JP2023148712A - High strength thick steel plate and manufacturing method thereof - Google Patents

High strength thick steel plate and manufacturing method thereof Download PDF

Info

Publication number
JP2023148712A
JP2023148712A JP2022056886A JP2022056886A JP2023148712A JP 2023148712 A JP2023148712 A JP 2023148712A JP 2022056886 A JP2022056886 A JP 2022056886A JP 2022056886 A JP2022056886 A JP 2022056886A JP 2023148712 A JP2023148712 A JP 2023148712A
Authority
JP
Japan
Prior art keywords
mass
less
plate thickness
formula
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022056886A
Other languages
Japanese (ja)
Inventor
信幸 吉村
Nobuyuki Yoshimura
博一 臼杵
Hirokazu Usuki
康浩 篠原
Yasuhiro Shinohara
義之 渡部
Yoshiyuki Watabe
洋嗣 古川
Hirotsugu Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2022056886A priority Critical patent/JP2023148712A/en
Publication of JP2023148712A publication Critical patent/JP2023148712A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

To provide a steel plate having yield strength of 500 MPa or more, excellent host toughness before and after SR treatment, and when performing multilayer welding, having excellent joint CTOD characteristics, and a manufacturing method thereof.SOLUTION: A plate thickness is 60 to 100 mm, the yield strength is 500 MPa or more, the tensile strength is 570 MPa or more, C, Si, Mn, Ti, Cu, Ni, Nb, N, O, P, S, Al, Mg, Ca, and B are within a predetermined range, the remainder is a component consisting of Fe and impurities, the plate thickness t/4 part has a predetermined multiphase structure, an average equivalent circle diameter of the crystal grains at the center of the plate thickness is 50 μm or less, the maximum hardness HVmax at the center of the plate thickness is 250HV or less, a degree of segregation of Si, Mn, P, Cu, and Ni at the center of the plate thickness is within a predetermined range, and a particle number density (EIGFD) of Ti-containing inclusions contained in the steel structure is 20 particles/mm2 or more.SELECTED DRAWING: Figure 7

Description

本発明は、溶接継手に低温靭性が要求される海洋構造物用の鋼板を主な対象としているが、この用途に限らず、船舶、建築、橋梁、タンク等の幅広い用途の溶接構造物に用いられる高強度厚鋼板に関するものである。 The present invention is mainly aimed at steel plates for offshore structures where low-temperature toughness is required for welded joints, but it is not limited to this application, but can be applied to welded structures for a wide range of applications such as ships, buildings, bridges, tanks, etc. This relates to high-strength thick steel plates.

海洋構造物に限らず船舶、建築、橋梁、タンク等の種々の構造物を所定の形状に組み上げるには、溶接を行う。使用する鋼板の板厚が厚くなると、多パスの溶接を行うことが一般的である。HAZ(Heat Affected Zone)とは、溶接継手の鋼板側において、溶接の際の再加熱で、加工熱処理により造り込まれた母材の金属組織が熱的な影響をうけた領域を指す。 Welding is used to assemble not only marine structures but also various structures such as ships, buildings, bridges, and tanks into a predetermined shape. When the thickness of the steel plate used increases, it is common to perform multiple passes of welding. HAZ (Heat Affected Zone) refers to a region on the steel plate side of a welded joint where the metallographic structure of the base material created by processing heat treatment is thermally affected by reheating during welding.

溶接HAZの最脆化部は、溶接金属に接する母材部分で、粗大な金属組織を有するCGHAZ(Coarse Grain Heat Affected Zone)であることが知られている。CGHAZは、鋼の溶融線近傍にまで再加熱されるため、再加熱時に生成するオーステナイト粒が成長する。続く冷却の際に、粗大なオーステナイト粒から再変態するため、最終的に得られる金属組織が粗大になる。 It is known that the most brittle part of the weld HAZ is the base metal part in contact with the weld metal, which is CGHAZ (Coarse Grain Heat Affected Zone), which has a coarse metal structure. Since CGHAZ is reheated to near the melting line of the steel, austenite grains generated during reheating grow. During subsequent cooling, coarse austenite grains undergo re-transformation, resulting in a coarser metal structure.

CGHAZでは粗大なオーステナイト粒から冷却されるため、焼きが入りやすくなり、母材に比べ硬度が上昇する。加えて、後続の溶接パスによりCGHAZがフェライトとオーステナイトの2相域まで再加熱されると、硬質で脆性破壊の起点となるMA(Martensite-Austenite Constituent)が生成する。 In CGHAZ, since coarse austenite grains are cooled, quenching occurs easily and the hardness increases compared to the base material. In addition, when CGHAZ is reheated to a two-phase region of ferrite and austenite in subsequent welding passes, MA (Martensite-Austenite Constituent), which is hard and becomes the starting point of brittle fracture, is generated.

鋼板に強度が要求される場合は、炭素をはじめとする合金元素を添加する。高強度化かつ厚手化に伴い添加する合金元素量が増えると、HAZの硬さは上昇し、MAなどの脆化相が増加する。HAZ靭性に影響を及ぼす因子として、組織の粒径、脆化相の大きさ、硬さが知られている。CGHAZは粗大な金属組織を有し、脆化相が多く、更に硬いことから、溶接HAZの最脆化部となる。構造物の安全性確保には、多層盛り溶接継手のCGHAZの組織制御が重要である。 When strength is required for steel sheets, alloying elements such as carbon are added. When the amount of alloying elements added increases with increasing strength and thickness, the hardness of the HAZ increases and the number of brittle phases such as MA increases. The grain size of the structure, the size of the embrittlement phase, and the hardness are known as factors that affect HAZ toughness. Since CGHAZ has a coarse metal structure, contains many embrittlement phases, and is hard, it becomes the most brittle part of the weld HAZ. To ensure the safety of structures, control of the structure of CGHAZ in multilayer welded joints is important.

CGHAZの靭性向上のため、組織微細化技術として、特許文献1には、鋼中にTiN粒子を分散させて、溶融線近傍まで再加熱されるCGHAZのオーステナイト粒成長を抑制し、変態組織を微細化させ、鋼板の高い強度とHAZ靭性を両立させる技術が記載されている。しかし溶接条件により、CGHAZの再加熱温度が1350℃以上となる場合はTiNが溶解する場合があり、粒成長抑制による細粒化効果が十分に得られず、靭性が低下する。 In order to improve the toughness of CGHAZ, Patent Document 1 describes a technology for refining the structure by dispersing TiN particles in steel to suppress the growth of austenite grains in CGHAZ that is reheated to the vicinity of the melting line and to refine the transformed structure. A technique has been described for achieving both high strength and HAZ toughness of steel sheets. However, depending on the welding conditions, if the reheating temperature of CGHAZ is 1350° C. or higher, TiN may melt, and the effect of grain refinement due to grain growth suppression cannot be obtained sufficiently, resulting in a decrease in toughness.

その他にCGHAZの組織を微細化させる手段として、鋼中にTi酸化物を微細分散させ、それらを変態核として粒内変態フェライト(IGF:Intra-Granular Ferrite)を生成させる技術がある。例えば特許文献2に示すように低温でのHAZ靭性に優れた鋼板が開発されている。 In addition, as a means for refining the structure of CGHAZ, there is a technique of finely dispersing Ti oxides in steel and using them as transformation nuclei to generate intra-granular ferrite (IGF). For example, as shown in Patent Document 2, a steel plate with excellent HAZ toughness at low temperatures has been developed.

更に、高強度厚鋼板では、溶接施工で発生する残留応力を除去する目的でSR(Stress Relief)処理する場合がある。鋼材の機械的特性の安定性の観点から、SR処理前とSR処理後で鋼材の機械的特性の変化が小さい事が求められる。SR処理後の母材靭性を確保するためにはPやS等の不純物元素を低減することが必要であるが、中心偏析部は不純物元素の濃度が高く、更に合金元素の濃化により局所的に高硬度となるため、合金元素を多く含む高強度厚手鋼板ではSR処理後にSR処理前なみの母材靭性を得ることが難しかった。 Furthermore, high-strength thick steel plates are sometimes subjected to SR (Stress Relief) treatment for the purpose of removing residual stress generated during welding. From the viewpoint of the stability of the mechanical properties of the steel material, it is required that the change in the mechanical properties of the steel material be small before and after the SR treatment. In order to ensure the toughness of the base material after SR treatment, it is necessary to reduce impurity elements such as P and S. However, the concentration of impurity elements is high in the center segregation area, and furthermore, the concentration of alloying elements causes local damage. Therefore, it is difficult to obtain the same base material toughness as before SR treatment after SR treatment with high strength thick steel plates containing many alloying elements.

特開2012-207237号公報JP2012-207237A 特開平7-278653号公報Japanese Patent Application Publication No. 7-278653

本発明は、降伏強度が500MPa以上で、SR処理の前後で良好な母材靭性を有し、多層盛り溶接した際に、良好な継手CTOD特性を有する鋼板とその製造方法を提供することを目的とする。 The purpose of the present invention is to provide a steel plate having a yield strength of 500 MPa or more, good base metal toughness before and after SR treatment, and good joint CTOD characteristics when multilayer welding is performed, and a method for manufacturing the same. shall be.

本発明者らは課題である降伏強度500MPa以上の母材強度と、良好な母材靭性、継手靭性を両立する鋼板について鋭意研究したところ、
1)Ti酸化物を含むTi含有介在物によるIGF変態の促進およびCGHAZ組織の微細化、
2)粒界フェライト(以下GBF)、フェライトサイドプレート(以下FSP)などオーステナイト粒界から変態生成するCGHAZ特有の粗大な組織のCとMnのバランス制御による微細化、
3)鋼成分の適正化による母材強度確保と、板厚中心部の硬度及び応力集中源の低減の両立、
4)板厚中心部の偏析度の抑制による不純物元素低減と最大硬度HVmaxの制限によるSR処理後の母材靭性確保、
が上記課題解決に有効であるとの知見を得た。
The present inventors conducted intensive research on a steel plate that achieves both a base material strength with a yield strength of 500 MPa or more, good base material toughness, and joint toughness.
1) Promotion of IGF transformation by Ti-containing inclusions containing Ti oxide and refinement of CGHAZ structure,
2) Refinement of coarse structures peculiar to CGHAZ, such as grain boundary ferrite (hereinafter referred to as GBF) and ferrite side plates (hereinafter referred to as FSP) generated through transformation from austenite grain boundaries, by controlling the balance of C and Mn;
3) Balancing the strength of the base material by optimizing the steel composition and reducing the hardness and stress concentration sources at the center of the plate thickness,
4) Reducing impurity elements by suppressing the degree of segregation in the center of the plate thickness and ensuring base material toughness after SR treatment by limiting the maximum hardness HVmax,
It was found that this method is effective in solving the above problems.

1)従来、介在物は、多くの場合、総体的に一つの存在として捉えられ、その寸法、形状、及び/又は、個数が、鋼板の特性に影響を及ぼす要素として扱われてきたが、本発明者らの実験結果によれば、介在物自体の組成が、HAZにおける粒内変態フェライトの生成に大きく関与していることが判明した。具体的には、Ti酸化物(TiO、Ti)を含むTi含有介在物は、他のAl酸化物、Mg酸化物、Ca酸化物等も包含しており、それらを複合的に含むTi含有介在物におけるTi酸化物の含有割合が増加するほど、(i-1)粒内変態フェライト(Intra-Granular Ferrite:IGF)の生成が促進され、(i-2)粒界フェライト(Grain Boundary Ferrite:GBF)やフェライトサイドプレート(Ferrite Side Plate:FSP)(いずれも脆化組織)の生成が抑制されて、HAZにおける低温靱性が顕著に向上することを知見した。 1) Conventionally, inclusions have often been regarded as a single entity, and their size, shape, and/or number have been treated as factors that affect the properties of steel sheets. According to the experimental results of the inventors, it has been found that the composition of the inclusions themselves is significantly involved in the formation of intragranular transformed ferrite in the HAZ. Specifically, Ti-containing inclusions containing Ti oxides (TiO, Ti 2 O 3 ) also include other Al oxides, Mg oxides, Ca oxides, etc., and contain them in a composite manner. As the content ratio of Ti oxide in Ti-containing inclusions increases, (i-1) the formation of intra-granular ferrite (IGF) is promoted, and (i-2) grain boundary ferrite (Grain Boundary ferrite) is promoted. It has been found that the formation of Ferrite (GBF) and Ferrite Side Plate (FSP) (both are brittle structures) is suppressed, and the low-temperature toughness in the HAZ is significantly improved.

2)CGHAZを構成する金属組織は、IGFの他、GBF、FSP、ベイナイト等がある。中でもFSPは同一の結晶方位を有する粗大な組織であり、破壊靭性を低下させる組織である。Ti酸化物を利用したIGF生成による微細化に加え、オーステナイト粒界から生成する粗大なFSPの抑制を組み合わせることで、一層HAZ組織を微細化することができる。通常、フェライト変態は炭素の拡散律速で成長するが、C、Mnの組成を制御することでその成長を合金元素の拡散律速とすることができ、成長速度を大幅に抑制することが可能である。検討の結果、[Mn]≧-3.8[C]+2.1を満たせばフェライト変態を抑制できる事を見出した。 2) The metal structures constituting CGHAZ include IGF, GBF, FSP, bainite, etc. Among these, FSP is a coarse structure having the same crystal orientation, and is a structure that reduces fracture toughness. In addition to refinement by IGF generation using Ti oxide, the HAZ structure can be further refined by suppressing coarse FSP generated from austenite grain boundaries. Normally, the growth of ferrite transformation is controlled by the diffusion of carbon, but by controlling the composition of C and Mn, the growth can be controlled by the diffusion of the alloying elements, and the growth rate can be significantly suppressed. . As a result of the study, it was found that ferrite transformation can be suppressed if [Mn]≧−3.8 [C]+2.1 is satisfied.

3)母材強度を確保するために、合金を添加し、焼き入れ性を確保するが、靭性が低下する。破壊の起点となるMnS等の応力集中源を低減させ、更に板厚中心部の硬度を低減することで、目標の強度と靱性を確保出来る事を見出した。具体的には板厚中心部の最大硬度HVmaxが250HV以下を満足させることで、靭性を確保出来ることを知見した。 3) In order to ensure base material strength, alloys are added to ensure hardenability, but toughness decreases. It has been discovered that the target strength and toughness can be secured by reducing stress concentration sources such as MnS, which are the starting point of fracture, and further reducing the hardness at the center of the plate thickness. Specifically, it has been found that toughness can be ensured by satisfying a maximum hardness HVmax of 250 HV or less at the center of the plate thickness.

4)不純物元素が多く、硬い程、SR処理後の母材靭性が低下する。板厚中心部は不純物元素の濃度が高いことに加え、合金元素が濃化しているため焼き入れ性が高く硬い組織となり、SR処理で最も脆化する部分である。鋳片を高温で長時間保持する均質化処理(SP(Soaking Process)処理)を行うことで、板厚中心部の不純物元素Pの濃化を解消し、Si、Mn、Cu、Niなどの焼き入れ性を高める元素の偏析度を低減し、硬さを抑制することで、SR処理後の母材靭性を確保できることを見出した。 4) The greater the number of impurity elements and the harder the material, the lower the toughness of the base material after SR treatment. In addition to the high concentration of impurity elements, the central part of the sheet thickness has a high concentration of alloying elements, resulting in a hard structure with high hardenability, and is the part that becomes most brittle in the SR treatment. By performing homogenization treatment (SP (Soaking Process) treatment) in which the slab is held at high temperature for a long period of time, the concentration of impurity element P in the center of the plate thickness is eliminated, and the quenching of Si, Mn, Cu, Ni, etc. It has been found that the toughness of the base metal after SR treatment can be ensured by reducing the degree of segregation of elements that improve insertion properties and suppressing hardness.

本発明は上記知見を基に、更なる検討を加えて完成された。本発明の要旨は以下の通りである。 The present invention was completed based on the above findings and further studies. The gist of the invention is as follows.

