JP2023123908A - Defect measuring device, defect measuring method, manufacturing facility for galvanized steel plate, manufacturing method for galvanized steel plate, and quality control method for galvanized steel plate - Google Patents

Defect measuring device, defect measuring method, manufacturing facility for galvanized steel plate, manufacturing method for galvanized steel plate, and quality control method for galvanized steel plate Download PDF

Info

Publication number
JP2023123908A
JP2023123908A JP2022027379A JP2022027379A JP2023123908A JP 2023123908 A JP2023123908 A JP 2023123908A JP 2022027379 A JP2022027379 A JP 2022027379A JP 2022027379 A JP2022027379 A JP 2022027379A JP 2023123908 A JP2023123908 A JP 2023123908A
Authority
JP
Japan
Prior art keywords
steel sheet
zinc
defect
plated steel
based plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022027379A
Other languages
Japanese (ja)
Inventor
紘明 大野
Hiroaki Ono
正貴 木庭
Masataka Koba
克弥 星野
Katsuya Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022027379A priority Critical patent/JP2023123908A/en
Publication of JP2023123908A publication Critical patent/JP2023123908A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a defect measuring device and a defect measuring method capable of directly and quickly measuring the appearance characteristics of the surface of a galvanized steel sheet caused by a stripe defect in a simple optical system.SOLUTION: Disclosed is a defect measurement device according to the present invention which measures a stripe defect on the surface of a galvanized steel sheet. This measurement device includes: irradiation means for irradiating the surface of the galvanized steel sheet with line illumination light; and imaging means for photographing a surface image of the galvanized steel sheet by receiving the line illumination light reflected on the surface of the galvanized steel sheet. The irradiation means and the imaging means are arranged so that the difference between an irradiation angle and a light receiving angle of the line illumination light falls within a range of 20° or more and 40° or less.SELECTED DRAWING: Figure 1

Description

本発明は、欠陥計測装置、欠陥計測方法、亜鉛系めっき鋼板の製造設備、亜鉛系めっき鋼板の製造方法、及び亜鉛系めっき鋼板の品質管理方法に関する。 TECHNICAL FIELD The present invention relates to a defect measuring device, a defect measuring method, a zinc-based plated steel sheet manufacturing facility, a zinc-based plated steel sheet manufacturing method, and a zinc-based plated steel sheet quality control method.

鉄鋼製品の表面性状は鉄鋼製品の外観上重要な要素であり、特に外観を損ねる表面性状は鉄鋼製品の価値を大きく低下させる。表面性状による外観特性の変化は、鉄鋼製品表面の表面粗さ等の微小な形状、化学的組成、及び皮膜膜厚の偏り等によって発生することが多い。例えば亜鉛系めっき鋼板では、筋状欠陥状の微小(数100nm~数μm程度)な凹凸が表面に発生し、後工程の塗装処理によって凹凸が顕在化することにより外観が損なわれる場合がある。この凹凸は、亜鉛系めっき鋼板の製造工程において表面成分の僅かな偏析によって鉄と亜鉛の合金化度の進み易さに偏りが生じることによって発生する。また、合金化度の進み易さの偏りは圧延工程によって鋼板の圧延方向に延ばされるため、この凹凸は鋼板の圧延方向に幅数100μm~数10mmの筋となって発生することが多い。 The surface texture of steel products is an important factor in the appearance of steel products, and surface textures that impair the appearance of steel products significantly reduce the value of steel products. Changes in appearance characteristics due to surface properties are often caused by minute shapes such as surface roughness of the surface of steel products, chemical composition, bias in film thickness, and the like. For example, in a zinc-based plated steel sheet, fine (several 100 nm to several μm) irregularities such as streaky defects are generated on the surface, and the irregularities become conspicuous by the coating treatment in the post-process, which may impair the appearance. The unevenness is caused by slight segregation of the surface components in the manufacturing process of the zinc-based plated steel sheet, which causes uneven progress in the degree of alloying of iron and zinc. In addition, since the uneven progress of the degree of alloying is extended in the rolling direction of the steel sheet by the rolling process, the unevenness often occurs as streaks with a width of several hundred μm to several tens of mm in the rolling direction of the steel sheet.

