗に起因した漏洩電流実効値を得ることができる。 Multiplying 1/R R and 1/R T obtained in this way by the effective voltage value, we get
Figure 2023155635000014
As shown in the figure, it is possible to obtain the effective value of the leakage current caused by the ground insulation resistance, regardless of the balance/unbalance of the ground capacitance.

次にリッジ回帰の適用について説明する。上記最尤解にリッジ回帰を適用させると、L2正則化パラメータλと単位行列Iを用いて、

Figure 2023155635000015
のように最尤解を得ることができる。L2正則化パラメータλは十分な数のフィールドデータから教師データを得て決められる学習パラメータのことである。 Next, the application of ridge regression will be explained. When ridge regression is applied to the above maximum likelihood solution, using the L2 regularization parameter λ and the identity matrix I,
Figure 2023155635000015
The maximum likelihood solution can be obtained as follows. The L2 regularization parameter λ is a learning parameter determined by obtaining training data from a sufficient number of field data.

リッジ回帰の適用理由は安定した漏洩電流値を得ることにある。各周波数の電圧や電流の実効値や位相のパターンにより、|A'A|が0に近い場合が起こり得る。これは分母が0に近い状態を意味しているため、不安定な結果を与えることになる。そこでリッジ回帰のL2正則化パラメータを使用することで、分母が0になることを防ぎ安定性が得られる。 The reason for applying ridge regression is to obtain a stable leakage current value. Depending on the effective value and phase pattern of voltage and current at each frequency, |A'A| may be close to 0. This means that the denominator is close to 0, so it will give unstable results. Therefore, by using the L2 regularization parameter of ridge regression, stability can be achieved by preventing the denominator from becoming 0.

例えば単相3線式の電路ではR-N相とT-N相の電圧位相差が180°となるが、基本波だけでなく各高調波も180°の理想環境に近い場合、重回帰を適用する上で多重共線性が生じ、精度に影響することがある。これを防ぐためにL2正則化パラメータを用いて精度を向上させている。 For example, in a single-phase three-wire electric circuit, the voltage phase difference between the RN phase and the TN phase is 180°, but if not only the fundamental wave but also each harmonic is close to the ideal environment of 180°, multiple regression can be used. Multicollinearity may occur in the application and affect accuracy. To prevent this, L2 regularization parameters are used to improve accuracy.

基本波だけでなく各高調波も180°であった場合、上記リッジ回帰を適用したとしてもL2正則化パラメータλを大きくしない限り、安定性は得られない。しかしながら、L2正則化パラメータλを大きくしすぎると、真値から乖離していくという現象が起きる。それを解決するため、各電圧位相差を180°とし、1/RR-1/RTとωCR-ωCTをそれぞれ一つの未知パラメータとした前提条件を与えると下記のようにできる。

Figure 2023155635000016
If not only the fundamental wave but also each harmonic wave is 180°, stability cannot be obtained even if the above ridge regression is applied unless the L2 regularization parameter λ is increased. However, if the L2 regularization parameter λ is made too large, a phenomenon occurs in which it deviates from the true value. In order to solve this problem, if we set the preconditions that each voltage phase difference is 180° and that 1/R R -1/R T and ωC R -ωC T are each one unknown parameter, we can do the following.
Figure 2023155635000016

このようにすることで、多重共線性の現象がなくなり、接地抵抗と対地静電容量の不平衡を考慮した方式として格段の安定性が得られる。 By doing this, the phenomenon of multicollinearity is eliminated and significant stability can be obtained as a method that takes into account the unbalance between ground resistance and ground capacitance.