〈1〉
板厚が60~100mmであり、降伏強度が500MPa以上であり、引張強度が570MPa以上であり、
質量%で、
C :0.020~0.120%、
Si:0.05~0.30%、
Mn:1.70~3.00%、
Ti:0.005~0.018%、
Cu:0.05~1.50%、
Ni:0.05~2.00%、
Nb:0.005~0.025%、
N :0.0015~0.0060%、
O :0.0010~0.0045%、
を含有し、
P :0.015%以下、
S :0.0050%以下、
Al:0~0.004%、
Mg:0~0.0010%、
Ca:0~0.0010%、
B:0~0.0015%、
であり、
下記式(1)で計算されるCeq.値が0.460 ≦Ceq.を満足し、更に式(2)を満足し、残部がFe及び不純物からなる化学組成を有し、
板厚t/4部分のフェライト分率が0~15面積%で残部がベイナイト、マルテンサイトの1種類以上からなる複相組織であり、
板厚中心部の結晶方位差15°の大角粒界に囲まれた領域の最大面積から上位10個の結晶粒の平均円相当直径が50μm以下であり、
板厚中心部の最大硬度HVmaxが250HV以下であり、
板厚中心部の偏析度が[Si]max/[Si]≦1.9かつ[Mn]max/[Mn]≦2.0かつ[P]max/[P]≦4.0かつ[Cu]max/[Cu]≦2.1かつ[Ni]max/[Ni]≦1.8であり、
更に鋼組織中に含まれる、Tiと、Al、Mg、Si、Ca及びMnの1種又は2種以上を含有し、円相当径で0.5μm以上5.0μm以下であるTi含有介在物の粒子について、EDSで測定した元素の質量比を元に式(3)でTi含有介在物の粒子毎のTi含有割合(TCP)を算出し、TCPが40%以上のグループA、TCPが40%未満かつ20%以上のグループBに分類したとき、式(4)に示す粒内変態に有効なTi含有介在物の粒子の個数密度(EIGFD)が20個/mm以上となることを特徴とする高強度厚鋼板。
Ceq=[C]+[Mn]/6+[Cu]/15+[Ni]/15 … 式(1)
[Mn]≧-3.8[C]+2.1 … 式(2)
TCP=[Ti]/([Ti]+[Al]+[Mg]+[Ca]) … 式(3)
EIGFD=(XA×0.8)+(XB×0.5) … 式(4)
前記式(1)、(2)において、[C]は、Cの質量%、[Mn]は、Mnの質量%、[Cu]は、Cuの質量%、[Ni]は、Niの質量%である。
前記式(3)において、[Ti]、[Al]、[Mg]、[Ca]は、Ti含有介在物のEDS分析から得られるTi、Al、Mg、Ca含有量(質量%)であり、含有しない場合は0を代入する。
前記式(4)において、XA、XBは、それぞれグループA、グループBに分類される介在物個数密度(個/mm)の測定値である。
<1>
The plate thickness is 60 to 100 mm, the yield strength is 500 MPa or more, and the tensile strength is 570 MPa or more,
In mass%,
C: 0.020-0.120%,
Si: 0.05-0.30%,
Mn: 1.70-3.00%,
Ti: 0.005-0.018%,
Cu: 0.05-1.50%,
Ni: 0.05-2.00%,
Nb: 0.005-0.025%,
N: 0.0015-0.0060%,
O: 0.0010 to 0.0045%,
Contains
P: 0.015% or less,
S: 0.0050% or less,
Al: 0 to 0.004%,
Mg: 0 to 0.0010%,
Ca: 0-0.0010%,
B: 0 to 0.0015%,
and
Ceq. calculated by the following formula (1). The value is 0.460≦Ceq. and further satisfies formula (2), and has a chemical composition with the remainder consisting of Fe and impurities,
The ferrite fraction in the plate thickness t/4 portion is 0 to 15 area%, and the remainder is a multi-phase structure consisting of one or more types of bainite and martensite,
The average equivalent circle diameter of the top 10 crystal grains from the maximum area of the region surrounded by large-angle grain boundaries with a crystal orientation difference of 15° at the center of the plate thickness is 50 μm or less,
The maximum hardness HVmax at the center of the plate thickness is 250HV or less,
The degree of segregation at the center of the plate thickness is [Si]max/[Si]≦1.9 and [Mn]max/[Mn]≦2.0 and [P]max/[P]≦4.0 and [Cu] max/[Cu]≦2.1 and [Ni]max/[Ni]≦1.8,
Furthermore, Ti-containing inclusions, which are contained in the steel structure and contain Ti and one or more of Al, Mg, Si, Ca, and Mn, and have an equivalent circle diameter of 0.5 μm or more and 5.0 μm or less For particles, the Ti content percentage (TCP) of each particle of Ti-containing inclusions was calculated using formula (3) based on the mass ratio of elements measured by EDS, and group A with TCP of 40% or more, TCP of 40% When classified into Group B with less than 20% and 20% or more, the particle number density (EIGFD) of Ti-containing inclusions effective for intragranular transformation shown in formula (4) is 20 particles/mm 2 or more. High strength thick steel plate.
Ceq=[C]+[Mn]/6+[Cu]/15+[Ni]/15... Formula (1)
[Mn]≧-3.8[C]+2.1... Formula (2)
TCP=[Ti]/([Ti]+[Al]+[Mg]+[Ca])...Equation (3)
EIGFD=(XA×0.8)+(XB×0.5) … Formula (4)
In the formulas (1) and (2), [C] is mass% of C, [Mn] is mass% of Mn, [Cu] is mass% of Cu, and [Ni] is mass% of Ni. It is.
In the formula (3), [Ti], [Al], [Mg], and [Ca] are the Ti, Al, Mg, and Ca contents (mass%) obtained from EDS analysis of Ti-containing inclusions, If not included, substitute 0.
In the above equation (4), XA and XB are measured values of the inclusion number density (pieces/mm 2 ) classified into group A and group B, respectively.

〈2〉
さらに、質量%で、
Mo:0.50%以下、
Cr:0.50%以下、
V :0.03%以下、
の1種又は2種以上を含有し、
Ceq値が前記式(1)に代えて下記式(1)’で計算される、〈1〉に記載の高強度厚鋼板。
Ceq.=[C]+[Mn]/6+[Cu]/15+[Ni]/15+[Cr]/5+[Mo]/5+[V]/5 … 式(1)’
前記式(1)’において、[C]は、Cの質量%、[Mn]は、Mnの質量%、[Cu]は、Cuの質量%、[Ni]は、Niの質量%、[Cr]は、Crの質量%、[Mo]は、Moの質量%、[V]は、Vの質量%である。
<2>
Furthermore, in mass%,
Mo: 0.50% or less,
Cr: 0.50% or less,
V: 0.03% or less,
Contains one or more of the following,
The high-strength thick steel plate according to <1>, wherein the Ceq value is calculated by the following formula (1)' instead of the formula (1).
Ceq. =[C]+[Mn]/6+[Cu]/15+[Ni]/15+[Cr]/5+[Mo]/5+[V]/5... Formula (1)'
In the formula (1)', [C] is mass% of C, [Mn] is mass% of Mn, [Cu] is mass% of Cu, [Ni] is mass% of Ni, [Cr ] is the mass % of Cr, [Mo] is the mass % of Mo, and [V] is the mass % of V.

〈3〉
前記〈1〉または〈2〉のいずれかに記載の成分組成を有し、連続鋳造法で製造した鋼片を1200℃以上で10時間以上均質化処理を行い冷却した後、950℃~1100℃で再加熱し、1パスあたり圧下率の平均で7.5%以上となるように粗圧延を行い、厚み135~210mmとした後に、670℃~800℃から1パスあたり圧下率の平均で6.0%以上となるように仕上げ圧延を行った後、板厚中心部が10℃/s以下となる冷却速度で冷却することを特徴とする高強度厚鋼板の製造方法。
<3>
A steel piece having the composition described in either <1> or <2> above and produced by a continuous casting method is subjected to homogenization treatment at 1200°C or higher for 10 hours or more, and then cooled to 950°C to 1100°C. After being reheated at 670°C to 800°C and roughly rolled to an average rolling reduction of 7.5% or more per pass to a thickness of 135 to 210 mm, the rolling reduction was rolled from 670°C to 800°C to an average rolling reduction of 6% or more per pass. A method for producing a high-strength thick steel plate, which comprises performing finish rolling so that the steel plate is 0.0% or more, and then cooling at a cooling rate such that the central part of the plate thickness is 10° C./s or less.

〈4〉
板厚中心部が10℃/s以下となる冷却速度で冷却した後に、300℃以上かつ670℃以下で熱処理することを特徴とする前記〈3〉に記載の高強度厚鋼板の製造方法。
<4>
The method for manufacturing a high-strength thick steel plate according to item <3> above, characterized in that after cooling at a cooling rate such that the central portion of the plate thickness is 10° C./s or less, heat treatment is performed at 300° C. or higher and 670° C. or lower.

本発明により小入熱から中入熱溶接の多層盛り溶接HAZ部において優れたCTOD特性を有し、かつ母材の降伏強度が500MPa以上、引張強度が570MPa以上で、SR処理の前後で良好な母材の靭性を有する板厚60mm以上の高強度厚鋼板が製造可能となる。これにより、例えば海洋構造物等の非常に厳格な環境で使用される鋼構造物の大型化や軽量化、鋼材使用量低減によるコスト低減が可能となる。 The present invention has excellent CTOD characteristics in the multi-layer welded HAZ part of low to medium heat input welding, and the yield strength of the base metal is 500 MPa or more, the tensile strength is 570 MPa or more, and it has good properties before and after SR treatment. It becomes possible to manufacture high-strength thick steel plates with a thickness of 60 mm or more that have the same toughness as the base material. This makes it possible to increase the size and weight of steel structures used in extremely harsh environments, such as offshore structures, and to reduce costs by reducing the amount of steel used.

本実施形態に係る鋼板の式(2)とSR後の継手HAZ靭性の関係を示す図である。It is a figure showing the relationship between equation (2) of the steel plate and joint HAZ toughness after SR according to the present embodiment. 本実施形態に係る板厚中心部の最大硬度HVmaxへの均質化熱処理の影響とそれらとSR後の母材靭性の関係を示す図である。FIG. 3 is a diagram showing the influence of homogenization heat treatment on the maximum hardness HVmax at the center of the plate thickness and the relationship between them and the base material toughness after SR according to the present embodiment. 板厚中心部(板厚t/2部分)を含む位置において金属組織観察用試料を加工する状態の説明図である。FIG. 2 is an explanatory diagram of a state in which a sample for metallographic observation is processed at a position including the central part of the plate thickness (portion of plate thickness t/2). 板厚t/2部分を中心にしてMn濃度平均値が最も高い部分を特定し、1mm×1mmの視野領域を特定するする状態の説明図である。FIG. 6 is an explanatory diagram of a state in which a portion having the highest average Mn concentration is specified centering on the plate thickness t/2 portion, and a viewing area of 1 mm×1 mm is specified. 1mm×1mmの正方形の視野領域において、20×20μmの正方形部分を縦横方向(圧延方向と板厚方向)に走査していき、それぞれの位置において正方形部分の領域内に含まれる測定点のSi、Mn、P、Cu、Niの各質量%から当該領域の各平均値を定める状態の説明図である。In a 1 mm x 1 mm square viewing area, a 20 x 20 μm square section is scanned in the vertical and horizontal directions (rolling direction and plate thickness direction), and at each position, the Si of the measurement point included in the area of the square section, FIG. 3 is an explanatory diagram of a state in which each average value of the region is determined from each mass % of Mn, P, Cu, and Ni. Si、Mn、P、Cu、Niの各平均値が最大値となるそれぞれの正方形部分の領域を例示した説明図である。FIG. 2 is an explanatory diagram illustrating areas of square parts where the average values of Si, Mn, P, Cu, and Ni are the maximum values. 本実施形態に係る鋼板の介在物の模式図である。FIG. 2 is a schematic diagram of inclusions in a steel plate according to the present embodiment. 粒内変態フェライトの生成能力を調査した際の熱サイクルを示す図である。FIG. 3 is a diagram showing a thermal cycle when investigating the ability to generate intragranular transformed ferrite. 本実施形態に係る鋼板の介在物を起点とする粒内変態の有無を判定した例である。This is an example of determining the presence or absence of intragranular transformation originating from inclusions in the steel sheet according to the present embodiment. 本実施形態に係る鋼板の熱サイクル後に板厚t/4部分の1mm×1mm領域に存在する全介在物の組成解析結果とIGF生成挙動の一例を図示したグラフである。1 is a graph illustrating an example of compositional analysis results and IGF generation behavior of all inclusions present in a 1 mm x 1 mm region of a t/4 plate thickness portion after thermal cycling of a steel plate according to the present embodiment. 本実施形態に係る鋼板の熱サイクル後に板厚t/4部分の1mm×1mm領域に存在する全介在物の組成解析結果とIGF生成挙動の一例を図示したグラフである。1 is a graph illustrating an example of compositional analysis results and IGF generation behavior of all inclusions present in a 1 mm x 1 mm region of a t/4 plate thickness portion after thermal cycling of a steel plate according to the present embodiment. 本実施形態に係る鋼板の熱サイクル後に板厚t/4部分の1mm×1mm領域に存在するTi含有介在物のTCP算出結果の一例を図示したグラフである。2 is a graph illustrating an example of a TCP calculation result of Ti-containing inclusions present in a 1 mm x 1 mm region of a t/4 plate thickness portion after a thermal cycle of a steel plate according to the present embodiment. 本実施形態に係る鋼板の式(4)とSR後継手HAZ靭性の関係を示す図である。It is a figure which shows the relationship between Formula (4) and SR successor HAZ toughness of the steel plate based on this embodiment.

以下に本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.

[板厚]
本願発明では、船舶、建築、橋梁、タンク等の大型溶接構造物に好適な高強度厚鋼板を対象とし、特に板厚が60mm~100mmの鋼板に関する。
[Plate thickness]
The present invention targets high-strength thick steel plates suitable for large welded structures such as ships, buildings, bridges, and tanks, and particularly relates to steel plates with a plate thickness of 60 mm to 100 mm.

[降伏強度、引張強度]
降伏強度は500MPa以上とする。海洋構造物の大型化に伴い、海洋構造物向け厚鋼板も一層の高強度化及び厚手化が要求されている。そのため、板厚が60~100mmの鋼板において、降伏強度500MPa以上、引張強度570MPa以上を指標とする。
[Yield strength, tensile strength]
The yield strength shall be 500 MPa or more. As offshore structures become larger, steel plates for offshore structures are required to have even higher strength and thickness. Therefore, for steel plates with a thickness of 60 to 100 mm, yield strength of 500 MPa or more and tensile strength of 570 MPa or more are used as indicators.

[化学組成]
本実施形態に係る鋼板の化学組成について説明する。
本実施形態に係る鋼板は、質量%で、C:0.020~0.120%、Si:0.05~0.30%、Mn:1.70~3.00%、Ti:0.005~0.018%、Cu:0.05~1.50%、Ni:0.05~2.00%、Nb:0.005~0.025%、N:0.0015~0.0060%、O:0.0010~0.0045%、を含有し、P:0.015%以下、S:0.0050%以下、Al:0~0.004%、Mg:0~0.0010%、Ca:0~0.0010%、B:0~0.0015%、であり、下記式(1)で計算されるCeq.値が0.460 ≦Ceq.を満足し、更に式(2)を満足し、残部がFe及び不純物からなる。
Ceq.=[C]+[Mn]/6+[Cu]/15+[Ni]/15 … 式(1)
[Mn]≧-3.8[C]+2.1 … 式(2)
前記式(1)、(2)において、[C]は、Cの質量%、[Mn]は、Mnの質量%、[Cu]は、Cuの質量%、[Ni]は、Niの質量%である。
[Chemical composition]
The chemical composition of the steel plate according to this embodiment will be explained.
The steel plate according to this embodiment has C: 0.020 to 0.120%, Si: 0.05 to 0.30%, Mn: 1.70 to 3.00%, and Ti: 0.005% by mass. ~0.018%, Cu: 0.05~1.50%, Ni: 0.05~2.00%, Nb: 0.005~0.025%, N: 0.0015~0.0060%, Contains O: 0.0010 to 0.0045%, P: 0.015% or less, S: 0.0050% or less, Al: 0 to 0.004%, Mg: 0 to 0.0010%, Ca : 0 to 0.0010%, B: 0 to 0.0015%, and Ceq. calculated by the following formula (1). The value is 0.460≦Ceq. It also satisfies formula (2), and the remainder consists of Fe and impurities.
Ceq.=[C]+[Mn]/6+[Cu]/15+[Ni]/15... Formula (1)
[Mn]≧-3.8[C]+2.1... Formula (2)
In the formulas (1) and (2), [C] is mass% of C, [Mn] is mass% of Mn, [Cu] is mass% of Cu, and [Ni] is mass% of Ni. It is.

なお、以下の化学成分の説明では、質量%を%と表記する。また、以下の説明において元素含有量の上限値と下限値を「~」で結んで範囲表示する場合、特に注釈しない限り、上限値と下限値を含む範囲を意味する。したがって、質量%で0.01~0.20%と表記した場合、その範囲は0.01質量%以上、0.20質量%以下の範囲を意味する。 In addition, in the following description of chemical components, mass % is expressed as %. Furthermore, in the following description, when a range is indicated by connecting the upper limit and lower limit of the element content with "~", unless otherwise noted, it means the range that includes the upper limit and the lower limit. Therefore, when expressed as 0.01% to 0.20% by mass, the range means 0.01% by mass or more and 0.20% by mass or less.

C:0.020~0.120%
Cは、母材の強度を上昇させる元素である。C含有量が0.020%未満では母材強度の向上効果が小さいので0.020%を下限とした。より好ましいC含有量の下限は0.030%である。一方、Cが0.120%を超えて含有されると、脆性破壊の起点となるセメンタイトやマルテンサイトとオーステナイトの混成物(Martensite-Austenite Constituent:MAという。)が増加するため、HAZ靭性が低下する。したがって、C含有量の上限を0.120%とする。特に、大入熱溶接のHAZ靭性や低温靭性に対しては、比較的少量の小さなセメンタイトやMAでも脆性破壊の起点となりやすくHAZ靭性を低下させる場合があるため、C含有量の上限値については厳格に規制することが好ましい。C含有量の上限は、好ましくは0.110%であり、より好ましく0.100%であり、より一層好ましくは0.090%であり、更に好ましくは0.080%である。
C: 0.020-0.120%
C is an element that increases the strength of the base material. If the C content is less than 0.020%, the effect of improving the strength of the base material is small, so 0.020% is set as the lower limit. A more preferable lower limit of the C content is 0.030%. On the other hand, when C is contained in excess of 0.120%, the HAZ toughness decreases because cementite and a mixture of martensite and austenite (referred to as MA), which becomes the starting point of brittle fracture, increase. do. Therefore, the upper limit of the C content is set to 0.120%. In particular, for HAZ toughness and low-temperature toughness in high heat input welding, even a relatively small amount of small cementite or MA can easily become a starting point for brittle fracture and reduce HAZ toughness. Strict regulation is preferable. The upper limit of the C content is preferably 0.110%, more preferably 0.100%, even more preferably 0.090%, and even more preferably 0.080%.

Si:0.05~0.30%
Siは、脱酸剤として機能し、強度の上昇にも寄与する。特にTi脱酸鋼の場合には、脱酸能を高めるためにSiを添加する場合が多く、0.05%を下限とした。より好ましいSi含有量の下限は0.06%である。一方で、過剰に含有させるとHAZのミクロ組織中に硬質な脆化組織であるMAが生成しやすくなる。このMAは、HAZの靭性を劣化させるため、Siの含有量を制限することが望ましく、上限を0.30%とした。Si含有の上限は、好ましくは0.23%、より好ましくは0.15%とする。
Si: 0.05-0.30%
Si functions as a deoxidizing agent and also contributes to increasing strength. Particularly in the case of Ti-deoxidized steel, Si is often added to increase the deoxidizing ability, and the lower limit was set at 0.05%. A more preferable lower limit of the Si content is 0.06%. On the other hand, if it is contained excessively, MA, which is a hard embrittled structure, is likely to be generated in the microstructure of the HAZ. Since this MA deteriorates the toughness of the HAZ, it is desirable to limit the Si content, and the upper limit was set to 0.30%. The upper limit of Si content is preferably 0.23%, more preferably 0.15%.