ところが、筋状欠陥状の微小な凹凸(以下、筋状欠陥と呼ぶ)に起因する亜鉛系めっき鋼板の外観特性の変化は、目視で観察するとうっすらと筋状の模様が確認される程度である。また、凹凸量が小さいこと及び発生面に対する微小な凹凸の割合が小さいことから、凹凸を直接計測して定量化することは困難である。このような背景から、過去の研究開発では、外観をいかに良くするかに焦点が置かれ、外観の評価は専ら目視に依存していた。具体的には、特許文献1,2には、溶融亜鉛めっき鋼板の外観を目視で判断する方法が記載されている。一方、このような外観特性の定量化に対し、めっき表面にパルスレーザ光を照射し、各分析点に対してパルス毎に発光スペクトルを分光分析する方法(特許文献3参照)や、めっき表面に光を照射することによって得られた画像の明部と暗部の面積からスパングルと呼ばれる模様を検査する方法(特許文献4参照)が提案されている。 However, the change in the appearance characteristics of the zinc-based plated steel sheet due to the fine unevenness of the streak-like defect (hereinafter referred to as a streak-like defect) is such that a faint streak-like pattern can be confirmed by visual observation. . In addition, since the amount of unevenness is small and the ratio of fine unevenness to the generated surface is small, it is difficult to directly measure and quantify the unevenness. Against this background, past research and development focused on how to improve the appearance, and evaluation of the appearance relied solely on visual inspection. Specifically, Patent Literatures 1 and 2 describe a method of visually judging the appearance of a hot-dip galvanized steel sheet. On the other hand, for quantification of such appearance characteristics, a method of irradiating a plated surface with a pulsed laser beam and spectroscopically analyzing the emission spectrum for each pulse for each analysis point (see Patent Document 3), A method of inspecting a pattern called spangle from the areas of bright and dark portions of an image obtained by irradiating light has been proposed (see Patent Document 4).

特開2020-153004号公報Japanese Patent Application Laid-Open No. 2020-153004 特開2018-44190号公報JP 2018-44190 A 特開2006-317379号公報JP 2006-317379 A 特開平11-72317号公報JP-A-11-72317

しかしながら、特許文献1,2に記載の方法は、属人的な亜鉛系めっき鋼板の外観特性に対する判断のばらつきを生むだけでなく、外観特性の基準が曖昧となるため真に外観が改善されたかどうかに説得力を持たせることができない。一方、特許文献3に記載の方法は、亜鉛系めっき鋼板の外観特性の定量化方法というよりはめっき構造の分析方法であり、分析結果が外観に与える影響をさらに評価しなければならず、外観特性の判断という観点からは間接的である。また、パルスレーザ光の照射点のみの評価であることから、外観を面的に評価するにはパルスレーザ光を走査させる必要があり、装置が大がかりとなる。また、パルスレーザ光のスポット径より小さい幅の筋状欠陥の計測は困難である。また、特許文献4に記載の方法は、エリアセンサを用いているため、視野内で光学系がばらつくことがある。また、スパングルのみを評価対象としており、筋状欠陥の微小な凹凸までを評価可能であるかどうかが定かではない。 However, the methods described in Patent Documents 1 and 2 not only cause variations in judgment of the appearance characteristics of the zinc-based plated steel sheet depending on the individual, but also vague criteria for appearance characteristics, so whether the appearance is truly improved. I can't seem to get it to be persuasive. On the other hand, the method described in Patent Document 3 is a method of analyzing the plating structure rather than a method of quantifying the appearance characteristics of a zinc-based plated steel sheet, and the influence of the analysis results on the appearance must be further evaluated. It is indirect from the point of view of character judgment. In addition, since only the point irradiated with the pulsed laser beam is evaluated, the pulsed laser beam must be scanned in order to evaluate the appearance of the entire surface, which results in a large-scale apparatus. Moreover, it is difficult to measure a streak defect having a width smaller than the spot diameter of the pulsed laser beam. Moreover, since the method described in Patent Document 4 uses an area sensor, the optical system may vary within the field of view. In addition, only spangles are evaluated, and it is not clear whether even minute unevenness of streak defects can be evaluated.