各高調波の実効値や位相差は基本波に比べて一定の値に留まっているわけではなく、なおかつ揺らぎは大きいため、高調波に重みを付けて精度を向上させている。重みの付け方は下記のように定義できる。基本波は高調波に比べて精度が高いことから重みは1で固定としている。

Figure 2023155635000017
これを重み行列として、この各成分平方根をとった行列をAとbにそれぞれ左から掛けると、以下のように表すことができる。
Figure 2023155635000018
The effective value and phase difference of each harmonic do not remain constant compared to the fundamental wave, and the fluctuations are large, so harmonics are weighted to improve accuracy. The weighting method can be defined as follows. Since the fundamental wave has higher accuracy than the harmonics, the weight is fixed at 1.
Figure 2023155635000017
By using this as a weight matrix and multiplying A and b from the left by a matrix obtained by taking the square root of each component, it can be expressed as follows.
Figure 2023155635000018

重み行列の各成分の決め方は例えば次のような方法(ネイマン配分法)がある。各高調波の電流余弦値と電流正弦値を時間表現したものを

Figure 2023155635000019
で表し、
Figure 2023155635000020
のように更新する。分母は最新m周期分の平均を意味する。 For example, the following method (Neyman distribution method) can be used to determine each component of the weight matrix. The time expression of the current cosine value and current sine value of each harmonic is
Figure 2023155635000019
Represented by
Figure 2023155635000020
Update like this. The denominator means the average of the latest m cycles.

Figure 2023155635000021
のように標本標準偏差を算出する。
Figure 2023155635000021
Calculate the sample standard deviation as follows.

Figure 2023155635000022
のようにすれば、揺らぎが大きい高調波成分の重み付けが小さくなり、安定している高調波の重み付けを大きくして、より良い高調波を演算に反映させることができる。
Figure 2023155635000022
By doing this, the weighting of harmonic components with large fluctuations is reduced, and the weighting of stable harmonics is increased, so that better harmonics can be reflected in calculations.

R相とT相の対地静電容量は演算方法については、ωCRやωCTが求まることから対地静電容量そのものも求めることができ、不平衡の度合いを評価することも可能となる。 Regarding the calculation method for the ground capacitance of the R phase and T phase, since ωC R and ωC T can be determined, the ground capacitance itself can also be found, and it is also possible to evaluate the degree of unbalance.

S相の対地静電容量の演算方法については、対地電圧を測定して接地抵抗rが既知となれば、rRST=rω(CR+CS+CT)が求まり、CS=rRST/rω-CR-CTとなることから、S相の対地静電容量を求めることも可能となる。 Regarding the calculation method for the ground capacitance of the S phase, if the ground resistance r is known by measuring the ground voltage, r RST = rω(C R +C S +C T ) can be found, and C S = r RST Since /rω-C R -C T , it is also possible to find the ground capacitance of the S phase.

以上説明したように、本実施形態による絶縁監視装置1は、R相の電圧波形、T相の電圧波形及び零相電流波形に基づいて、対地絶縁抵抗に起因する漏洩電流値を求める漏洩電流値演算手段40とを備え、漏洩電流値演算手段40は、R相の電圧波形、T相の電圧波形及び零相電流波形に基づいて、対地静電容量C,C,Cに関する零相電流の基本波及び5次、7次、9次高調波成分並びに対地絶縁抵抗R,Rに起因する零相電流の基本波及び5次、7次、9次高調波成分に関する複数の回路方程式を求め、複数の回路方程式で構成される連立方程式の行列演算によりR相の対地絶縁抵抗値R及びT相の対地絶縁抵抗値Rをそれぞれ求め、R相の対地絶縁抵抗値R、T相の対地絶縁抵抗値R、R相の電圧の実効値VR1及びT相の電圧の実効値VT1から対地絶縁抵抗R,Rに起因する漏洩電流の実効値Iorを求めるので、被測定電路2の対地静電容量C,C,Cの不平衡度や接地抵抗rの有無によらず、対地絶縁抵抗R,Rに起因する漏洩電流を精度良く求めることができる。 As explained above, the insulation monitoring device 1 according to the present embodiment calculates the leakage current value caused by the ground insulation resistance based on the R-phase voltage waveform, the T-phase voltage waveform, and the zero-sequence current waveform. The leakage current value calculating means 40 calculates the zero-phase value regarding the ground capacitances C R , C T , and C S based on the R-phase voltage waveform, the T-phase voltage waveform, and the zero-sequence current waveform. A plurality of circuits related to the fundamental wave and the 5th, 7th, and 9th harmonic components of the current, and the fundamental wave and the 5th, 7th, and 9th harmonic components of the zero-sequence current caused by the earth insulation resistances R R and R T Find the equation, and calculate the R-phase ground insulation resistance value R R and the T-phase ground insulation resistance value R T by matrix calculation of simultaneous equations composed of multiple circuit equations, and calculate the R-phase ground insulation resistance value R R , find the effective value Ior of the leakage current due to the earth insulation resistance R R and RT from the T-phase earth insulation resistance value R T , the R-phase voltage effective value VR1 , and the T -phase voltage effective value V T1 Therefore, regardless of the degree of unbalance of the ground capacitances C R , CT , and CS of the circuit under test 2 and the presence or absence of the ground resistance r, the leakage current caused by the ground insulation resistances R R and R T can be determined with high accuracy. be able to.