Mn:1.70~3.00%
Mnは、母材の強度、靭性の確保に有効な成分であり、またSと結合しTi酸化物上にMnSとして複合析出することで粒内変態を促進させる効果があるため、1.70%以上を含有させる。これらの効果を発現させるため、より好ましいMn含有量の下限は1.80%、更に好ましくは1.90%である。多量のMnの含有は偏析や硬質相の生成に繋がり、HAZ靭性を低下させる。特に、SR後においては粒界脆化を助長させるため、母材およびHAZ靭性を劣化させる。これらを許容できる範囲で上限を3.00%とした。Mn含有量のより好ましい上限は2.90%、更に好ましくは2.80%である。
Mn: 1.70-3.00%
Mn is an effective component for ensuring the strength and toughness of the base metal, and also has the effect of promoting intragranular transformation by combining with S and precipitating compositely as MnS on Ti oxides, so Mn is 1.70%. Contain the above. In order to exhibit these effects, the lower limit of the Mn content is more preferably 1.80%, and even more preferably 1.90%. Containing a large amount of Mn leads to segregation and the formation of hard phases, reducing HAZ toughness. In particular, after SR, grain boundary embrittlement is promoted, thereby degrading the toughness of the base material and HAZ. The upper limit was set at 3.00% within an allowable range. A more preferable upper limit of the Mn content is 2.90%, still more preferably 2.80%.

Ti:0.005~0.018%
Tiは、Ti酸化物を含むTi含有介在物を形成し、HAZにおける粒内変態フェライトの生成を促進する本発明において重要な元素の一つである。また、窒化物を形成し、γ粒界のピニング効果によってもミクロ組織を微細化し、靭性の向上に寄与する。Tiが0.005%未満では、十分なTi含有介在物および窒化物粒子個数が得られない可能性があるため、下限を0.005%とする。より多数の粒子を生成させるために、好ましくはTi含有量の下限を0.008%、より好ましくは0.009%、より一層好ましくは0.010%とする。一方で、多量に添加すると粗大に成長した窒化物が、脆性破壊の発生起点となり、靭性が劣化する。また、SR後の粒界脆化を助長し、母材およびHAZ靭性を劣化させる。粗大窒化物の生成を抑制するには、Tiの上限を0.018%とすることが好ましい。Tiの上限は、より好ましくは0.016%である。
Ti: 0.005-0.018%
Ti is one of the important elements in the present invention, forming Ti-containing inclusions containing Ti oxides and promoting the formation of intragranular transformed ferrite in the HAZ. In addition, it forms nitrides and refines the microstructure through the pinning effect of γ grain boundaries, contributing to improved toughness. If Ti is less than 0.005%, a sufficient number of Ti-containing inclusions and nitride particles may not be obtained, so the lower limit is set to 0.005%. In order to generate a larger number of particles, the lower limit of the Ti content is preferably 0.008%, more preferably 0.009%, even more preferably 0.010%. On the other hand, if a large amount is added, the coarsely grown nitrides will become a starting point for brittle fracture and the toughness will deteriorate. It also promotes grain boundary embrittlement after SR, deteriorating the toughness of the base material and HAZ. In order to suppress the formation of coarse nitrides, the upper limit of Ti is preferably 0.018%. The upper limit of Ti is more preferably 0.016%.

Cu:0.05%~1.50%
Cuは過剰に添加しなければ溶接熱影響部の靭性に悪影響を与えることなく母材の強度、靭性を向上させる。これらの効果を発揮させるためには0.05%以上含有させるが、添加しすぎるとHAZ靭性、及び溶接性を損なうため、上限を1.50%とした。
Cu: 0.05% to 1.50%
Unless added in excess, Cu improves the strength and toughness of the base metal without adversely affecting the toughness of the weld heat affected zone. In order to exhibit these effects, the content should be 0.05% or more, but since adding too much will impair HAZ toughness and weldability, the upper limit was set at 1.50%.

Ni:0.05%~2.00%
NiはCuと同様、過剰に添加しなければ溶接熱影響部の靭性に悪影響を与えることなく母材の強度、靭性を向上させる。これらの効果を発揮させるためには少なくとも0.05%以上含有させる。高価な元素であることに加え、含有しすぎるとHAZ靭性及び溶接性を損なう事から、工業生産上添加の上限を2.00%とした。
Ni: 0.05% to 2.00%
Like Cu, Ni improves the strength and toughness of the base metal without adversely affecting the toughness of the weld heat affected zone unless added in excess. In order to exhibit these effects, the content should be at least 0.05% or more. In addition to being an expensive element, too much content impairs HAZ toughness and weldability, so the upper limit of addition for industrial production is set at 2.00%.

Nb:0.005%~0.025%
Nbは母材強度の向上のために有効である。その効果を得るためには0.005%以上含有させることが必要である。一方、過度な添加はHAZ靭性に悪影響を及ぼす。また、SR後の粒界脆化を助長し、母材およびHAZ靭性を劣化させる。そのため上限を0.025%とする。より好ましくは上限を0.020%とする。さらに好ましくは上限を0.018%とする。
Nb: 0.005% to 0.025%
Nb is effective for improving the strength of the base material. In order to obtain this effect, it is necessary to contain 0.005% or more. On the other hand, excessive addition has an adverse effect on HAZ toughness. It also promotes grain boundary embrittlement after SR, deteriorating the toughness of the base material and HAZ. Therefore, the upper limit is set at 0.025%. More preferably, the upper limit is 0.020%. More preferably, the upper limit is 0.018%.

N:0.0015~0.0060%
Nは、窒化物を形成する元素であり、窒化物によるγ粒ピニング効果を得るうえで必須の元素であり、そのための下限を0.0015%とした。下限は、好ましくは、0.0018%、より好ましくは0.0020%である。一方、N含有量が多いと粗大なAlNやTiNなどの窒化物を生成しやすくなる。これらの粗大な粒子は、脆性破壊の発生起点となり、HAZ靭性の低下を招く場合がある。そのためN含有量の上限を0.0060%とする。N含有量の好ましい上限は0.0055%であり、より好ましくは0.0050%である。
N: 0.0015-0.0060%
N is an element that forms nitrides and is an essential element for obtaining the γ grain pinning effect by nitrides, and the lower limit for this purpose was set at 0.0015%. The lower limit is preferably 0.0018%, more preferably 0.0020%. On the other hand, if the N content is high, coarse nitrides such as AlN and TiN are likely to be generated. These coarse particles may become a starting point for brittle fracture, leading to a decrease in HAZ toughness. Therefore, the upper limit of the N content is set to 0.0060%. A preferable upper limit of the N content is 0.0055%, more preferably 0.0050%.

O:0.0010~0.0045%
Oは、酸化物を形成する元素であり、粒内変態フェライト核となるTi含有介在物を生成させるうえで、重要な元素の一つである。Ti含有介在物の分散を得るために、その下限は0.0010%とした。一方で、含有量が多いと粗大な酸化物が生成しやすくなる。粗大な酸化物は破壊の発生起点となり、HAZ靭性を低下させるため、O含有量の上限を0.0045%とする。好ましいO含有量の上限は0.0040以下%であり、より好ましくは0.0035%である。
O: 0.0010-0.0045%
O is an element that forms oxides, and is one of the important elements in generating Ti-containing inclusions that become intragranular transformed ferrite nuclei. In order to obtain a dispersion of Ti-containing inclusions, the lower limit was set to 0.0010%. On the other hand, if the content is large, coarse oxides are likely to be generated. Since coarse oxides become a starting point for fracture and reduce HAZ toughness, the upper limit of the O content is set to 0.0045%. The upper limit of the O content is preferably 0.0040% or less, and more preferably 0.0035%.

P:0.015%以下
Pは、粒界脆化をもたらし、靭性に有害な元素である。特に、本発明においては、SR処理中およびその後の徐冷中に粒界への偏析が助長されるため、SR後の母材およびHAZ靭性確保の観点では、非常に有害な元素である。そのため、P含有量は少ないほうが望ましい。本発明では均質化熱処理で中心偏析部やミクロ偏析部のPを低下させるため、ある程度含有量を緩和することが可能となる。0.015%超のPを含有すると、SR後の母材及びHAZ靭性が顕著に低下するのでP含有量の上限を0.015%に制限する。好ましくは、0.013%以下、更に好ましくは、0.011%以下である。P含有量の下限を特に制限する必要はないが、P含有量を0%にするのは、技術的に容易ではないので、0%超としてもよい。P含有量の下限は0.001%であってもよい。
P: 0.015% or less P is an element that causes grain boundary embrittlement and is harmful to toughness. In particular, in the present invention, since segregation to grain boundaries is promoted during the SR treatment and subsequent slow cooling, it is a very harmful element from the viewpoint of ensuring the toughness of the base material and HAZ after SR. Therefore, it is desirable that the P content be small. In the present invention, since the homogenization heat treatment lowers the P content in the central segregation area and the micro segregation area, it is possible to relax the content to some extent. If more than 0.015% of P is contained, the base material and HAZ toughness after SR will be significantly reduced, so the upper limit of the P content is limited to 0.015%. Preferably it is 0.013% or less, more preferably 0.011% or less. Although it is not necessary to particularly limit the lower limit of the P content, it is technically not easy to reduce the P content to 0%, so it may be set to exceed 0%. The lower limit of the P content may be 0.001%.

S:0.0050%以下
Sは、MnSなどの介在物を生成する元素であり、板厚中心部に粗大な延伸MnSが生成すると靭性低下(HAZ、母材)や板厚方向の伸びを低下させる。したがって、S含有量の上限を0.0050%とする。好ましいS含有量の上限は0.0040%である。HAZ靭性向上のため、S含有量の上限を0.0030%、0.0025%としてもよい。S含有量の下限値を特に制限する必要はないが、S含有量を0%にするのは、技術的に容易ではないので、0%超としてもよい。一方、粒内変態核にMnSを複合析出させ、粒内変態をより安定的に得ることを狙う場合は、S含有量の下限は0.0005%が好ましい。より多量のMnSを生成させるため、S含有量の下限を0.0010%としてもよい。
S: 0.0050% or less S is an element that generates inclusions such as MnS, and if coarse drawn MnS is generated in the center of the plate thickness, it will reduce the toughness (HAZ, base material) and the elongation in the thickness direction. let Therefore, the upper limit of the S content is set to 0.0050%. The preferable upper limit of the S content is 0.0040%. In order to improve HAZ toughness, the upper limit of the S content may be set to 0.0030% or 0.0025%. Although it is not necessary to particularly limit the lower limit of the S content, it is technically not easy to reduce the S content to 0%, so it may be set to exceed 0%. On the other hand, when aiming to obtain more stable intragranular transformation by precipitating MnS in a composite manner in intragranular transformation nuclei, the lower limit of the S content is preferably 0.0005%. In order to generate a larger amount of MnS, the lower limit of the S content may be set to 0.0010%.

Al:0~0.004%
Alは、脱酸剤として機能し、溶鋼の溶存酸素量を減少させる元素であるが、Alが多く含まれるとTi含有酸化物の粒内変態フェライト核としての機能が失われ、HAZ靭性が劣化する。そのため、Al含有量の上限を0.004%とした。好ましいAl含有量の上限は0.003%である。Al含有量の下限値を特に制限する必要はなく、その下限を0%としてもよい。
Al: 0-0.004%
Al is an element that functions as a deoxidizing agent and reduces the amount of dissolved oxygen in molten steel. However, when a large amount of Al is contained, the Ti-containing oxide loses its function as an intragranular transformed ferrite nucleus, and the HAZ toughness deteriorates. do. Therefore, the upper limit of the Al content was set to 0.004%. The upper limit of the preferable Al content is 0.003%. There is no need to particularly limit the lower limit of the Al content, and the lower limit may be set to 0%.

Mg:0~0.0010%
Mgは、脱酸剤および脱硫剤として機能し、溶鋼の溶存酸素量およびS量を減少させる元素である。ただし、Mg酸化物が増加すると、粒内変態フェライトの生成に最も有効なTi酸化物が減少するため、Mg酸化物の生成は極力抑えることが好ましい。そのため、Mg含有量の上限を0.0010%とする。好ましくは、Mg含有量の上限を0.0005%としても良い。Mg含有量の下限値を特に制限する必要はなく、その下限を0%としてもよい。
Mg: 0-0.0010%
Mg is an element that functions as a deoxidizing agent and a desulfurizing agent and reduces the amount of dissolved oxygen and S in molten steel. However, as Mg oxide increases, Ti oxide, which is most effective for generating intragranular transformed ferrite, decreases, so it is preferable to suppress the generation of Mg oxide as much as possible. Therefore, the upper limit of the Mg content is set to 0.0010%. Preferably, the upper limit of the Mg content may be set to 0.0005%. There is no need to particularly limit the lower limit of the Mg content, and the lower limit may be set to 0%.

Ca:0~0.0010%
Caは、脱酸剤および脱硫剤として機能し、溶鋼の溶存酸素量およびS量を減少させる元素である。ただし、複合酸化物中にCa含有酸化物やCa含有硫化物が多く含まれるとTi含有酸化物の粒内変態フェライト核としての機能が失われ、HAZ靭性が劣化する。そのため、Ca含有量の上限を0.0010%とする。好ましくは、Ca含有量の上限を0.0005%としても良い。Ca含有量の下限値を特に制限する必要はなく、その下限を0%としてもよい。
Ca: 0-0.0010%
Ca is an element that functions as a deoxidizing agent and a desulfurizing agent and reduces the amount of dissolved oxygen and S in molten steel. However, if a large amount of Ca-containing oxide or Ca-containing sulfide is contained in the composite oxide, the function of the Ti-containing oxide as an intragranular transformed ferrite nucleus is lost, and the HAZ toughness is deteriorated. Therefore, the upper limit of Ca content is set to 0.0010%. Preferably, the upper limit of the Ca content may be set to 0.0005%. There is no need to particularly limit the lower limit of the Ca content, and the lower limit may be set to 0%.

B:0~0.0015%
Bは、焼き入れ性を顕著に高めて母材やHAZの強度、靭性を向上させる元素であり、Bを含有させても良い。しかし、多量に添加すると強度のバラつきが大きくなり、その分靭性が不安定となる場合がある。そのため、B含有量の上限は0.0015%とした。好ましいB含有量の上限は0.0013%、より好ましい上限は0.0010%である。B含有量の下限値は0%であってもよいが、B含有量を0%にするのは、技術的に容易ではないので、0%超としてもよい。強度の上昇の効果を得るために、B含有量は0.0003%以上が好ましい。より好ましくはB含有量を0.0005%以上とする。
B: 0-0.0015%
B is an element that significantly increases the hardenability and improves the strength and toughness of the base material and HAZ, and may be included. However, if it is added in a large amount, the strength may vary widely, and the toughness may become unstable accordingly. Therefore, the upper limit of the B content was set to 0.0015%. A preferable upper limit of the B content is 0.0013%, and a more preferable upper limit is 0.0010%. The lower limit of the B content may be 0%, but since it is technically not easy to reduce the B content to 0%, it may be set to exceed 0%. In order to obtain the effect of increasing strength, the B content is preferably 0.0003% or more. More preferably, the B content is 0.0005% or more.

Ceq.≧0.460
下記式(1)で計算されるCeq値は鋼成分の焼き入れ性を示す指標であり、Ceq.が高い程鋼板の強度が高くなる。板厚60~100mmでYP500MPa以上の厚鋼板を得るにはCeq.を0.460以上にする必要がある。
Ceq.=[C]+[Mn]/6+[Cu]/15+[Ni]/15 … 式(1)
式(1)において、[C]は、Cの質量%、[Mn]は、Mnの質量%、[Cu]は、Cuの質量%、[Ni]は、Niの質量%である。
Ceq. ≧0.460
The Ceq value calculated by the following formula (1) is an index indicating the hardenability of steel components, and Ceq. The higher the value, the higher the strength of the steel plate. Ceq. It is necessary to make it 0.460 or more.
Ceq.=[C]+[Mn]/6+[Cu]/15+[Ni]/15... Formula (1)
In formula (1), [C] is the mass % of C, [Mn] is the mass % of Mn, [Cu] is the mass % of Cu, and [Ni] is the mass % of Ni.

[Mn]≧-3.8[C]+2.1 … 式(2)
式(2)において、[C]は、Cの質量%、[Mn]は、Mnの質量%である。MnとCのバランスを、上式(2)を満たすように制御すると、CGHAZにおいて粗大なオーステナイト粒界から変態するFSPなどの靭性に悪影響を及ぼす粗大な組織の生成を抑制することができる。図1は、式(2)を満足すれば、継手-10℃におけるCTODが0.6mm以上となり、良好な継手CTOD特性を有することを示している。
[Mn]≧-3.8[C]+2.1... Formula (2)
In formula (2), [C] is mass % of C, and [Mn] is mass % of Mn. When the balance between Mn and C is controlled so as to satisfy the above formula (2), it is possible to suppress the generation of coarse structures such as FSP that transform from coarse austenite grain boundaries in CGHAZ, which adversely affect toughness. FIG. 1 shows that if formula (2) is satisfied, the joint CTOD at -10° C. is 0.6 mm or more, indicating that the joint has good CTOD characteristics.

また、本実施形態に係る鋼板は、上記の化学成分を含むことを基本とするが、鋼板(母材)の機械特性やHAZ靭性を向上させるために、必要に応じて、Feの一部に代えて更に任意成分として、Mo:0.50%以下、Cr:0.50%以下、V:0.03%以下の1種又は2種以上を含有してもよい。 The steel sheet according to the present embodiment basically contains the above chemical components, but in order to improve the mechanical properties and HAZ toughness of the steel sheet (base material), some of the Fe may be added as necessary. Alternatively, one or more of Mo: 0.50% or less, Cr: 0.50% or less, and V: 0.03% or less may be contained as optional components.

Mo:0.50%以下
Moは、焼入れ性を向上させて、母材の強度を上昇させる元素であり、Moを含有させてもよい。ただし、0.50%を超えてMoを含有させると、HAZに硬質組織が生成し、HAZ靭性が低下することがあるため、Mo含有量の上限を0.50%に制限する。好ましくはMo含有量の上限を0.40%、より好ましくは0.30%とする。Moは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。母材の強度の向上のためにはMo含有量は0.02%以上が好ましい。より好ましくはMo含有量を0.04%以上とする。
Mo: 0.50% or less Mo is an element that improves hardenability and increases the strength of the base material, and may be included. However, if Mo is contained in an amount exceeding 0.50%, a hard structure may be generated in the HAZ and the HAZ toughness may be reduced, so the upper limit of the Mo content is limited to 0.50%. Preferably, the upper limit of the Mo content is 0.40%, more preferably 0.30%. Although Mo may be mixed as an impurity from scrap etc. during the production of molten steel, there is no need to particularly limit its lower limit, and it may be 0%. In order to improve the strength of the base material, the Mo content is preferably 0.02% or more. More preferably, the Mo content is 0.04% or more.