本発明は、上記課題に鑑みてなされたものであって、その目的は、簡素な光学系で筋状欠陥状の微小な凹凸(以下、筋状欠陥と呼ぶ)に起因する亜鉛系めっき鋼板の表面の外観特性を直接的に短時間で計測可能な欠陥計測装置及び欠陥計測方法を提供することにある。また、本発明の他の目的は、亜鉛系めっき鋼板を歩留まりよく製造可能な亜鉛系めっき鋼板の製造設備及び製造方法を提供することにある。また、本発明の他の目的は、高品質な亜鉛系めっき鋼板を提供可能な亜鉛系めっき鋼板の品質管理方法を提供することにある。 The present invention has been made in view of the above problems, and the object thereof is to improve zinc-based plated steel sheets caused by fine unevenness in the form of streak defects (hereinafter referred to as streak defects) with a simple optical system. An object of the present invention is to provide a defect measuring apparatus and a defect measuring method capable of directly measuring surface appearance characteristics in a short time. Another object of the present invention is to provide a production facility and a production method for a zinc-based plated steel sheet that can produce the zinc-based plated steel sheet with a high yield. Another object of the present invention is to provide a quality control method for zinc-based plated steel sheets capable of providing high-quality zinc-based plated steel sheets.

本発明に係る欠陥計測装置は、亜鉛系めっき鋼板の表面の筋状欠陥を計測する欠陥計測装置であって、前記亜鉛系めっき鋼板の表面にライン照明光を照射する照射手段と、前記亜鉛系めっき鋼板の表面で反射された前記ライン照明光を受光することによって、前記亜鉛系めっき鋼板の表面画像を撮影する撮像手段と、を備え、前記照射手段及び前記撮像手段は、前記ライン照明光の照射角と受光角との差が20度以上40度以下の範囲内になるように配置されている。 A defect measuring apparatus according to the present invention is a defect measuring apparatus for measuring streak defects on the surface of a zinc-based plated steel sheet, comprising irradiation means for irradiating the surface of the zinc-based plated steel sheet with line illumination light, and the zinc-based imaging means for capturing a surface image of the zinc-based plated steel sheet by receiving the line illumination light reflected on the surface of the plated steel sheet, wherein the irradiation means and the imaging means are configured to receive the line illumination light. They are arranged so that the difference between the irradiation angle and the light receiving angle is within the range of 20 degrees or more and 40 degrees or less.

前記亜鉛系めっき鋼板の表面画像から、前記亜鉛系めっき鋼板の圧延方向に対して平行な方向における前記筋状欠陥の特徴量を前記筋状欠陥の指標として算出する演算手段を備え、前記照射手段は、前記ライン照明光の延伸方向が前記亜鉛系めっき鋼板の圧延方向に対して垂直な方向になるように配置されているとよい。 computing means for calculating, from a surface image of the zinc-based plated steel sheet, a feature quantity of the streak-like defect in a direction parallel to the rolling direction of the zinc-based plated steel sheet as an index of the streak-like defect; is preferably arranged such that the extending direction of the line illumination light is perpendicular to the rolling direction of the galvanized steel sheet.

前記演算手段は、前記亜鉛系めっき鋼板の表面画像から前記垂直な方向の輝度むらを補正した補正画像を生成し、前記補正画像から筋状欠陥を含んだ領域の画像を選択し、選択した前記筋状欠陥の画像から前記指標を算出するとよい。 The computing means generates a corrected image in which the luminance unevenness in the vertical direction is corrected from the surface image of the zinc-based plated steel sheet, selects an image of an area including the streak defect from the corrected image, and selects the selected image. It is preferable to calculate the index from the image of the streak defect.