以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. Needless to say, it is included within the scope.

1 絶縁監視装置
2 被測定電路
2R R相の線路
2S S相の線路
2T T相の線路
4S S相の接地線
10 電圧R相取込手段
11 1次電源入力部
12 フィルタ部
13 A/D部(基本波)
14 フィルタ部
15 A/D部(高調波)
20 電圧T相取込手段
21 1次電源入力部
22 フィルタ部
23 A/D部(基本波)
24 フィルタ部
25 A/D部(高調波)
30 零相電流取込手段
31 電流入力部
32 フィルタ部
33 A/D部(基本波)
34 フィルタ部
35 A/D部(高調波)
40 漏洩電流値演算手段
41 係数行列設定部
42 定数項ベクトル設定部
43 重み行列設定部
44 行列演算部
50 報知手段
51 サーバ出力
52 モニタ出力
53 7セグメント表示出力
54 ランプ出力
ZCT 零相電流センサ
1 Insulation monitoring device 2 Electrical circuit to be measured 2R R-phase line 2S S-phase line 2T T-phase line 4S S-phase grounding line 10 Voltage R-phase intake means 11 Primary power input section 12 Filter section 13 A/D section (fundamental wave)
14 Filter section 15 A/D section (harmonic)
20 Voltage T-phase acquisition means 21 Primary power input section 22 Filter section 23 A/D section (fundamental wave)
24 Filter section 25 A/D section (harmonic)
30 Zero-phase current acquisition means 31 Current input section 32 Filter section 33 A/D section (fundamental wave)
34 Filter section 35 A/D section (harmonic)
40 Leakage current value calculation means 41 Coefficient matrix setting section 42 Constant term vector setting section 43 Weight matrix setting section 44 Matrix calculation section 50 Notification means 51 Server output 52 Monitor output 53 7 segment display output 54 Lamp output ZCT Zero phase current sensor

Claims (8)