Cr:0.50%以下
Crは、焼入れ性の向上や析出強化によって母材の強度を上昇させる元素であり、Crを含有させてもよい。ただし、0.50%を超えてCrを含有させると、HAZにMAが生成しやすくなり、HAZ靭性が低下する。したがって、Cr含有量の上限を0.50%に制限する。好ましくはCr含有量の上限を0.40%、より好ましくは0.30%とする。Crは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。母材の強度を向上させるためには、Cr含有量は0.02%以上が好ましい。より好ましくはCr含有量を0.10%以上とする。
Cr: 0.50% or less Cr is an element that increases the strength of the base material by improving hardenability and precipitation strengthening, and may be included. However, when Cr is contained in an amount exceeding 0.50%, MA tends to be generated in the HAZ, resulting in a decrease in HAZ toughness. Therefore, the upper limit of the Cr content is limited to 0.50%. Preferably, the upper limit of the Cr content is 0.40%, more preferably 0.30%. Although Cr may be mixed as an impurity from scrap etc. during the production of molten steel, there is no need to particularly limit its lower limit, and it may be 0%. In order to improve the strength of the base material, the Cr content is preferably 0.02% or more. More preferably, the Cr content is 0.10% or more.

V:0.03%以下
Vは、焼入れ性を向上させる元素であり、また、炭化物や窒化物を形成し、母材の強度の上昇に有効な元素であるため、Vを含有させてもよい。しかし、0.03%を超えてVを含有させるとHAZにおける炭窒化物の析出が顕著になり、HAZ靭性が低下することがあるため、V含有量を0.03%以下に制限する。好ましくはV含有量を0.025%以下とする。Vは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。母材の強度を向上させるためにはV含有量は0.01%以上が好ましい。
V: 0.03% or less V is an element that improves hardenability, and is an element that forms carbides and nitrides and is effective in increasing the strength of the base material, so V may be included. . However, if V is contained in an amount exceeding 0.03%, precipitation of carbonitrides in the HAZ becomes significant and the HAZ toughness may decrease, so the V content is limited to 0.03% or less. Preferably, the V content is 0.025% or less. Although V may be mixed in as an impurity from scrap etc. during the production of molten steel, there is no need to particularly limit its lower limit, and it may be 0%. In order to improve the strength of the base material, the V content is preferably 0.01% or more.

本発明の高強度厚鋼板は、任意成分としてこれらの1種または2種以上を含有する場合、Ceq値が下記式(1)’で計算される。
Ceq.=[C]+[Mn]/6+[Cu]/15+[Ni]/15+[Cr]/5+[Mo]/5+[V]/5 … 式(1)’
式(1)’において、[C]は、Cの質量%、[Mn]は、Mnの質量%、[Cu]は、Cuの質量%、[Ni]は、Niの質量%、[Cr]は、Crの質量%、[Mo]は、Moの質量%、[V]は、Vの質量%である。
When the high-strength thick steel plate of the present invention contains one or more of these as optional components, the Ceq value is calculated by the following formula (1)'.
Ceq. =[C]+[Mn]/6+[Cu]/15+[Ni]/15+[Cr]/5+[Mo]/5+[V]/5... Formula (1)'
In formula (1)', [C] is mass% of C, [Mn] is mass% of Mn, [Cu] is mass% of Cu, [Ni] is mass% of Ni, [Cr] is the mass % of Cr, [Mo] is the mass % of Mo, and [V] is the mass % of V.

本実施形態に係る鋼板の化学成分の残部は、鉄(Fe)及び不純物である。不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料その他の要因により混入する成分であって、本実施形態に係る鋼材に悪影響を与えない範囲で許容されるものを意味する。 The remainder of the chemical components of the steel plate according to this embodiment are iron (Fe) and impurities. Impurities refer to components that are mixed in from raw materials such as ore, scrap, and other factors during the industrial production of steel materials, and are allowed within the range that does not adversely affect the steel materials according to this embodiment. do.

[金属組織]
フェライト分率が15%を超えると、母材の降伏強度が500MPaを満足できないため、板厚t/4部分の金属組織のフェライト分率を15%以下、かつ残部がベイナイトおよび/またはマルテンサイトから構成される金属組織とする。フェライト分率が15%を超えた場合、もしくは、フェライト分率が15%以下であっても、残部がベイナイトおよび/またはマルテンサイトから構成される金属組織でない場合は、母材の降伏強度が500MPaを満足できなくなる。したがって、板厚t/4部分のフェライト分率を15面積%以下、残部がベイナイト、マルテンサイトの1種類以上からなる組織とする。なお、フェライト分率は、鋼板の板厚t/4部分の、圧延方向と平行な板厚方向断面から金属組織観察用試料を加工し、500倍の光学顕微鏡観察視野から測定することができる。
[Metal structure]
If the ferrite fraction exceeds 15%, the yield strength of the base material cannot satisfy 500 MPa, so the ferrite fraction in the metal structure of the plate thickness t/4 portion is set to 15% or less, and the remainder is made of bainite and/or martensite. The metal structure consists of: If the ferrite fraction exceeds 15%, or even if the ferrite fraction is 15% or less, the remainder is not a metal structure consisting of bainite and/or martensite, the yield strength of the base material is 500 MPa. become unsatisfied. Therefore, the ferrite fraction in the plate thickness t/4 portion is 15 area % or less, and the remainder is made of one or more types of bainite and martensite. Note that the ferrite fraction can be measured from a 500x optical microscope observation field by processing a sample for metallographic observation from a cross section in the plate thickness direction parallel to the rolling direction of the plate thickness t/4 portion of the steel plate.

[平均円相当直径≦50μm]
金属組織が細かい程母材の靭性が向上する。板厚中心部(板厚t/2部分)において方位差15°以上の大角粒界に囲まれる結晶粒の平均円相当直径が50μm以下であると低温で良好な母材靭性が得られるため、平均円相当直径の上限を50μmとした。なお、平均円相当直径は、面積の最大から上位10個の結晶粒の円相当径(直径)の平均である。脆性破壊の要因となるのは粒径の大きい結晶粒であるため、最大面積から上位10個の結晶粒の円相当直径を規定した。なお、金属組織の円相当直径測定は、フェライトやベイナイトなどの組織分類を考慮せず、観察視野全体を測定対象とする。なお、粒径は、鋼板の板厚t/2部分を中心とする、圧延方向と平行な板厚方向断面から金属組織観察用試料を加工してEBSD(Electro Back Scatering Difraction)測定し、例えば結晶方位差15°以上の境界で規定される面積の最大から上位10個の円相当径の平均より求めることができる。
[Average circular equivalent diameter ≦50μm]
The finer the metal structure, the better the toughness of the base material. If the average circular equivalent diameter of the crystal grains surrounded by large-angle grain boundaries with a misorientation of 15° or more at the center of the plate thickness (plate thickness t/2 part) is 50 μm or less, good base material toughness can be obtained at low temperatures. The upper limit of the average equivalent circle diameter was set to 50 μm. Note that the average equivalent circle diameter is the average of the equivalent circle diameters (diameters) of the top 10 crystal grains from the largest area. Since it is crystal grains with a large grain size that cause brittle fracture, the equivalent circle diameters of the top 10 crystal grains were defined based on the maximum area. Note that when measuring the equivalent circle diameter of a metal structure, the entire observation field is measured without considering the structure classification such as ferrite or bainite. The grain size is determined by measuring EBSD (Electro Back Scattering Diffraction) by processing a sample for metallographic observation from a cross section in the thickness direction parallel to the rolling direction, centered on the plate thickness t/2 portion of the steel plate, and measuring, for example, crystallization. It can be determined by averaging the equivalent circle diameters of the top 10 largest areas defined by boundaries with an orientation difference of 15° or more.

[板厚中心部の最大硬度HVmaxが250HV以下]
母材靭性は硬さが硬い程、SR処理で靭性が低下する。SR後の靭性を維持するためには板厚中心部(板厚t/2部分)の最高硬さを250HV以下とする必要が有る。図2は、板厚中心部分の最大硬度HVmaxへの均質化熱処理の影響とそれらとSR後の母材靭性の関係を示している。均質化熱処理することにより、板厚中心部の最大硬度HVmaxを250HV以下とすることができる。なお、板厚中心部の硬さは、板厚t/2部分を中心とする、圧延方向と平行な板厚方向断面から金属組織観察用試料を加工し、t/2部で光学顕微鏡観察を無作為に例えば5視野撮影し、各2か所の硬度を荷重25gのビッカース試験で測定し、最大硬度を板厚中心部の最大硬度HVmaxとする。
[Maximum hardness HVmax at center of plate thickness is 250HV or less]
As for base material toughness, the harder the base material is, the lower the toughness is due to SR treatment. In order to maintain toughness after SR, the maximum hardness of the central part of the plate thickness (t/2 part of the plate thickness) needs to be 250 HV or less. FIG. 2 shows the influence of homogenization heat treatment on the maximum hardness HVmax at the center of the plate thickness and the relationship between these and the toughness of the base material after SR. By performing the homogenization heat treatment, the maximum hardness HVmax at the center of the plate thickness can be made 250 HV or less. The hardness at the center of the plate thickness was determined by processing a sample for metallographic observation from a cross section in the plate thickness direction parallel to the rolling direction, centered at the plate thickness t/2, and performing optical microscopic observation at the plate thickness t/2. For example, five fields of view are photographed at random, and the hardness of each two locations is measured by a Vickers test with a load of 25 g, and the maximum hardness is defined as the maximum hardness HVmax at the center of the plate thickness.

[Si、Mn、P、Cu、Niの偏析度]
次に、Si、Mn、P、Cu、Niの偏析について説明する。
本実施形態に係る鋼板は、板厚中心部分における偏析度が[Si]max/[Si]≦1.9かつ[Mn]max/[Mn]≦2.0かつ[P]max/[P]≦4.0かつ[Cu]max/[Cu]≦2.1かつ[Ni]max/[Ni]≦1.8である。
板厚中心部は合金元素が濃化しているため局所的に焼き入れ性が高く、硬い組織となるため靭性が低下する。さらに不純物元素が濃化するとSR処理で靭性の低下が顕著になる。母材靭性の確保のためには、板厚中心部の偏析度が[Si]max/[Si]≦1.9かつ[Mn]max/[Mn]≦2.0かつ[P]max/[P]≦4.0かつ[Cu]max/[Cu]≦2.1かつ[Ni]max/[Ni]≦1.8を満足する必要が有る。
[Segregation degree of Si, Mn, P, Cu, Ni]
Next, the segregation of Si, Mn, P, Cu, and Ni will be explained.
The steel plate according to the present embodiment has a degree of segregation in the central part of the plate thickness such that [Si]max/[Si]≦1.9 and [Mn]max/[Mn]≦2.0 and [P]max/[P] ≦4.0, [Cu]max/[Cu]≦2.1, and [Ni]max/[Ni]≦1.8.
Since the alloying elements are concentrated in the center of the plate thickness, the hardenability is locally high and the structure becomes hard, resulting in a decrease in toughness. Furthermore, when the impurity elements become concentrated, the toughness decreases significantly in the SR treatment. In order to ensure base material toughness, the degree of segregation at the center of the plate thickness must be [Si]max/[Si]≦1.9, [Mn]max/[Mn]≦2.0, and [P]max/[ P]≦4.0, [Cu]max/[Cu]≦2.1, and [Ni]max/[Ni]≦1.8.

各元素の偏析度は、EPMA(Electron Probe Micro Analysis)測定により、次の手順(a)、(b)、(c)、(d)に従って求めることができる。また、板厚中心部の偏析度は、板厚t/2部分を基準として定められた1mm×1mmの視野領域において求められる。 The degree of segregation of each element can be determined by EPMA (Electron Probe Micro Analysis) measurement according to the following procedures (a), (b), (c), and (d). Furthermore, the degree of segregation at the center of the plate thickness is determined in a viewing area of 1 mm x 1 mm, which is determined based on the plate thickness t/2 portion.

(a)
先ず図3に示すように、鋼板10の圧延方向と平行な板厚方向断面において、板厚中心部(板厚t/2部分)を含む位置において金属組織観察用試料11を加工する。そして、図4に示すように、金属組織観察用試料11に現れる板厚方向断面において、板厚t/2部分を中心にして板厚方向に50μmピッチで、EPMA測定により分析長さ10mmの線分析を板厚中心±5mmの範囲12で行ってMnの質量%を測定する。そして、各線分析Mn濃度平均を板厚方向±0.5mmで平均したMn濃度平均値が最も高い板厚位置範囲13を特定する。その板厚位置範囲13のうち、圧延方向±0.5mm範囲でMn濃度平均値が高い範囲を求め、次のように1mm×1mmの視野領域14を特定する。
(b)
即ち、金属組織観察用試料11に現れる板厚方向断面において、Mn濃度平均値が高い領域13の板厚方向中心を縦方向中心位置とし、13のうち圧延方向±0.5mm範囲でのMn濃度平均値が高い領域の圧延方向中心を横方向の中心する1mm×1mmの正方形の視野領域14を特定する。そして、この視野領域14において縦横それぞれの方向(圧延方向と板厚方向)にそれぞれ2μmピッチでEPMA測定による面分析を行い、Si、Mn、P、Cu、Niの各質量%を測定する。
(c)
次に、図5に示すように、1mm×1mmの正方形の視野領域14において、20×20μmの正方形部分15を縦横方向(圧延方向と板厚方向)に走査していき、それぞれの位置において正方形部分15の領域内に含まれる測定点のSi、Mn、P、Cu、Niの各質量%から当該領域の各平均値を定める。そして、その平均値が最大となる正方形部分15のSi、Mn、P、Cu、Niの各質量%の平均値を、それぞれの最大値([Si]max、[Mn]max、[P]max、[Cu]max、[Ni]max)とする。例えば図6に示すように、正方形部分15-1の領域内に含まれる測定点のSiの各質量%から定められたSiの平均値が最大値となった場合、この正方形部分15-1の領域内に含まれる各測定点のSiの質量%から定められたSiの平均値が最大値[Si]maxとなる。同様に、正方形部分15-2の領域内に含まれる測定点のMnの各質量%から定められたMnの平均値が最大値であれば、正方形部分15-2の領域内に含まれる各測定点のMnの質量%から定められたMnの平均値が最大値[Mn]maxとなる。同様に、正方形部分15-3の領域内に含まれる測定点のPの各質量%から定められたPの平均値が最大値であれば、正方形部分15-3の領域内に含まれる各測定点のPの質量%から定められたPの平均値が最大値[P]maxとなる。同様に、正方形部分15-4の領域内に含まれる測定点のCuの各質量%から定められたCuの平均値が最大値であれば、正方形部分15-4の領域内に含まれる各測定点のCuの質量%から定められたCuの平均値が最大値[Cu]maxとなる。同様に、正方形部分15-5の領域内に含まれる測定点のNiの各質量%から定められたNiの平均値が最大値であれば、正方形部分15-5の領域内に含まれる各測定点のNiの質量%から定められたNiの平均値が最大値[Ni]maxとなる。
(d)
それぞれの最大値([Si]max、[Mn]max、[P]max、[Cu]max、[Ni]max)を、各成分についての鋼板の分析値([Si]、[Mn]、[P]、[Cu]、[Ni])で割った値([Si]max/[Si]、[Mn]max/[Mn]、[P]max/[P]、[Cu]max/[Cu]、[Ni]max/[Ni])を板厚中心部における各成分の偏析度とする。
(a)
First, as shown in FIG. 3, a metallographic observation sample 11 is processed at a position including the central part of the plate thickness (plate thickness t/2 part) in a cross section in the plate thickness direction parallel to the rolling direction of the steel plate 10. As shown in FIG. 4, in the cross section in the plate thickness direction that appears in the sample 11 for metallographic observation, lines with a length of 10 mm are analyzed by EPMA measurement at a pitch of 50 μm in the plate thickness direction with the plate thickness t/2 part as the center. The analysis is performed in a range 12 of ±5 mm from the center of the plate thickness to measure the mass % of Mn. Then, the plate thickness position range 13 in which the Mn concentration average value obtained by averaging each line analysis Mn concentration average in the plate thickness direction ±0.5 mm is the highest is specified. Among the plate thickness position range 13, a range in which the average Mn concentration is high in the range of ±0.5 mm in the rolling direction is determined, and a viewing area 14 of 1 mm x 1 mm is specified as follows.
(b)
That is, in the cross section in the plate thickness direction appearing in the sample 11 for metallographic observation, the center in the plate thickness direction of the region 13 where the average Mn concentration is high is the longitudinal center position, and the Mn concentration in the range of ±0.5 mm in the rolling direction of 13 A 1 mm x 1 mm square viewing area 14 whose horizontal center is the rolling direction center of the area where the average value is high is specified. In this viewing area 14, a surface analysis is performed by EPMA measurement at a pitch of 2 μm in each of the longitudinal and lateral directions (rolling direction and plate thickness direction), and each mass % of Si, Mn, P, Cu, and Ni is measured.
(c)
Next, as shown in FIG. 5, in the 1 mm x 1 mm square viewing area 14, the 20 x 20 μm square portion 15 is scanned in the vertical and horizontal directions (rolling direction and plate thickness direction), and at each position, a square portion 15 is scanned. Each average value of the region of the portion 15 is determined from each mass % of Si, Mn, P, Cu, and Ni at the measurement points included in the region of the portion 15. Then, the average value of each mass % of Si, Mn, P, Cu, and Ni in the square portion 15 where the average value is the maximum is determined by the respective maximum values ([Si]max, [Mn]max, [P]max , [Cu]max, [Ni]max). For example, as shown in FIG. 6, if the average value of Si determined from each mass % of Si at measurement points included in the area of square portion 15-1 becomes the maximum value, then The average value of Si determined from the mass % of Si at each measurement point included in the region is the maximum value [Si]max. Similarly, if the average value of Mn determined from each mass % of Mn of the measurement points included in the area of the square part 15-2 is the maximum value, each measurement included in the area of the square part 15-2 The average value of Mn determined from the mass % of Mn at a point becomes the maximum value [Mn]max. Similarly, if the average value of P determined from each mass % of P at the measurement points included in the area of the square part 15-3 is the maximum value, each measurement included in the area of the square part 15-3 The average value of P determined from the mass % of P at a point is the maximum value [P]max. Similarly, if the average value of Cu determined from each mass % of Cu at measurement points included in the area of the square part 15-4 is the maximum value, each measurement included in the area of the square part 15-4 The average value of Cu determined from the mass % of Cu at a point becomes the maximum value [Cu]max. Similarly, if the average value of Ni determined from each mass % of Ni at measurement points included in the area of the square part 15-5 is the maximum value, each measurement included in the area of the square part 15-5 The average value of Ni determined from the mass % of Ni at a point becomes the maximum value [Ni]max.
(d)
The respective maximum values ([Si] max, [Mn] max, [P] max, [Cu] max, [Ni] max) are calculated as the analytical values of the steel plate for each component ([Si], [Mn], [ P], [Cu], [Ni]) divided by ([Si]max/[Si], [Mn]max/[Mn], [P]max/[P], [Cu]max/[Cu ], [Ni]max/[Ni]) is the degree of segregation of each component at the center of the plate thickness.