本発明に係る欠陥計測方法は、亜鉛系めっき鋼板の表面の筋状欠陥を計測する欠陥計測方法であって、照射手段が前記亜鉛系めっき鋼板の表面にライン照明光を照射する照射ステップと、撮像手段が前記亜鉛系めっき鋼板の表面で反射された前記ライン照明光を受光することによって、前記亜鉛系めっき鋼板の表面画像を撮影する撮像ステップと、を含み、前記照射手段及び前記撮像手段は、前記ライン照明光の照射角と受光角との差が20度以上40度以下の範囲内になるように配置されている。 A defect measurement method according to the present invention is a defect measurement method for measuring streak-like defects on the surface of a zinc-based plated steel sheet, comprising an irradiation step in which an irradiation means irradiates the surface of the zinc-based plated steel sheet with line illumination light; an imaging step of capturing a surface image of the zinc-based plated steel sheet by receiving the line illumination light reflected by the surface of the zinc-based plated steel sheet, wherein the irradiating means and the imaging means are , so that the difference between the irradiation angle and the reception angle of the line illumination light is in the range of 20 degrees or more and 40 degrees or less.

本発明に係る亜鉛系めっき鋼板の製造設備は、亜鉛系めっき鋼板を製造する製造設備と、前記製造設備により製造された亜鉛系めっき鋼板の表面を計測する本発明に係る欠陥計測装置と、を備える。 A manufacturing facility for a zinc-based plated steel sheet according to the present invention comprises manufacturing equipment for manufacturing a zinc-based plated steel sheet, and a defect measuring device according to the present invention for measuring the surface of the zinc-based plated steel sheet manufactured by the manufacturing facility. Prepare.

本発明に係る亜鉛系めっき鋼板の製造方法は、亜鉛系めっき鋼板を製造する製造ステップと、本発明に係る欠陥計測方法を用いて前記製造ステップにおいて製造された亜鉛系めっき鋼板の表面を計測する計測ステップと、を含む。 A method for manufacturing a zinc-based plated steel sheet according to the present invention comprises a manufacturing step of manufacturing a zinc-based plated steel sheet, and measuring the surface of the zinc-based steel sheet manufactured in the manufacturing step using a defect measurement method according to the present invention. and a measuring step.

本発明に係る亜鉛系めっき鋼板の品質管理方法は、本発明に係る欠陥計測方法を用いて亜鉛系めっき鋼板の表面を計測する計測ステップと、前記計測ステップにおける筋状欠陥の計測結果から前記亜鉛系めっき鋼板の品質管理を行う品質管理ステップと、を含む。 A method for quality control of a zinc-based plated steel sheet according to the present invention includes a measurement step of measuring the surface of a zinc-based plated steel sheet using the defect measurement method according to the present invention; and a quality control step for quality control of the plated steel sheet.

本発明に係る欠陥計測装置及び欠陥計測方法によれば、簡素な光学系で筋状欠陥に起因する亜鉛系めっき鋼板の表面の外観特性を直接的に短時間で計測することができる。また、本発明に係る亜鉛系めっき鋼板の製造設備及び製造方法によれば、亜鉛系めっき鋼板を歩留まりよく製造することができる。また、本発明に係る亜鉛系めっき鋼板の品質管理方法によれば、高品質な亜鉛系めっき鋼板を提供することができる。 According to the defect measuring apparatus and the defect measuring method of the present invention, it is possible to directly measure the appearance characteristics of the surface of a zinc-based plated steel sheet caused by streak defects in a short time with a simple optical system. Moreover, according to the manufacturing equipment and manufacturing method of the zinc-based plated steel sheet according to the present invention, the zinc-based plated steel sheet can be manufactured with a high yield. Moreover, according to the method for quality control of a zinc-based plated steel sheet according to the present invention, it is possible to provide a high-quality zinc-based plated steel sheet.