三相3線式又は単相3線式の被測定電路の対地絶縁抵抗に起因する漏洩電流を監視する絶縁監視装置であって、
S相又はN相を基準としてR相の電圧波形を取り込む電圧R相取込手段と、
前記S相又は前記N相を基準としてT相の電圧波形を取り込む電圧T相取込手段と、
前記被測定電路の接地相の零相電流波形を取り込む零相電流取込手段と、
前記R相の電圧波形、前記T相の電圧波形及び前記零相電流波形に基づいて、前記対地絶縁抵抗に起因する漏洩電流値を求める漏洩電流値演算手段とを備え、
前記漏洩電流値演算手段は、
前記R相の電圧波形、前記T相の電圧波形及び前記零相電流波形の基本波及び複数の奇数次高調波成分に基づいて、前記零相電流の正弦成分及び余弦成分に関する複数の回路方程式を求め、
前記複数の回路方程式で構成される連立方程式の行列演算により前記R相の対地絶縁抵抗値及び前記T相の対地絶縁抵抗値をそれぞれ求め、
前記R相の対地絶縁抵抗値、前記T相の対地絶縁抵抗値、前記R相の電圧の実効値及び前記T相の電圧の実効値から、前記対地絶縁抵抗に起因する前記漏洩電流値を求めることを特徴とする絶縁監視装置。
An insulation monitoring device that monitors leakage current caused by insulation resistance to ground of a three-phase three-wire or single-phase three-wire electrical circuit to be measured,
Voltage R-phase capturing means for capturing an R-phase voltage waveform with the S-phase or N-phase as a reference;
Voltage T-phase capturing means for capturing a T-phase voltage waveform with the S-phase or the N-phase as a reference;
zero-sequence current capturing means for capturing a zero-sequence current waveform of the ground phase of the electrical circuit under test;
Leakage current value calculation means for calculating a leakage current value due to the earth insulation resistance based on the R-phase voltage waveform, the T-phase voltage waveform, and the zero-sequence current waveform,
The leakage current value calculation means includes:
A plurality of circuit equations regarding the sine component and cosine component of the zero-phase current are calculated based on the R-phase voltage waveform, the T-phase voltage waveform, the fundamental wave and the plurality of odd-order harmonic components of the zero-phase current waveform. seek,
Determining the ground insulation resistance value of the R phase and the ground insulation resistance value of the T phase by matrix calculation of simultaneous equations constituted by the plurality of circuit equations, respectively;
The leakage current value due to the ground insulation resistance is determined from the R-phase ground insulation resistance value, the T-phase ground insulation resistance value, the R-phase voltage effective value, and the T-phase voltage effective value. An insulation monitoring device characterized by:
前記漏洩電流値演算手段は、前記R相の電圧波形、前記T相の電圧波形及び前記零相電流波形をフーリエ変換することにより前記R相の電圧、前記T相の電圧及び前記零相電流の各々の前記複数の奇数次高調波成分の正弦成分及び余弦成分を求める、請求項1に記載の絶縁監視装置。 The leakage current value calculating means calculates the R-phase voltage, the T-phase voltage, and the zero-sequence current by Fourier transforming the R-phase voltage waveform, the T-phase voltage waveform, and the zero-sequence current waveform. The insulation monitoring device according to claim 1, wherein a sine component and a cosine component of each of the plurality of odd harmonic components are determined. 前記漏洩電流値演算手段は、8個以上の前記回路方程式を求める、請求項2に記載の絶縁監視装置。 3. The insulation monitoring device according to claim 2, wherein the leakage current value calculating means calculates eight or more of the circuit equations. 前記漏洩電流値演算手段は、前記8個以上の回路方程式で構成される前記連立方程式の行列演算に最尤推定法を適用して前記R相の対地絶縁抵抗値の最尤解及び前記T相の対地絶縁抵抗値の最尤解をそれぞれ求める、請求項3に記載の絶縁監視装置。 The leakage current value calculation means applies a maximum likelihood estimation method to the matrix calculation of the simultaneous equations composed of the eight or more circuit equations, and calculates a maximum likelihood solution of the R-phase ground insulation resistance value and the T-phase 4. The insulation monitoring device according to claim 3, wherein a maximum likelihood solution of each of the ground insulation resistance values is obtained. 前記漏洩電流値演算手段は、前記最尤推定法による最尤解にリッジ回帰を適用して前記R相の対地絶縁抵抗値及び前記T相の対地絶縁抵抗値をそれぞれ求める、請求項4に記載の絶縁監視装置。 5. The leakage current value calculation means applies ridge regression to the maximum likelihood solution obtained by the maximum likelihood estimation method to obtain the R-phase ground insulation resistance value and the T-phase ground insulation resistance value, respectively. insulation monitoring device. 前記複数の奇数次高調波成分は、5次高調波、7次高調波及び9次高調波であり、前記複数の回路方程式の個数は8個である、請求項1乃至5のいずれか一項に記載の絶縁監視装置。 Any one of claims 1 to 5, wherein the plurality of odd harmonic components are a fifth harmonic, a seventh harmonic, and a ninth harmonic, and the number of the plurality of circuit equations is eight. Insulation monitoring device described in . 前記行列演算は、前記基本波に対する重み付けを1とし、前記奇数次高調波に対する重み付けを1未満とする重み行列を含む、請求項1乃至5のいずれか一項に記載の絶縁監視装置。 The insulation monitoring device according to any one of claims 1 to 5, wherein the matrix calculation includes a weighting matrix that gives a weight of 1 to the fundamental wave and a weight of less than 1 to the odd harmonics. 前記漏洩電流値又は前記漏洩電流値に基づく警報を報知する報知手段をさらに備える、請求項1乃至5のいずれか一項に記載の絶縁監視装置。 The insulation monitoring device according to any one of claims 1 to 5, further comprising a notification means for notifying the leakage current value or an alarm based on the leakage current value.
JP2022065072A 2022-04-11 2022-04-11 Insulation monitoring device Pending JP2023155635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022065072A JP2023155635A (en) 2022-04-11 2022-04-11 Insulation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022065072A JP2023155635A (en) 2022-04-11 2022-04-11 Insulation monitoring device