[Ti含有介在物]
本実施形態に係る鋼板は、Tiによる脱酸を含む製造方法により製造される鋼板であることを前提とする。本発明者らは、HAZの組織と靭性との関係に関する詳細な調査・研究を実施した。その結果、HAZ靭性の向上は、旧オーステナイト粒内で生じるフェライト変態を促進する必要があることを見出した。粒内変態フェライト生成の促進には、粒内変態核となる介在物粒子の分散が有効であり、酸化物種としては上述の通り、Ti酸化物(TiO、Ti)が望ましい。しかし、実機製造においては、Ti脱酸であってもAlやMg、Caといった元素を含む複合酸化物が多く含まれる場合があり、それらの存在比率によっては十分に粒内変態が生じないことが判明した。
[Ti-containing inclusions]
The steel plate according to this embodiment is premised on being a steel plate manufactured by a manufacturing method including deoxidation using Ti. The present inventors conducted detailed investigation and research on the relationship between HAZ structure and toughness. As a result, it was found that in order to improve HAZ toughness, it is necessary to promote ferrite transformation that occurs within prior austenite grains. In order to promote the formation of intragranular transformed ferrite, it is effective to disperse inclusion particles that serve as intragranular transformation nuclei, and as the oxide species, Ti oxide (TiO, Ti 2 O 3 ) is preferable as described above. However, in actual equipment manufacturing, even when Ti is deoxidized, a large amount of complex oxides containing elements such as Al, Mg, and Ca may be contained, and depending on their abundance ratio, sufficient intragranular transformation may not occur. found.

本発明者らは、上記の事情に鑑み、粒内変態核となるTi含有介在物の粒子組成とミクロ組織について検討を行い、各Ti含有介在物の組成によって粒内変態の発生確率が変化することを確認した。更に、製鋼工程における製造条件を最適化することによって、鋼中に所定量のTi含有比となるTi含有介在物の粒子を所定範囲の個数密度となるように生成させ、かつ、HAZ靭性向上に寄与する条件についても検討を行った。 In view of the above circumstances, the present inventors investigated the particle composition and microstructure of Ti-containing inclusions that serve as intragranular transformation nuclei, and found that the probability of occurrence of intragranular transformation changes depending on the composition of each Ti-containing inclusion. It was confirmed. Furthermore, by optimizing the manufacturing conditions in the steelmaking process, particles of Ti-containing inclusions with a predetermined Ti content ratio are generated in the steel with a number density within a predetermined range, and HAZ toughness can be improved. We also examined the contributing conditions.

本実施形態に係る鋼材は、HAZ靭性の確保のために粒内変態フェライト生成が必須であり、そのためにTi酸化物を含むTi含有介在物の各粒子の分散状態を定義する。Ti含有介在物は、Ti酸化物の他、Al酸化物、Mg酸化物、Si酸化物、Ca酸化物、Ca硫化物および、Mn硫化物の1種又は2種以上を含む場合がある。また、Ti含有介在物中には、鋼中に極微量に含まれる不純物元素、Zr、Y、Hf、REM、Sn、Sb、Te、Se、Bi、Pbなどが混入する場合もある。図7に、Ti含有介在物(Ti、Al、Mg、Ca、Mn含有複合介在物)の粒子の模式図を示す。Ti含有介在物の粒子の周囲には、部分的に、Mn硫化物(MnS)が析出している。 In the steel material according to the present embodiment, it is essential to generate intragranular transformed ferrite in order to ensure HAZ toughness, and for this purpose, the dispersion state of each particle of Ti-containing inclusions containing Ti oxide is defined. The Ti-containing inclusions may contain one or more of Al oxide, Mg oxide, Si oxide, Ca oxide, Ca sulfide, and Mn sulfide in addition to Ti oxide. Further, impurity elements such as Zr, Y, Hf, REM, Sn, Sb, Te, Se, Bi, Pb, etc., which are contained in extremely small amounts in steel, may be mixed into the Ti-containing inclusions. FIG. 7 shows a schematic diagram of particles of Ti-containing inclusions (composite inclusions containing Ti, Al, Mg, Ca, and Mn). Mn sulfide (MnS) is partially precipitated around the Ti-containing inclusion particles.

本発明者らは、Ti含有介在物に対するAl酸化物、Mg酸化物、Ca酸化物、Ca硫化物等の質量又は質量比が、HAZ靱性の良否に大きく影響することを見いだした。Ti酸化物は、陽イオン空孔を含む特徴を有し、凝固冷却時においてTi含有介在物の粒子の周囲にMn欠乏層を形成することで、粒内変態フェライト形成の促進に寄与する。Al酸化物、Mg酸化物、Ca酸化物、Ca硫化物等はTi酸化物よりも生成温度が高いため、Ti含有介在物の粒子の形成に混在することで、Mn欠乏層の形成を阻害すると考えられる。したがって、粒内変態フェライト生成の促進は、Ti含有介在物中のTi酸化物の割合が多いほど効果が高く、その他のAl酸化物、Mg酸化物、Ca酸化物、Ca硫化物等の割合が多いほど効果が低くなる。なお、Mn酸化物、Si酸化物のようにTi酸化物よりも低温で生成する酸化物は、必ずしもMn欠乏層の形成を阻害しないと考えられる。 The present inventors have found that the mass or mass ratio of Al oxide, Mg oxide, Ca oxide, Ca sulfide, etc. to Ti-containing inclusions greatly influences the quality of HAZ toughness. Ti oxide is characterized by containing cation vacancies, and forms a Mn-depleted layer around particles of Ti-containing inclusions during solidification and cooling, thereby contributing to the promotion of intragranular transformed ferrite formation. Since the formation temperature of Al oxide, Mg oxide, Ca oxide, Ca sulfide, etc. is higher than that of Ti oxide, their presence in the formation of Ti-containing inclusion particles may inhibit the formation of the Mn-depleted layer. Conceivable. Therefore, the promotion of intragranular transformed ferrite formation is more effective as the proportion of Ti oxide in the Ti-containing inclusions increases, while the proportion of other Al oxides, Mg oxides, Ca oxides, Ca sulfides, etc. The higher the number, the lower the effect. Note that it is considered that oxides such as Mn oxide and Si oxide, which are generated at a lower temperature than Ti oxide, do not necessarily inhibit the formation of a Mn-depleted layer.

Ti含有介在物の粒子に含まれているTi、Al、Mg、Caの含有量については、走査電子顕微鏡(Scanning Electron Microscopy、SEM)による断面観察時において、EDSマッピング(エネルギー分散型X線分光器による元素マッピング)をTi含有介在の粒子全体について測定し、その平均値として求めることができる。 The contents of Ti, Al, Mg, and Ca contained in particles of Ti-containing inclusions can be determined by EDS mapping (energy dispersive X-ray spectroscopy) during cross-sectional observation using a scanning electron microscope (SEM). elemental mapping) can be measured for the entire particle containing Ti-containing particles, and determined as the average value.

粒内変態フェライトに有効なTi含有介在物の粒子のサイズ(円相当径)は、0.5~5.0μmである。Ti含有介在物の粒子のサイズが小さいと粒内変態フェライトの生成が生じにくくなるため、下限を0.5μmとした。また、粗大なTi含有介在物の粒子はそれ自体が脆性破壊の起点となり、靭性を低下させる可能性があるため、上限を5.0μmとした。なお、粒子サイズの測定には、SEMにてTi含有介在物の粒子の写真を測定後、画像解析を用いて断面積から円相当径を求める方法が好適である。 The particle size (equivalent circle diameter) of Ti-containing inclusions effective for intragranular transformed ferrite is 0.5 to 5.0 μm. If the particle size of the Ti-containing inclusions is small, it becomes difficult to generate intragranular transformed ferrite, so the lower limit was set to 0.5 μm. Further, since coarse particles of Ti-containing inclusions themselves may become a starting point of brittle fracture and reduce toughness, the upper limit was set to 5.0 μm. Note that a suitable method for measuring the particle size is to measure a photograph of the particles of the Ti-containing inclusion using a SEM, and then use image analysis to determine the equivalent circular diameter from the cross-sectional area.

Ti含有介在物は、鋼材を1350~1400℃に加熱し、3~30秒程度保持して急冷した鋼材からミクロ試料を作製して観察してもよい。これは、例えば、合金の炭窒化物などが生成していると、観察対象である0.5μm以上5.0μm以下のサイズのTi含有介在物の粒子の個数を測定し難いためである。高温に加熱して観察対象以外の析出物を固溶させ、その後急冷するか、又は、急冷途中でフェライトが生成する熱サイクルを付与すれば、炭窒化物が少ない試料を作製することができる。Ti酸化物を含むTi含有介在物は高温に加熱しても安定であり、冷却中に形態がほぼ変化しないため、このような熱サイクルを付与してもTi含有介在物の粒子個数の測定結果はほとんど変わらない。また、Ti含有介在物の粒子の観察は、ナイタール腐食などの組織を現出させた状態でも、鏡面研磨でも、どちらでも良い。 Ti-containing inclusions may be observed by preparing a micro sample from a steel material heated to 1350 to 1400° C., held for about 3 to 30 seconds, and then rapidly cooled. This is because, for example, if alloy carbonitrides or the like are generated, it is difficult to measure the number of Ti-containing inclusion particles with a size of 0.5 μm or more and 5.0 μm or less, which are the observation targets. A sample with less carbonitrides can be produced by heating to a high temperature to dissolve precipitates other than those to be observed, followed by rapid cooling, or by applying a thermal cycle in which ferrite is generated during rapid cooling. Ti-containing inclusions containing Ti oxides are stable even when heated to high temperatures, and their morphology hardly changes during cooling. Therefore, even when subjected to such thermal cycles, the measurement results of the number of particles of Ti-containing inclusions remains almost unchanged. Further, particles of Ti-containing inclusions may be observed either in a state where a structure such as nital corrosion is exposed or by mirror polishing.

Ti含有介在物の組成の判定には、まずTi含有量の少ないTi含有介在物の粒子を除外する。この判定には、酸硫化物EDS分析により、主な構成元素であるTi、Al、Mg、Ca、Mn、S、Siの質量%の値を用いて、[Ti]/([Ti]+[Al]+[Mg]+[Ca]+[Mn]+[S]+[Si])を算出する。この[Ti]/([Ti]+[Al]+[Mg]+[Ca]+[Mn]+[S]+[Si])が10%以上のTi含有介在物を対象とするTi含有介在物として、10%未満のものを除外する。なお、[Ti]、[Al]、[Mg]、[Ca]、[Mn]、[S]、[Si]は、それぞれ介在物のEDS分析から得られるTi、Al、Mg、Ca、Mn、S、Si含有量(質量%)であり、含有しない場合は0を代入する。 In determining the composition of Ti-containing inclusions, particles of Ti-containing inclusions with a low Ti content are first excluded. For this determination, [Ti]/([Ti]+[ Al]+[Mg]+[Ca]+[Mn]+[S]+[Si]). Ti-containing inclusions in which this [Ti]/([Ti]+[Al]+[Mg]+[Ca]+[Mn]+[S]+[Si]) is 10% or more Those with less than 10% are excluded. Note that [Ti], [Al], [Mg], [Ca], [Mn], [S], and [Si] are Ti, Al, Mg, Ca, Mn, and Ti obtained from EDS analysis of inclusions, respectively. This is the S and Si content (mass%), and if it is not contained, 0 is substituted.

つぎに、Ti含有介在物中に含まれるTi酸化物の割合(TCP)を式(3)に基づいて算出する。
TCP=[Ti]/([Ti]+[Al]+[Mg]+[Ca]) … 式(3)
Next, the proportion of Ti oxide (TCP) contained in the Ti-containing inclusions is calculated based on equation (3).
TCP=[Ti]/([Ti]+[Al]+[Mg]+[Ca])...Equation (3)

そして、Ti含有介在物中に含まれるTi含有割合によってTi含有介在物の各粒子の粒内変態能を判定する。酸硫化物EDSによる各粒子の分析値を元に、Ti含有介在物の粒子毎のTi含有割合(TCP)を算出することで、粒内変態が発生する確率が高いTi含有介在物の粒子かどうか判断できる。 Then, the intragranular transformation ability of each particle of the Ti-containing inclusion is determined based on the Ti content ratio contained in the Ti-containing inclusion. By calculating the Ti content percentage (TCP) of each Ti-containing inclusion particle based on the analysis value of each particle by oxysulfide EDS, it is possible to determine whether the Ti-containing inclusion particle has a high probability of undergoing intragranular transformation. I can judge.

具体的には、TCPが40%以上だと粒内変態が最も生じやすく(グループA)、TCPが40%未満かつ20%以上だとやや粒内変態能が劣り(グループB)、TCP20%未満では粒内変態がほとんど期待できない。ここで、TCPは下記の式(3)により算出できる。
TCP=[Ti]/([Ti]+[Al]+[Mg]+[Ca]) … 式(3)
前記式(3)において、[Ti]、[Al]、[Mg]、[Ca]は、それぞれTi含有介在物のEDS分析から得られるTi、Al、Mg、Ca含有量(質量%)であり、含有しない場合は0を代入する。
Specifically, when TCP is 40% or more, intragranular transformation is most likely to occur (group A), and when TCP is less than 40% and 20% or more, intragranular transformation ability is slightly inferior (group B), and TCP is less than 20%. Therefore, almost no intragranular transformation can be expected. Here, TCP can be calculated using the following equation (3).
TCP=[Ti]/([Ti]+[Al]+[Mg]+[Ca])...Equation (3)
In the above formula (3), [Ti], [Al], [Mg], and [Ca] are the Ti, Al, Mg, and Ca contents (mass%) obtained from EDS analysis of Ti-containing inclusions, respectively. , if not included, substitute 0.

なお、Ti含有介在物の粒子には、MnSやTiNなどの硫化物や窒化物が複合析出する場合がある。Ti含有介在物の組成計算にこれらの化合物を含めると酸化物組成を正しく評価することができなくなるため、上述のEDSマッピング分析結果からTi、Al、Mg、Caの含有量を算出する際には、相対的にSやNが高く、MnSやTiNなどの硫化物や窒化物が存在すると判定された領域を除外する。 Note that sulfides and nitrides such as MnS and TiN may be precipitated in a composite form in particles of Ti-containing inclusions. If these compounds are included in the composition calculation of Ti-containing inclusions, the oxide composition cannot be evaluated correctly, so when calculating the contents of Ti, Al, Mg, and Ca from the EDS mapping analysis results mentioned above, , regions where it is determined that S and N are relatively high and sulfides and nitrides such as MnS and TiN are present are excluded.

上述のTCPを用いて、組織中にどの程度粒内変態が生じるかを推定することができる。本発明者らの検討によると、グループAのTi含有介在物については粒内変態確率が約80%、グループBのTi含有介在物については粒内変態確率が約50%、それ以外のTi含有介在物については粒内変態がほとんど生じないことがわかっている。また、同じグループでも、粒内変態の発生有無が生じる。Ti含有介在物の複合形態や鋼材のミクロ偏析などによってTi含有介在物の各粒子毎に粒内変態の生じ易さが異なるためと考えられる。これらの粒内変態確率を考慮し、粒内変態に有効なTi含有介在物の粒子の個数密度(EIGFD)が20個/mm以上となるとHAZ靭性の向上効果を得ることができる。ここで、EIGFDは下記の式(4)を用いて算出できる。
EIGFD=(XA×0.8)+(XB×0.5) … 式(4)
式(4)において、XA、XBは、それぞれグループA、グループBに分類されるTi含有介在物の粒子の個数密度(個/mm)の測定値である。
Using the TCP described above, it is possible to estimate the extent to which intragranular transformation occurs in the tissue. According to the studies conducted by the present inventors, the probability of intragranular transformation for Ti-containing inclusions in Group A is approximately 80%, the probability of intragranular transformation for Ti-containing inclusions in Group B is approximately 50%, and the probability of intragranular transformation for Ti-containing inclusions in Group B is approximately 50%. It is known that intragranular transformation hardly occurs with inclusions. Furthermore, even within the same group, intragranular metamorphosis may or may not occur. This is thought to be because the ease with which intragranular transformation occurs differs for each particle of the Ti-containing inclusions depending on the composite form of the Ti-containing inclusions, the micro-segregation of the steel material, and the like. Considering these intragranular transformation probabilities, when the particle number density (EIGFD) of Ti-containing inclusions effective for intragranular transformation is 20 pieces/mm 2 or more, the effect of improving HAZ toughness can be obtained. Here, EIGFD can be calculated using the following equation (4).
EIGFD=(XA×0.8)+(XB×0.5) … Formula (4)
In Equation (4), XA and XB are measured values of the number density (particles/mm 2 ) of Ti-containing inclusion particles classified into Group A and Group B, respectively.

各分類のTi含有介在物の粒子の個数密度XA、XBの測定に関しては、基本的には観察視野が連続した1mmの領域を観察およびマップ分析し、算出することが望ましい。ただし、Ti含有介在物の粒子個数が多い場合には100個以上となるため、Ti含有介在物の全粒子を逐一マップ分析することは大変な作業となる。そのため、連続した測定視野で、少なくとも30個以上の円相当径0.5μm~5.0μmのTi含有介在物の粒子について粒子組成を測定し、その存在割合から個数密度を求めればよい。 Regarding the measurement of the particle number density XA, XB of Ti-containing inclusions of each classification, it is basically desirable to observe and map a continuous 1 mm 2 area in the observation field and calculate it. However, if the number of particles of Ti-containing inclusions is large, the number will be 100 or more, so it becomes a difficult task to perform map analysis of all the particles of Ti-containing inclusions one by one. Therefore, the particle composition of at least 30 particles of Ti-containing inclusions having an equivalent circle diameter of 0.5 μm to 5.0 μm may be measured in a continuous measurement field, and the number density may be determined from the abundance ratio thereof.

[製造方法]
次に、本実施形態に係る鋼材の製造方法について説明する。
[溶製工程]
鋼中のTi含有介在物を制御する場合、溶製工程を制御することが有効である。具体的には、Ti含有介在物中のTi酸化物の質量%を高め、Al酸化物、Mg酸化物、Ca酸化物、Ca硫化物の質量%を低くする必要がある。通常、溶鋼はAl系脱酸材で脱酸するが、本実施形態の製造方法では、Al酸化物の質量%を低くする必要があるので、Al系脱酸材は用いないことが好ましい。
[Production method]
Next, a method for manufacturing steel materials according to this embodiment will be explained.
[Smelting process]
When controlling Ti-containing inclusions in steel, it is effective to control the melting process. Specifically, it is necessary to increase the mass % of Ti oxide in the Ti-containing inclusions and lower the mass % of Al oxide, Mg oxide, Ca oxide, and Ca sulfide. Usually, molten steel is deoxidized with an Al-based deoxidizing material, but in the manufacturing method of this embodiment, it is necessary to reduce the mass % of Al oxide, so it is preferable not to use an Al-based deoxidizing material.

また、二次精錬設備であるRHを用いた精錬工程では、必要な溶鋼温度を確保するために、溶鋼への金属Alの投入、及び、酸素の吹付けによる昇熱反応によって溶鋼の温度を高めることがあるが、本実施形態の製造方法においては、Al酸化物の質量%を低くする必要があるので、上記精錬工程では、上記昇熱反応は行わない。 In addition, in the refining process using RH, which is a secondary refining facility, in order to ensure the necessary molten steel temperature, the temperature of the molten steel is raised by adding metal Al to the molten steel and by a heating reaction caused by oxygen spraying. However, in the manufacturing method of this embodiment, it is necessary to reduce the mass % of Al oxide, so the heating reaction is not performed in the refining step.

したがって、本実施形態の製造方法では、昇熱処理を必要としない溶鋼温度を予め確保しておく必要がある。必要な溶鋼温度は、鋼種、精錬設備及び工程、鋳造条件等により異なるが、本実施形態の製造方法では、溶鋼温度を、昇熱処理を必要としない一般的な温度の1590℃以上に維持することが好ましい。 Therefore, in the manufacturing method of this embodiment, it is necessary to secure in advance a molten steel temperature that does not require heat raising treatment. The required molten steel temperature varies depending on the steel type, refining equipment and process, casting conditions, etc., but in the manufacturing method of this embodiment, the molten steel temperature is maintained at 1590 ° C. or higher, which is a general temperature that does not require heat raising treatment. is preferred.

さらに、溶製工程では、不純物としてのAl、MgやCaの混入を防ぐことで、Ti含有介在物中のAl酸化物、Mg酸化物、Ca酸化物、Ca硫化物の生成を抑制することができる。通常、操業に用いられる炉材、フラックス、スラグにはAl、Mg、Caが含まれているため、ある程度の混入は不可避であるが、溶鋼成分の調整に用いる添加原料に不純物元素として混在しているAl、MgおよびCaを極力抑えることが必要である。添加原料の不純物Al、MgおよびCaの濃度は、狙いの添加量にもよるため明確な規定はできないが、RHでの成分調整後の溶鋼サンプルで、Al:0.0040%以下、Mg:0.0010%以下、Ca:0.0010%以下となるように上限を調整すればよい。より好ましくは、Al:0.0035%以下、Mg:0.0005%以下、Ca:0.0005%以下となるように上限を調整すればよい。 Furthermore, in the melting process, by preventing the contamination of Al, Mg, and Ca as impurities, it is possible to suppress the formation of Al oxides, Mg oxides, Ca oxides, and Ca sulfides in Ti-containing inclusions. can. Normally, the furnace materials, flux, and slag used in operations contain Al, Mg, and Ca, so some degree of contamination is unavoidable. It is necessary to suppress the amounts of Al, Mg, and Ca present in the steel as much as possible. The concentration of the impurities Al, Mg, and Ca in the additive raw materials cannot be clearly defined because it depends on the target addition amount, but in the molten steel sample after composition adjustment at RH, Al: 0.0040% or less, Mg: 0 The upper limit may be adjusted so that Ca: 0.0010% or less and Ca: 0.0010% or less. More preferably, the upper limits may be adjusted so that Al: 0.0035% or less, Mg: 0.0005% or less, and Ca: 0.0005% or less.

RHでの成分調整後、溶鋼の還流によっても、溶鋼中に存在するAl酸化物、Mg酸化物、Ca酸化物を除去することができる。上述のRHでの成分調整後に、3分以上還流時間を確保することで、Ti含有介在物中のAl酸化物、Mg酸化物、Ca酸化物、Ca硫化物の割合を低くすることができる。上述の通り、RHでの成分調整し還流処理を加えた溶鋼サンプルで、Al:0.0040%以下、Mg:0.0010%以下、Ca:0.0010%以下とすればよい。より好ましくは、Al:0.0035%以下、Mg:0.0005%以下、Ca:0.0005%以下とすればよい。 After adjusting the components at RH, the Al oxide, Mg oxide, and Ca oxide present in the molten steel can also be removed by refluxing the molten steel. By ensuring a reflux time of 3 minutes or more after the above-mentioned component adjustment at RH, the proportions of Al oxide, Mg oxide, Ca oxide, and Ca sulfide in the Ti-containing inclusions can be lowered. As mentioned above, in a molten steel sample that has been subjected to composition adjustment at RH and reflux treatment, Al: 0.0040% or less, Mg: 0.0010% or less, and Ca: 0.0010% or less. More preferably, Al: 0.0035% or less, Mg: 0.0005% or less, and Ca: 0.0005% or less.

鋳造後の均質化熱処理、加熱、圧延、熱処理条件は、鋼材の目標とする機械的性質に応じて、例えば、制御圧延・制御冷却、圧延後直接焼入れ・焼き戻し、圧延後一旦冷却後焼入れ・焼戻し、など適宜選定すればよい。以下に製造プロセスの代表例を示す。 Homogenization heat treatment, heating, rolling, and heat treatment conditions after casting depend on the target mechanical properties of the steel material, such as controlled rolling/controlled cooling, quenching/tempering directly after rolling, quenching/tempering after cooling once after rolling, etc. Tempering, etc. may be selected as appropriate. A representative example of the manufacturing process is shown below.

[均質化処理]
本発明においてはSR後の靭性確保が極めて重要であり、必要に応じて適用される板厚中心の元素濃化(偏析)を解消するための均質化処理は、連続鋳造法で製造した本発明既定の成分を有する鋼片を1200℃以上の温度で10時間以上を行う必要がある。1200℃以上で10時間以上の均質化処理を行わないと、板厚中心に濃化したMnやPなどの合金元素が十分に拡散せず、板厚中心の偏析度が十分に低減できない。温度が高い程合金元素は拡散するので、1250℃以上での均質化処理が望ましい。但し、酸化による歩留まりの低下、必要以上の長時間処理による生産性の低下を回避するために、1350℃以下、70時間以下が好ましい。
[Homogenization processing]
In the present invention, securing toughness after SR is extremely important, and the homogenization treatment to eliminate element concentration (segregation) at the center of the plate thickness, which is applied as necessary, is necessary for the present invention manufactured by the continuous casting method. It is necessary to heat a steel piece having a predetermined composition at a temperature of 1200° C. or higher for 10 hours or more. If the homogenization treatment is not performed at 1200° C. or higher for 10 hours or more, the alloy elements such as Mn and P concentrated at the center of the plate thickness will not be sufficiently diffused, and the degree of segregation at the center of the plate thickness will not be sufficiently reduced. The higher the temperature, the more the alloying elements will diffuse, so homogenization treatment at 1250° C. or higher is desirable. However, in order to avoid a decrease in yield due to oxidation and a decrease in productivity due to unnecessarily long treatment, the temperature is preferably 1350° C. or less and 70 hours or less.

上記均質化処理を行い冷却した鋼片を、950℃~1100℃で再加熱し、1パスあたり圧下率の平均で7.5%以上となるように粗圧延を行い、厚み135~210mmとした後に、670℃~800℃から1パスあたり圧下率の平均で6.0%以上となるように仕上げ圧延を行った後、板厚t/2部分が10℃/s以下となる冷却速度で冷却する。 The steel slab that had been subjected to the above homogenization treatment and cooled was reheated at 950°C to 1100°C and roughly rolled to an average rolling reduction of 7.5% or more per pass to a thickness of 135 to 210 mm. Afterwards, finish rolling is performed from 670°C to 800°C to an average reduction rate of 6.0% or more per pass, followed by cooling at a cooling rate that makes the plate thickness t/2 part 10°C/s or less. do.

[鋼片加熱温度:950℃以上1100℃以下]
熱間圧延するに際し、鋼片加熱温度が950℃未満であると、凝固中に生成した靱性に悪影響を及ぼす粗大介在物がマトリックス中に固溶せず残存する場合がある。また圧延負荷が高くなることで、圧延機の能力によっては圧下が不十分となり、センターポロシティが残存してしまい内質欠陥が発生する場合や、Cの元素の拡散が不十分となり板厚中心の硬度が上昇するなど、板厚中心の靭性を低下させることがある。したがって、鋼片加熱温度は950℃以上とする。好ましくは980℃以上である。一方、鋼片加熱温度が1100℃を超えると、Ti窒化物が粗大化し溶接熱影響部の靭性改善効果が期待できなくなる。また、初期オーステナイト粒が粗大になり鋼の焼き入れ性が高まることで板厚中心の硬度が上昇し、板厚中心の靭性を悪化させる。結晶粒の粗大化抑制を考慮すると、1070℃以下がより好ましい。
[Steel billet heating temperature: 950°C or higher and 1100°C or lower]
When hot rolling, if the steel billet heating temperature is less than 950° C., coarse inclusions that are generated during solidification and have an adverse effect on toughness may remain without solid solution in the matrix. In addition, as the rolling load increases, depending on the capacity of the rolling mill, rolling may become insufficient and center porosity may remain, resulting in internal defects, or the diffusion of the C element may be insufficient, resulting in defects at the center of the plate thickness. This may reduce toughness at the center of the plate thickness, such as by increasing hardness. Therefore, the steel billet heating temperature is set to 950°C or higher. Preferably it is 980°C or higher. On the other hand, if the heating temperature of the steel billet exceeds 1100° C., Ti nitrides become coarse and the effect of improving the toughness of the weld heat affected zone cannot be expected. In addition, the initial austenite grains become coarse and the hardenability of the steel increases, which increases the hardness at the center of the plate thickness and deteriorates the toughness at the center of the plate thickness. Considering suppression of coarsening of crystal grains, the temperature is more preferably 1070°C or less.

[粗圧延:1パスあたり圧下率(平均で7.5%以上)、厚み135~210mm]
加熱直後の粗圧延は、通常、900℃~1200℃程度で行う圧延であり、スラブ内質欠陥であるセンターポロシティを圧潰するとともに、圧延加工によって加熱γが再結晶し微細化する工程である。1パス当たりの圧下率が平均で7.5%未満だと、t/2部分での圧下が不十分となり、センターポロシティの残存やγ再結晶が不十分となることで、靭性が確保できなくなる。また同様に、上記粗圧延の効果を十分得るためには、粗圧延終了厚みの上限は210mmとする。一方、粗圧延終了厚みが135mm未満であると、後工程の仕上げ圧延での圧下量が確保できなくなることから下限を135mmとした。なお、粗圧延の1パスあたり圧下率の上限は、設備能力等の観点から、例えば20%程度である。
[Rough rolling: rolling reduction per pass (7.5% or more on average), thickness 135 to 210 mm]
Rough rolling immediately after heating is usually performed at about 900° C. to 1200° C., and is a step in which center porosity, which is an internal defect in the slab, is crushed, and heated γ is recrystallized and refined by rolling. If the reduction rate per pass is less than 7.5% on average, the reduction in the t/2 portion will be insufficient, and the center porosity will remain and γ recrystallization will be insufficient, making it impossible to ensure toughness. . Similarly, in order to fully obtain the effect of the rough rolling, the upper limit of the rough rolling end thickness is set to 210 mm. On the other hand, if the thickness at the end of rough rolling is less than 135 mm, the amount of reduction in finish rolling in the subsequent process cannot be ensured, so the lower limit was set to 135 mm. Note that the upper limit of the rolling reduction per pass of rough rolling is, for example, about 20% from the viewpoint of equipment capacity and the like.

[仕上げ圧延温度範囲:670℃~800℃、1パスあたり圧下率(平均で6.0%以上)]
粗圧延後の仕上げ圧延は、未再結晶温度域まで冷却させたのちに圧延することで、加工ひずみをγ粒内に導入し、のちのフェライト変態組織が微細化し、靭性を確保するために必要な工程である。また、最終板厚である60~100mmに仕上げる工程でもある。最終仕上圧延を670℃よりも低い温度で圧延すると、加工されたフェライトが多く生成し、母材の靭性が劣化する。更にフェライト分率が高くなり、強度が満足できない場合がある。一方、800℃よりも高い温度で圧延すると、最終組織の微細化効果が十分でなく、母材の靭性が劣化する。また、鋼の焼き入れ性が高まることで中心偏析部の硬度が上昇し、板厚中心部の靭性を悪化させる場合がある。更に、仕上げ圧延の1パスあたり圧下率が平均で6.0%未満だと、t/2部分まで効果的に加工ひずみを導入することができず、金属組織の微細化効果が十分でないため、1パスあたり圧下率の平均の下限値を6.0%以上とする。仕上げ圧延の1パスあたり圧下率の上限は、設備能力等の観点から、例えば15%程度である。
[Final rolling temperature range: 670°C to 800°C, reduction rate per pass (6.0% or more on average)]
Finish rolling after rough rolling is necessary to cool the steel to the non-recrystallization temperature range and then roll it to introduce processing strain into the γ grains, which will later refine the ferrite transformation structure and ensure toughness. It is a process. This is also the process of finishing the plate to a final thickness of 60 to 100 mm. If the final finish rolling is performed at a temperature lower than 670° C., a large amount of processed ferrite is produced, and the toughness of the base material deteriorates. Furthermore, the ferrite fraction increases, and the strength may not be satisfactory. On the other hand, when rolling at a temperature higher than 800° C., the effect of refining the final structure is not sufficient and the toughness of the base material deteriorates. Furthermore, as the hardenability of the steel increases, the hardness of the center segregation area increases, which may deteriorate the toughness of the central part of the sheet thickness. Furthermore, if the reduction rate per pass of finish rolling is less than 6.0% on average, processing strain cannot be effectively introduced up to the t/2 portion, and the effect of refining the metal structure is not sufficient. The lower limit of the average rolling reduction rate per pass shall be 6.0% or more. The upper limit of the reduction rate per pass of finish rolling is, for example, about 15% from the viewpoint of equipment capacity and the like.

[圧延後の冷却速度:10℃/s以下]
圧延後の冷却は、板厚t/2部分の冷却速度が10℃/sを超えると冷却時の温度制御が困難になるため、10℃/s以下で行うこととする。また、冷却速度が早いと板厚中心の硬度が上昇し、板厚中心の靭性を悪化させる場合がある。但し、母材強度の確保を容易にするために、冷却速度は1℃/s以上が好ましい。
[Cooling rate after rolling: 10°C/s or less]
Cooling after rolling is performed at a rate of 10° C./s or less, since if the cooling rate at the plate thickness t/2 portion exceeds 10° C./s, it will be difficult to control the temperature during cooling. Furthermore, if the cooling rate is fast, the hardness at the center of the plate thickness increases, which may deteriorate the toughness at the center of the plate thickness. However, in order to easily ensure the strength of the base material, the cooling rate is preferably 1° C./s or more.

本発明製造方法においては、鋼板の特性向上のため、冷却した鋼板を、300℃以上670℃以下の温度域に加熱し、熱処理(SR処理)を施してもよい。 In the manufacturing method of the present invention, the cooled steel plate may be heated to a temperature range of 300° C. or higher and 670° C. or lower and subjected to heat treatment (SR treatment) in order to improve the characteristics of the steel sheet.

[焼戻し温度域:300℃以上670℃以下]
上記冷却後、鋼板の母材強度靭性バランスを改善させる目的で、熱処理(SR処理)してもよい。熱処理により強度バランスを改善させるには、300℃~670℃で熱処理する必要が有る。300℃よりも低いと十分な焼もどし効果が得られない。また670℃よりも高い温度で熱処理すると、炭窒化物の粗大化が起こり、強度や靭性が低下する。
[Tempering temperature range: 300°C or higher and 670°C or lower]
After the above-mentioned cooling, heat treatment (SR treatment) may be performed for the purpose of improving the strength-toughness balance of the base material of the steel plate. In order to improve the strength balance by heat treatment, it is necessary to heat treat at 300°C to 670°C. If the temperature is lower than 300°C, a sufficient tempering effect cannot be obtained. In addition, heat treatment at a temperature higher than 670° C. causes carbonitrides to coarsen, resulting in a decrease in strength and toughness.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the example are examples of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this example of conditions. It is not limited. The present invention can adopt various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
[供試鋼]
転炉-連続鋳造-厚板圧延工程で種々の成分の鋼板を製造し、その材質を調査した。表1-1、表1-2に示す53種の成分組成の1590℃以上の溶鋼を連続鋳造し、厚さ240mmあるいは300mm厚の連鋳片とした。
(Example 1)
[Test steel]
Steel plates of various compositions were manufactured using a converter-continuous casting-plate rolling process, and their material properties were investigated. Molten steel having a temperature of 1590°C or higher and having 53 types of chemical compositions shown in Tables 1-1 and 1-2 was continuously cast to obtain continuous cast pieces with a thickness of 240 mm or 300 mm.

[溶製工程]
各スラブのRH後で採取した成分分析サンプルのAl、Mg、Ca含有量を表2-1、表2-2に示す。
[Smelting process]
The Al, Mg, and Ca contents of component analysis samples taken after RH of each slab are shown in Tables 2-1 and 2-2.