Publications (1)

Publication Number Publication Date
JP2023155635A true JP2023155635A (en) 2023-10-23

Family

ID=88417817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022065072A Pending JP2023155635A (en) 2022-04-11 2022-04-11 Insulation monitoring device

Country Status (1)

Country Link
JP (1) JP2023155635A (en)

Similar Documents

Publication Publication Date Title
US4419621A (en) Monitoring system for the capacitor batteries of a three-phase filter circuit
US9625503B2 (en) Method and device for analysing the quality of the electrical energy in a three-phase electric network
CN102288804B (en) Method for calculating resistive current of arrester based on orthogonal transformation
CN106443292B (en) A kind of overhead transmission line single-phase earth fault detecting method based on zero sequence current measurement
Chen Virtual multifunction power quality analyzer based on adaptive linear neural network
JP2002125313A (en) Leakage detector, and leakage alarm and leakage breaker therewith
EP3029478B1 (en) Assessment method for a multi-phase power system
CN110865238B (en) Alternating current resistance measurement method and device based on quasi-harmonic model sampling algorithm
CN110618314A (en) Harmonic wave responsibility division method for resisting short-circuit fault interference of power distribution system
KR20180015566A (en) Leakage current measuring method and leakage current measuring apparatus
KR100920153B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
CN107636481A (en) The method and apparatus for debugging the voltage sensor and branch current sensor for branch road monitoring system
JP5444122B2 (en) Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method
JP2023155635A (en) Insulation monitoring device
JP4143463B2 (en) Insulation monitoring device
JP4256967B2 (en) Non-grounded circuit insulation monitoring method and insulation monitoring device
KR101075484B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
JP3312172B2 (en) Distribution line ground fault protection relay test method and apparatus
CN115932385B (en) Residual current monitoring method and system and single-phase intelligent electric energy meter
CN111965511A (en) Method, system and medium for detecting fault of thyristor circuit
KR101909379B1 (en) Leakage current measuring method and leakage current measuring apparatus
Xu et al. Real-time measurement of mean frequency in two-machine system during power swings
KR101954924B1 (en) Uninterruptible insulation resistance measurement system and method
CN112098890A (en) Method for detecting alternating current grounding fault of parallel auxiliary converter of motor train unit
JP4506959B2 (en) Insulation monitoring device