[熱間圧延]
連鋳片を表2-1、表2-2に示す均質化熱処理、加熱、圧延、冷却、熱処理条件で熱間圧延を製造した。板厚は、60~100mmとした。一部の鋼板には、水冷後に熱処理(SR処理)を施した。このように作製したラボ圧延鋼板を供試鋼として用いた。各鋼板の圧延実績を表2に示す。材質はSR(Stress Relief)処理の前後で調査した。SR条件(熱処理温度)についても、表2-1、表2-2に併せて示す。
[Hot rolling]
Hot-rolled continuous cast pieces were manufactured under the homogenization heat treatment, heating, rolling, cooling, and heat treatment conditions shown in Tables 2-1 and 2-2. The plate thickness was 60 to 100 mm. Some of the steel plates were subjected to heat treatment (SR treatment) after water cooling. The laboratory-rolled steel sheet produced in this manner was used as a test steel. Table 2 shows the rolling results for each steel plate. The material was investigated before and after SR (Stress Relief) treatment. The SR conditions (heat treatment temperature) are also shown in Tables 2-1 and 2-2.

[鋼板強度の評価]
鋼板(母材)の引張強度を調べるために、板厚1/4部分において、圧延方向と直交する方向で採取した引張試験片を用い、室温で引張試験を実施した。引張試験片形状は、JIS4号の引張試験片である。鋼板(母材)強度(降伏応力、引張応力)を表3に示す。SR処理後の鋼板材強度についても、表3に併せて示す。
[Evaluation of steel plate strength]
In order to examine the tensile strength of the steel plate (base material), a tensile test was conducted at room temperature using a tensile test piece taken in a direction perpendicular to the rolling direction at a 1/4 plate thickness portion. The tensile test piece shape is a JIS No. 4 tensile test piece. Table 3 shows the strength (yield stress, tensile stress) of the steel plate (base material). Table 3 also shows the strength of the steel sheet material after the SR treatment.

母材の靭性は、鋼板の板厚t/2部分より、圧延方向と垂直方向に、10mm×10mmのフルサイズVノッチシャルピー試験片を採取し、-40℃で3本試験した。-40℃での吸収エネルギーの平均値で評価し、100J以上を良好な母材靭性とした。SR処理の後、SR処理前と同様に鋼板の板厚t/2部分より、圧延方向と垂直方向に、10mm×10mmのフルサイズVノッチシャルピー試験片を採取し、-40℃で3本試験した。-40℃での吸収エネルギーの平均値が100J以上かつ、SR処理によるvTrsの低下量ΔvTrsが15℃以内の鋼板をSR処理後の母材靭性に優れる鋼板とした。 The toughness of the base material was tested by taking three 10 mm x 10 mm full size V-notch Charpy test pieces at -40°C in the direction perpendicular to the rolling direction from the t/2 thickness section of the steel plate. It was evaluated based on the average value of absorbed energy at -40°C, and 100J or more was considered to be good base material toughness. After the SR treatment, 10 mm x 10 mm full-size V-notch Charpy specimens were taken from the t/2 thickness section of the steel plate in the direction perpendicular to the rolling direction in the same manner as before the SR treatment, and three test pieces were conducted at -40°C. did. A steel plate with an average value of absorbed energy at -40°C of 100 J or more and a reduction amount ΔvTrs of vTrs due to SR treatment of 15°C or less was defined as a steel plate with excellent base material toughness after SR treatment.

継手靭性はBS7448規格の規定に従い、CTOD試験を実施した。溶接は、入熱3.5kJ/mm多層盛りのサブマージアーク溶接を実施した。レ型開先のストレート側をCTOD試験のノッチ導入位置とし、-10℃にて3点曲げ試験を行った。-10℃でのCTOD値が0.50以上の鋼板を継手靭性が良好な鋼板とした。SR処理の後、SR処理前と同様にレ型開先のストレート側をCTOD試験のノッチ導入位置とし、-10℃にて3点曲げ試験を行った。SR後においても、-10℃でのCTOD値が0.50以上の鋼板をSR後継手靭性が良好な鋼板とした。 Joint toughness was determined by a CTOD test in accordance with the BS7448 standard. Welding was performed by multilayer submerged arc welding with a heat input of 3.5 kJ/mm. A three-point bending test was conducted at -10°C using the straight side of the rectangular groove as the notch introduction position for the CTOD test. A steel plate with a CTOD value of 0.50 or more at -10°C was defined as a steel plate with good joint toughness. After the SR treatment, a three-point bending test was conducted at -10°C with the straight side of the rectangular groove as the notch introduction position for the CTOD test, as before the SR treatment. Even after SR, a steel plate with a CTOD value of 0.50 or more at -10°C was defined as a steel plate with good toughness after SR.

[鋼板組織等の評価]
フェライト分率は鋼板の板厚t/4部分の、圧延方向と平行な板厚方向断面から金属組織観察用試料を加工し、500倍の光学顕微鏡観察視野から測定した。光学顕微鏡観察において、フェライトは、白色のコントラストで観察される塊状組織であり、粒内には黒い点状コントラストで観察されるセメンタイトや、黒い線状のコントラストで観察されるラス組織や加工組織などをあまり含まず、基本的に一様なコントラストを示す。ただし、フェライトでも、粒内に数個程度であれば点状や線状の黒いコントラストが存在していても良い。また、フェライト粒界は明瞭な黒いコントラストで滑らかな曲線を示し、旧オーステナイト粒界が不明瞭となる。ただし、結晶粒間の方位差によっては、フェライト粒界が不明瞭な場合もある。なお、フェライト以外の残部は、ベイナイト、マルテンサイトの1種類以上からなる複相組織である。組織分率の算出は基本的に目視で行い、顕微鏡写真上でフェライト部分をマーキングして二値化する方法が適用できる。
[Evaluation of steel sheet structure, etc.]
The ferrite fraction was measured from a 500x optical microscope observation field by processing a sample for metallographic observation from a cross section in the plate thickness direction parallel to the rolling direction of the t/4 plate thickness portion of the steel plate. When observed under an optical microscope, ferrite is a blocky structure observed with white contrast, and inside the grain there are cementite observed with black dot contrast, lath structure and processed structure observed with black linear contrast, etc. It does not contain much, and basically shows a uniform contrast. However, even in the case of ferrite, dotted or linear black contrast may exist within the grains as long as there are only a few. Furthermore, the ferrite grain boundaries exhibit a smooth curve with clear black contrast, and the prior austenite grain boundaries become unclear. However, depending on the orientation difference between crystal grains, the ferrite grain boundaries may be unclear. Note that the remainder other than ferrite is a multi-phase structure consisting of one or more types of bainite and martensite. Calculation of the tissue fraction is basically done visually, and a method of marking ferrite parts on a micrograph and binarizing it can be applied.

粒径は鋼板の板厚t/2部分を中心とする、圧延方向と平行な板厚方向断面から金属組織観察用試料を加工し、500μm×500μm視野を1μmピッチでEBSD(Electro Back Scatering Difraction)測定し、結晶方位差15°以上の境界で規定される面積の最大から上位10個の円相当径の平均より求めた。 The grain size was determined by processing a sample for metallographic observation from a cross section in the thickness direction parallel to the rolling direction, centered on the thickness t/2 portion of the steel plate, and using EBSD (Electro Back Scattering Diffraction) with a 500 μm x 500 μm field of view at 1 μm pitch. It was determined by averaging the equivalent circle diameters of the top 10 largest areas defined by boundaries with a crystal orientation difference of 15° or more.

板厚中心部の硬さは、板厚t/2部分を中心とする、圧延方向と平行な板厚方向断面から金属組織観察用試料を加工し、t/2部で500倍の光学顕微鏡観察を無作為に5視野撮影し、各2か所の硬度を荷重25gのビッカース試験で測定した。10点測定点の最大硬度を板厚中心部の最大硬度HVmaxとした。 The hardness at the center of the plate thickness was determined by processing a sample for metallographic observation from a cross section in the plate thickness direction parallel to the rolling direction, centered at the plate thickness t/2 part, and observing it with an optical microscope at 500x magnification at the t/2 part. Five fields of view were randomly photographed, and the hardness of each two locations was measured using a Vickers test with a load of 25 g. The maximum hardness at 10 measurement points was defined as the maximum hardness HVmax at the center of the plate thickness.

偏析度はEPMA(Electron Probe Micro Analysis)測定により、上述の手順に従って求め、板厚中心部の偏析度が[Si]max/[Si]≦1.9、[Mn]max/[Mn]≦2.0、[P]max/[P]≦4.0、[Cu]max/[Cu]≦2.1、[Ni]max/[Ni]≦1.8をそれぞれ満たすかどうかを判定し、満足する場合は表中に〇を、満足しない場合は表3-1、表3-2中に×を記載した。 The degree of segregation was determined by EPMA (Electron Probe Micro Analysis) measurement according to the above-mentioned procedure, and the degree of segregation at the center of the plate thickness was [Si]max/[Si]≦1.9, [Mn]max/[Mn]≦2. .0, [P]max/[P]≦4.0, [Cu]max/[Cu]≦2.1, and [Ni]max/[Ni]≦1.8, respectively. If satisfied, mark ○ in the table; if not, mark × in Tables 3-1 and 3-2.

[Ti含有介在物の組成、サイズ、個数分析]
試鋼の板厚1/4の位置より、熱サイクル試験片(12mm×12mm×120mm)を採取し、溶接を模擬した再現熱サイクル試験(1400℃で3秒保持後、20℃/秒で200℃まで冷却。200℃で3秒保持後、20℃/秒で720℃まで昇温。720℃で3秒保持後、12℃/秒で200℃まで冷却。200℃で3秒保持後、20℃/秒で500℃まで昇温。500℃で3秒保持後、12℃/秒で20℃まで冷却)を行い、介在物調査用のサンプルとした。再現熱サイクル試験片の均熱帯において、SEM-EDSで、観察視野1.0mm×1.0mmの範囲内で、粒子解析が可能な0.5μm以上のTi含有介在物について元素分析を行った。観察視野中のTi含有介在物を上述の組成分類で分けて、EIGFDを算出したものを表4に示す。
[Composition, size, and number analysis of Ti-containing inclusions]
A heat cycle test piece (12 mm x 12 mm x 120 mm) was taken from the position of 1/4 of the plate thickness of the sample steel, and a reproduced heat cycle test simulating welding (after holding at 1400 °C for 3 seconds, 200 °C at 20 °C/sec) was taken. Cool to ℃. After holding at 200℃ for 3 seconds, heat up to 720℃ at 20℃/second. After holding at 720℃ for 3 seconds, cool to 200℃ at 12℃/second. After holding at 200℃ for 3 seconds, heat up to 720℃. The temperature was raised to 500° C. at a rate of 500° C./sec. After being held at 500° C. for 3 seconds, the sample was cooled to 20° C. at a rate of 12° C./sec) to prepare a sample for inclusion investigation. In the soaking zone of the simulated thermal cycle test piece, elemental analysis was performed using SEM-EDS on Ti-containing inclusions of 0.5 μm or more, which can be analyzed as particles, within an observation field of 1.0 mm x 1.0 mm. Table 4 shows the EIGFD calculated by dividing the Ti-containing inclusions in the observation field according to the above-mentioned composition classification.

表1-1、表1-2に開発鋼と比較鋼の鋼成分を、表2-1、表2-2に鋼板の製造条件を、表3-1、表3-2に鋼板の機械的特性を、表4に鋼板のTi含有介在物の分析結果を示す。本発明鋼板は、全ての鋼板が降伏強度500MPa以上、引張強度570MPa以上の母材強度を有し、vE-40が100J以上、SR前後でのvTRsの変化ΔvTrsが15℃以内、-10℃のCTOD試験値が0.50以上となっている。 Tables 1-1 and 1-2 show the steel components of the developed steel and comparison steel, Tables 2-1 and 2-2 show the manufacturing conditions of the steel plates, and Tables 3-1 and 3-2 show the mechanical properties of the steel plates. Table 4 shows the analysis results of Ti-containing inclusions in the steel sheet. All of the steel plates of the present invention have a base material strength of yield strength of 500 MPa or more and tensile strength of 570 MPa or more, vE-40 of 100 J or more, change in vTRs before and after SR ΔvTrs is within 15°C, and -10°C CTOD test value is 0.50 or more.

Figure 2023148712000002
Figure 2023148712000002

Figure 2023148712000003
Figure 2023148712000003

Figure 2023148712000004
Figure 2023148712000004

Figure 2023148712000005
Figure 2023148712000005

Figure 2023148712000006
Figure 2023148712000006

Figure 2023148712000007
Figure 2023148712000007

Figure 2023148712000008
Figure 2023148712000008

一方、スラブNo.21~53のスラブを用いた比較例の33個の鋼板は、成分組成、及び、製造方法の一方又は両方が本発明の範囲外となり、SR前あるいはSR後の母材強度、母材靭性、継手CTODのうち1つ又は2つ以上の特性が未達である。 On the other hand, slab No. For the 33 steel plates of comparative examples using slabs 21 to 53, one or both of the chemical composition and the manufacturing method were outside the scope of the present invention, and the base material strength, base material toughness, before or after SR, One or more characteristics of the joint CTOD have not been achieved.

スラブNo.21~38のスラブは、成分範囲が本発明の範囲外である。 Slab No. Slabs 21 to 38 have a component range outside the scope of the present invention.

スラブNo.21のスラブは、C含有量が多いため、焼入れ組織の硬さが高くなることで、板厚中心部の最大硬度HVmaxが高く、母材および継手の靭性が劣位である。
スラブNo.22のスラブは、Si含有量が多いため、MA生成量が増加するとともに、粒界炭化物が微細化することで、母材および継手の靭性が劣位である。
スラブNo.23のスラブは、Mn含有量が多いため、中心偏析部のMn濃度が高くなり、板厚中心部の最大硬度HVmaxが高く、継手の靭性が劣位である。
スラブNo.24のスラブは、Mn含有量が少ないため、焼入れ性が低下することで、靭性劣位な上部ベイナイト組織が形成され、継手の靭性が劣位である。
Slab No. Slab No. 21 has a high C content, so the hardness of the quenched structure is high, so the maximum hardness HVmax at the center of the plate thickness is high, and the toughness of the base metal and joint is inferior.
Slab No. Slab No. 22 has a high Si content, so the amount of MA generated increases and grain boundary carbides become finer, resulting in inferior toughness of the base material and joint.
Slab No. Slab No. 23 has a high Mn content, so the Mn concentration in the center segregation area is high, the maximum hardness HVmax at the center of the plate thickness is high, and the toughness of the joint is inferior.
Slab No. Slab No. 24 has a low Mn content, so the hardenability decreases, and an upper bainite structure with poor toughness is formed, resulting in poor joint toughness.

スラブNo.25のスラブは、Ti含有量が少ないため、粒内変態フェライトの生成核となるTiの割合が低く、所要のEIGFDを満たしていない。
スラブNo.26のスラブは、Ti含有量が多いため、脆性き裂の発生原因となる粗大な介在物が形成している可能性があり、HAZ靭性が劣位である。
Slab No. Slab No. 25 has a low Ti content, so the proportion of Ti 2 O 3 that becomes the generation nucleus of intragranular transformed ferrite is low, and the required EIGFD is not satisfied.
Slab No. Slab No. 26 has a high Ti content, so there is a possibility that coarse inclusions that cause brittle cracks are formed, and the HAZ toughness is inferior.

スラブNo.27のスラブは、CuおよびNi含有量が多いため、中心偏析部のNi、Cu濃度が高くなり、板厚中心部の最大硬度HVmaxが高く、SR後の継手の靭性が低い。
スラブNo.28のスラブは、Nb含有量が多いため、中心偏析部のNb濃度が高くなり、板厚中心部の最大硬度HVmaxが高く、継手の靭性が劣位である。
スラブNo.29のスラブは、O含有量が多いため、鋼中の酸化物系介在物が粗大化し、継手の靭性が劣位である。
Slab No. Slab No. 27 has a high content of Cu and Ni, so the concentration of Ni and Cu in the center segregation area is high, the maximum hardness HVmax at the center of the plate thickness is high, and the toughness of the joint after SR is low.
Slab No. Slab No. 28 has a high Nb content, so the Nb concentration in the center segregation area is high, the maximum hardness HVmax at the center of the plate thickness is high, and the joint toughness is inferior.
Slab No. In slab No. 29, since the O content is high, the oxide inclusions in the steel become coarse and the toughness of the joint is inferior.

スラブNo.30のスラブは、P含有量が多いため、旧γ粒界およびフェライト粒界の偏析Pが増加し粒界脆化が生じ易くなるため、継手の靭性が劣位である。
スラブNo.31のスラブは、S含有量が多いため、鋼中の硫化物系介在物が粗大化し、継手の靭性が劣位である。
スラブNo.32~34のスラブは、Al、Mg、Ca含有量が多いため、粒内変態フェライトの生成核となるTiの割合が低く、所要のEIGFDを満たしていない。
スラブNo.35のスラブは、B含有量が多いため、焼入れ性が過剰で硬質組織が多く形成され、板厚中心部の最大硬度HVmaxが高く、継手の靭性が劣位である。
Slab No. Slab No. 30 has a high P content, which increases the segregation of P at prior γ grain boundaries and ferrite grain boundaries, making grain boundary embrittlement more likely to occur, resulting in inferior joint toughness.
Slab No. In slab No. 31, since the S content is high, the sulfide inclusions in the steel become coarse and the toughness of the joint is inferior.
Slab No. Slabs Nos. 32 to 34 have high contents of Al, Mg, and Ca, and therefore have a low proportion of Ti 2 O 3 , which forms the nucleus for intragranular transformed ferrite, and do not satisfy the required EIGFD.
Slab No. Slab No. 35 has a high B content, so the hardenability is excessive and many hard structures are formed, the maximum hardness HVmax at the center of the plate thickness is high, and the toughness of the joint is inferior.

スラブNo.36のスラブは、Mo含有量が多いため、焼入れ性が過剰で硬質組織が多く形成され、板厚中心部の最大硬度HVmaxが高く、SR後の継手の靭性が低い。
スラブNo.37のスラブは、Cr含有量が多いため、焼入れ性が過剰で硬質組織が多く形成され、継手の靭性が劣位である。
スラブNo.38のスラブは、V含有量が多いため、焼入れ性が過剰で硬質組織が多く形成され、継手の靭性が劣位である。
Slab No. Slab No. 36 has a high Mo content, so its hardenability is excessive and a large number of hard structures are formed, the maximum hardness HVmax at the center of the plate thickness is high, and the toughness of the joint after SR is low.
Slab No. Slab No. 37 has a high Cr content, so its hardenability is excessive, a large amount of hard structure is formed, and the toughness of the joint is inferior.
Slab No. Slab No. 38 has a high V content, so its hardenability is excessive and a large amount of hard structure is formed, resulting in inferior joint toughness.

スラブNo.39のスラブは、溶製工程でAl昇熱を行っており、粒内変態フェライトの生成核となるTiの割合が低く、所要のEIGFDを満たしていない。 Slab No. In slab No. 39, Al heating was performed in the melting process, and the proportion of Ti 2 O 3 that becomes the generation nucleus of intragranular transformed ferrite was low, and the required EIGFD was not satisfied.

スラブNo.40~44のスラブは、均質化熱処理が不十分または実施していない水準であり、中心偏析部の硬度が高いためにSR後の母材および継手靭性が確保できない。 Slab No. For slabs 40 to 44, the homogenization heat treatment was insufficient or not performed, and the hardness of the center segregation area was high, making it impossible to secure the base metal and joint toughness after SR.

スラブNo.45のスラブは、加熱温度が低いため、NbやBなどの未固溶元素が残り、強度不足である。
スラブNo.46のスラブは、加熱温度が高く本発明の範囲外である。
Slab No. In slab No. 45, since the heating temperature was low, undissolved elements such as Nb and B remained, resulting in insufficient strength.
Slab No. Slab No. 46 has a high heating temperature and is outside the scope of the present invention.

スラブNo.47のスラブは、仕上げ圧延の1パスあたり圧下率の平均が低く、未再結晶域圧延での変態核導入による細粒組織形成効果が十分に得られず、板厚中心部の結晶方位差15°の大角粒界に囲まれた領域の最大面積から上位10個の結晶粒の平均円相当直径が過大であり、SR後の母材の靭性が低い。 Slab No. Slab No. 47 had a low average reduction rate per pass in finish rolling, and the effect of forming a fine grain structure due to the introduction of transformation nuclei in rolling in the non-recrystallized region was not sufficiently obtained, resulting in a crystal orientation difference of 15 at the center of the thickness. The average equivalent circular diameter of the top 10 crystal grains from the maximum area of the region surrounded by large-angle grain boundaries of ° is too large, and the toughness of the base material after SR is low.

スラブNo.48のスラブは、移送厚が過大であり、再結晶域圧延での変態前オーステナイト粒の微細化による細粒組織形成効果が十分に得られず、板厚中心部の結晶方位差15°の大角粒界に囲まれた領域の最大面積から上位10個の結晶粒の平均円相当直径が過大であり、SR後の母材の靭性が低い。
スラブNo.49のスラブは、移送厚が過小であり、未再結晶域圧延での変態核導入による細粒組織形成効果が十分に得られず、板厚中心部の結晶方位差15°の大角粒界に囲まれた領域の最大面積から上位10個の結晶粒の平均円相当直径が過大であり、SR後の母材の靭性が低い。
Slab No. In slab No. 48, the transfer thickness was too large, and the effect of forming a fine grain structure due to the refinement of pre-transformed austenite grains in rolling in the recrystallization zone could not be sufficiently obtained, resulting in a large crystal orientation difference of 15° at the center of the thickness. The average equivalent circle diameter of the top ten crystal grains from the maximum area of the region surrounded by grain boundaries is too large, and the toughness of the base material after SR is low.
Slab No. In slab No. 49, the transfer thickness was too small, and the effect of forming a fine grain structure due to the introduction of transformation nuclei during rolling in the non-recrystallized region was not sufficiently obtained, resulting in large-angle grain boundaries with a crystal orientation difference of 15° at the center of the thickness. The average equivalent circle diameter of the top 10 crystal grains from the maximum area of the enclosed region is too large, and the toughness of the base material after SR is low.

スラブNo.50のスラブは、仕上げ圧延の1パスあたり圧下率の平均が低く、未再結晶域圧延での変態核導入による細粒組織形成効果が十分に得られず、板厚中心部の最大硬度HVmaxが高く、SR後の母材の靭性が低い。
スラブNo.51のスラブは、最終仕上圧延温度が高く本発明の範囲外である。
Slab No. In the slab No. 50, the average reduction rate per pass of finish rolling was low, and the effect of forming a fine grain structure due to the introduction of transformation nuclei in rolling in the non-recrystallized region was not sufficiently obtained, and the maximum hardness HVmax at the center of the plate thickness was The toughness of the base material after SR is low.
Slab No. Slab No. 51 has a high final finish rolling temperature and is outside the scope of the present invention.

スラブNo.52のスラブは、冷却速度が過大であり、硬質組織が過剰に多く生成されるため、板厚中心部の最大硬度HVmaxが高く、SR後の母材の靭性が低い。
スラブNo.53のスラブは、冷却後の熱処理温度が高く、焼戻しによる微細炭化物の凝集粗大化が過剰となり、SR後の降伏応力および母材の靭性が低い。
Slab No. In slab No. 52, the cooling rate was too high and too many hard structures were generated, so the maximum hardness HVmax at the center of the plate thickness was high and the toughness of the base material after SR was low.
Slab No. In slab No. 53, the heat treatment temperature after cooling was high, the fine carbides aggregated and coarsened excessively due to tempering, and the yield stress and base material toughness after SR were low.

図9は、本発明例と比較例について、粒内変態の有無を対比して示している。本発明例では、Ti含有介在物から明らかに粒内変態が起きていると判断される(〇)。一方、比較例では、Ti含有介在物から明らかな粒内変態が起きていないと判断されるか(△)、もしくは、金属組織の形状が不明瞭である。図10に、Ti含有介在物の組成(Ti、Al、Ca、Mg、Mn、S、Siの各含有量%)とIGF生成の有無の関係を示す。図11に、TCP=[Ti]/([Ti]+[Al]+[Mg]+[Ca])とIGF生成の有無の関係を示す。図12に、EIGFD=(XA×0.8)+(XB×0.5)とSR処理後の継手HAZ靭性(-10℃ CTOD)の関係を示す。 FIG. 9 shows a comparison of the presence or absence of intragranular transformation for the inventive example and the comparative example. In the present invention example, it is determined that intragranular transformation has clearly occurred from Ti-containing inclusions (○). On the other hand, in the comparative example, it is judged that no obvious intragranular transformation has occurred from the Ti-containing inclusions (Δ), or the shape of the metal structure is unclear. FIG. 10 shows the relationship between the composition of Ti-containing inclusions (each content % of Ti, Al, Ca, Mg, Mn, S, and Si) and the presence or absence of IGF generation. FIG. 11 shows the relationship between TCP=[Ti]/([Ti]+[Al]+[Mg]+[Ca]) and the presence or absence of IGF generation. Figure 12 shows the relationship between EIGFD = (XA x 0.8) + (XB x 0.5) and joint HAZ toughness (-10°C CTOD) after SR treatment.

前述したように、本発明によれば、小入熱から中入熱溶接の多層盛り溶接HAZ部において優れたCTOD特性を有し、かつ母材の降伏強度が500MPa以上で、SR処理の前後で良好な母材の靭性を有する板厚60mm以上の高強度厚手鋼板が製造可能となる。これにより、例えば海洋構造物等の非常に厳格な環境で使用される鋼構造物の大型化や軽量化、鋼材使用量低減によるコスト低減が可能となる。よって、本発明は、産業上の利用可能性が高い。 As described above, the present invention has excellent CTOD characteristics in the multi-layer welded HAZ part of low to medium heat input welding, and the yield strength of the base material is 500 MPa or more, and the yield strength of the base metal is 500 MPa or more, and It becomes possible to manufacture a high-strength, thick steel plate with a thickness of 60 mm or more that has good base material toughness. This makes it possible to increase the size and weight of steel structures used in extremely harsh environments, such as offshore structures, and to reduce costs by reducing the amount of steel used. Therefore, the present invention has high industrial applicability.

10 鋼板
11 金属組織観察用試料
12 ±0.5mm範囲
13 Mn濃度平均値が最も高い部分
14 1mm×1mmの視野領域
15 20×20μmの正方形部分
10 Steel plate 11 Sample for metallographic observation 12 ±0.5 mm range 13 Area with the highest average Mn concentration 14 Viewing area of 1 mm x 1 mm 15 Square area of 20 x 20 μm

Claims (4)

板厚が60~100mmであり、降伏強度が500MPa以上であり、引張強度が570MPa以上であり、
質量%で、
C :0.020~0.120%、
Si:0.05~0.30%、
Mn:1.70~3.00%、
Ti:0.005~0.018%、
Cu:0.05~1.50%、
Ni:0.05~2.00%、
Nb:0.005~0.025%、
N :0.0015~0.0060%、
O :0.0010~0.0045%、
を含有し、
P :0.015%以下、
S :0.0050%以下、
Al:0~0.004%、
Mg:0~0.0010%、
Ca:0~0.0010%、
B:0~0.0015%、
であり、
下記式(1)で計算されるCeq.値が0.460 ≦Ceq.を満足し、更に式(2)を満足し、残部がFe及び不純物からなる化学組成を有し、
板厚t/4部分のフェライト分率が0~15面積%で残部がベイナイト、マルテンサイトの1種類以上からなる複相組織であり、
板厚中心部の結晶方位差15°の大角粒界に囲まれた領域の最大面積から上位10個の結晶粒の平均円相当直径が50μm以下であり、
板厚中心部の最大硬度HVmaxが250HV以下であり、
板厚中心部の偏析度が[Si]max/[Si]≦1.9かつ[Mn]max/[Mn]≦2.0かつ[P]max/[P]≦4.0かつ[Cu]max/[Cu]≦2.1かつ[Ni]max/[Ni]≦1.8であり、
更に鋼組織中に含まれる、Tiと、Al、Mg、Si、Ca及びMnの1種又は2種以上を含有し、円相当径で0.5μm以上5.0μm以下であるTi含有介在物の粒子について、EDSで測定した元素の質量比を元に式(3)でTi含有介在物の粒子毎のTi含有割合(TCP)を算出し、TCPが40%以上のグループA、TCPが40%未満かつ20%以上のグループBに分類したとき、式(4)に示す粒内変態に有効なTi含有介在物の粒子の個数密度(EIGFD)が20個/mm以上となることを特徴とする高強度厚鋼板。
Ceq=[C]+[Mn]/6+[Cu]/15+[Ni]/15 … 式(1)
[Mn]≧-3.8[C]+2.1 … 式(2)
TCP=[Ti]/([Ti]+[Al]+[Mg]+[Ca]) … 式(3)
EIGFD=(XA×0.8)+(XB×0.5) … 式(4)
前記式(1)、(2)において、[C]は、Cの質量%、[Mn]は、Mnの質量%、[Cu]は、Cuの質量%、[Ni]は、Niの質量%である。
前記式(3)において、[Ti]、[Al]、[Mg]、[Ca]は、Ti含有介在物のEDS分析から得られるTi、Al、Mg、Ca含有量(質量%)であり、含有しない場合は0を代入する。
前記式(4)において、XA、XBは、それぞれグループA、グループBに分類される介在物個数密度(個/mm)の測定値である。
The plate thickness is 60 to 100 mm, the yield strength is 500 MPa or more, and the tensile strength is 570 MPa or more,
In mass%,
C: 0.020-0.120%,
Si: 0.05-0.30%,
Mn: 1.70-3.00%,
Ti: 0.005-0.018%,
Cu: 0.05-1.50%,
Ni: 0.05-2.00%,
Nb: 0.005-0.025%,
N: 0.0015-0.0060%,
O: 0.0010 to 0.0045%,
Contains
P: 0.015% or less,
S: 0.0050% or less,
Al: 0 to 0.004%,
Mg: 0 to 0.0010%,
Ca: 0-0.0010%,
B: 0 to 0.0015%,
and
Ceq. calculated by the following formula (1). The value is 0.460≦Ceq. and further satisfies formula (2), and has a chemical composition with the remainder consisting of Fe and impurities,
The ferrite fraction in the plate thickness t/4 portion is 0 to 15 area%, and the remainder is a multi-phase structure consisting of one or more types of bainite and martensite,
The average equivalent circle diameter of the top 10 crystal grains from the maximum area of the region surrounded by large-angle grain boundaries with a crystal orientation difference of 15° at the center of the plate thickness is 50 μm or less,
The maximum hardness HVmax at the center of the plate thickness is 250HV or less,
The degree of segregation at the center of the plate thickness is [Si]max/[Si]≦1.9 and [Mn]max/[Mn]≦2.0 and [P]max/[P]≦4.0 and [Cu] max/[Cu]≦2.1 and [Ni]max/[Ni]≦1.8,
Furthermore, Ti-containing inclusions, which are contained in the steel structure and contain Ti and one or more of Al, Mg, Si, Ca, and Mn, and have an equivalent circle diameter of 0.5 μm or more and 5.0 μm or less For particles, the Ti content percentage (TCP) of each particle of Ti-containing inclusions was calculated using formula (3) based on the mass ratio of elements measured by EDS, and group A with TCP of 40% or more, TCP of 40% When classified into Group B with less than 20% and 20% or more, the particle number density (EIGFD) of Ti-containing inclusions effective for intragranular transformation shown in formula (4) is 20 particles/mm 2 or more. High strength thick steel plate.
Ceq=[C]+[Mn]/6+[Cu]/15+[Ni]/15... Formula (1)
[Mn]≧-3.8[C]+2.1... Formula (2)
TCP=[Ti]/([Ti]+[Al]+[Mg]+[Ca])...Equation (3)
EIGFD=(XA×0.8)+(XB×0.5) … Formula (4)
In the formulas (1) and (2), [C] is mass% of C, [Mn] is mass% of Mn, [Cu] is mass% of Cu, and [Ni] is mass% of Ni. It is.
In the formula (3), [Ti], [Al], [Mg], and [Ca] are the Ti, Al, Mg, and Ca contents (mass%) obtained from EDS analysis of Ti-containing inclusions, If not included, substitute 0.
In the formula (4), XA and XB are measured values of the inclusion number density (inclusions/mm 2 ) classified into group A and group B, respectively.
さらに、質量%で、
Mo:0.50%以下、
Cr:0.50%以下、
V :0.03%以下、
の1種又は2種以上を含有し、
Ceq値が前記式(1)に代えて下記式(1)’で計算される、請求項1に記載の高強度厚鋼板。
Ceq.=[C]+[Mn]/6+[Cu]/15+[Ni]/15+[Cr]/5+[Mo]/5+[V]/5 … 式(1)’
前記式(1)’において、[C]は、Cの質量%、[Mn]は、Mnの質量%、[Cu]は、Cuの質量%、[Ni]は、Niの質量%、[Cr]は、Crの質量%、[Mo]は、Moの質量%、[V]は、Vの質量%である。
Furthermore, in mass%,
Mo: 0.50% or less,
Cr: 0.50% or less,
V: 0.03% or less,
Contains one or more of the following,
The high-strength thick steel plate according to claim 1, wherein the Ceq value is calculated by the following formula (1)' instead of the formula (1).
Ceq. =[C]+[Mn]/6+[Cu]/15+[Ni]/15+[Cr]/5+[Mo]/5+[V]/5... Formula (1)'
In the formula (1)', [C] is mass% of C, [Mn] is mass% of Mn, [Cu] is mass% of Cu, [Ni] is mass% of Ni, [Cr ] is the mass % of Cr, [Mo] is the mass % of Mo, and [V] is the mass % of V.
請求項1または2のいずれかに記載の成分組成を有し、連続鋳造法で製造した鋼片を1200℃以上で10時間以上均質化処理を行い冷却した後、950℃~1100℃で再加熱し、1パスあたり圧下率の平均で7.5%以上となるように粗圧延を行い、厚み135~210mmとした後に、670℃~800℃から1パスあたり圧下率の平均で6.0%以上となるように仕上げ圧延を行った後、板厚中心部が10℃/s以下となる冷却速度で冷却することを特徴とする高強度厚鋼板の製造方法。 A steel billet having the composition according to any one of claims 1 or 2 and produced by a continuous casting method is homogenized at 1200°C or higher for 10 hours or more, cooled, and then reheated at 950°C to 1100°C. Then, rough rolling is performed so that the average rolling reduction per pass is 7.5% or more, and the thickness is 135 to 210 mm, and then the rolling reduction is 6.0% on average per pass from 670 ° C to 800 ° C. A method for producing a high-strength thick steel plate, which comprises performing finish rolling as described above, and then cooling the center of the plate at a cooling rate of 10° C./s or less. 板厚中心部が10℃/s以下となる冷却速度で冷却した後に、300℃以上かつ670℃以下で熱処理することを特徴とする請求項3に記載の高強度厚鋼板の製造方法。
4. The method for producing a high-strength thick steel plate according to claim 3, wherein the steel plate is cooled at a cooling rate such that the central portion of the plate thickness is 10° C./s or less, and then heat-treated at a temperature of 300° C. or more and 670° C. or less.
JP2022056886A 2022-03-30 2022-03-30 High strength thick steel plate and manufacturing method thereof Pending JP2023148712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022056886A JP2023148712A (en) 2022-03-30 2022-03-30 High strength thick steel plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022056886A JP2023148712A (en) 2022-03-30 2022-03-30 High strength thick steel plate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2023148712A true JP2023148712A (en) 2023-10-13

Family

ID=88287801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022056886A Pending JP2023148712A (en) 2022-03-30 2022-03-30 High strength thick steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2023148712A (en)

Similar Documents

Publication Publication Date Title
JP5773098B1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
EP2434027B1 (en) Steel material for high heat input welding
JP7201068B2 (en) Steel plate and its manufacturing method
WO2019069771A1 (en) Steel sheet and method for producing steel sheet
JP6711434B2 (en) Abrasion resistant steel plate and manufacturing method thereof
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP2019035107A (en) Steel plate and method of producing steel plate
KR20210127736A (en) Steel and its manufacturing method
EP3447161A1 (en) High tensile steel and marine structure
JP2019023324A (en) Steel plate and method for manufacturing steel plate
WO2021199629A1 (en) Steel sheet and method for manufacturing same
JP2019023323A (en) Steel plate and method for manufacturing steel plate
WO2021020220A1 (en) High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
JP2013095928A (en) High tensile strength steel sheet excellent in toughness and manufacturing method thereof
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
WO2013088715A1 (en) Steel material for high-heat-input welding
JP7127753B2 (en) Steel plate and its manufacturing method
JP5320274B2 (en) Thick steel plate with excellent toughness and strength uniformity in the heat affected zone
JP2010031309A (en) Thick steel plate and method for producing the same
WO2015064077A1 (en) Ferrite-martensite two-phase stainless steel, and method for producing same
JP2007254767A (en) Welded joint of high-tensile strength thick steel plate
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP2005232515A (en) Thick steel plate having excellent high heat input welded join toughness
JP4299769B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP2004323917A (en) High strength high toughness steel sheet