図1は、本発明の一実施形態である欠陥計測装置の構成を示す側面図及び正面図である。1A and 1B are a side view and a front view showing the configuration of a defect measuring apparatus according to one embodiment of the present invention. 図2は、ライン光源の照射角及びラインセンサの受光角の定義を示す図である。FIG. 2 is a diagram showing definitions of the irradiation angle of the line light source and the light receiving angle of the line sensor. 図3は、本発明の一実施形態である定量化処理の流れを示すフローチャートである。FIG. 3 is a flow chart showing the flow of quantification processing, which is an embodiment of the present invention. 図4は、溶融亜鉛めっき鋼板の表面画像の一例を示す図である。FIG. 4 is a diagram showing an example of a surface image of a hot-dip galvanized steel sheet. 図5は、図4に示す表面画像の補正画像を示す図である。FIG. 5 is a diagram showing a corrected image of the surface image shown in FIG. 図6は、筋状欠陥画像及びプロファイルの一例を示す図である。FIG. 6 is a diagram showing an example of a streak defect image and profile. 図7は、筋状欠陥がある場合と筋状欠陥がない場合における筋状欠陥画像及びプロファイルの一例を示す図である。FIG. 7 is a diagram showing an example of a streak defect image and a profile when there is a streak defect and when there is no streak defect. 図8は、筋状欠陥がある場合と筋状欠陥がない場合における指標の推移の一例を示す図である。FIG. 8 is a diagram showing an example of transition of indices when there is a streak defect and when there is no streak defect. 図9は、本発明の一実施形態である欠陥計測装置の変形例の構成を示す側面図及び正面図である。9A and 9B are a side view and a front view showing the configuration of a modification of the defect measuring apparatus according to one embodiment of the present invention.

以下、図面を参照して、本発明の一実施形態である欠陥計測装置、欠陥計測方法、亜鉛系めっき鋼板の製造設備、亜鉛系めっき鋼板の製造方法、及び亜鉛系めっき鋼板の品質管理方法について説明する。 Hereinafter, with reference to the drawings, a defect measuring apparatus, a defect measuring method, a zinc-based plated steel sheet manufacturing facility, a zinc-based plated steel sheet manufacturing method, and a zinc-based steel sheet quality control method according to an embodiment of the present invention will be described. explain.

なお、本明細書中において、「亜鉛系めっき鋼板」とは、めっき層中に亜鉛を含有するめっき鋼板を意味する。具体的には、亜鉛系めっき鋼板としては、溶融亜鉛めっき鋼板(GI)、溶融亜鉛めっき鋼板を合金化した合金化溶融亜鉛めっき鋼板(GA)、電気亜鉛めっき鋼板(EG)、Zn-Niめっき鋼板、Zn-Mgめっき鋼板、Zn-Al-Mgめっき鋼板(例えばZn-6質量%Al-3質量%Mg合金めっき鋼板、Zn-11質量%Al-3質量%Mg合金めっき鋼板等)、Zn-Alめっき鋼板(例えば、Zn-5質量%Al合金めっき鋼板、Zn-55質量%Al合金めっき鋼板等)等を例示することができる。また、めっき層中に少量の異種金属元素又は不純物として、ニッケル、コバルト、マンガン、鉄、モリブデン、タングステン、チタン、クロム、アルミニウム、マグネシウム、鉛、アンチモン、錫、銅、ケイ素のうちの一種又は二種以上を含有してもよい。また、めっき層は、同種又は異種のめっき層を2層以上形成してなるものであってもよい。 In this specification, the term "zinc-based plated steel sheet" means a plated steel sheet containing zinc in the coating layer. Specifically, the galvanized steel sheet includes a hot-dip galvanized steel sheet (GI), an alloyed hot-dip galvanized steel sheet (GA) obtained by alloying a hot-dip galvanized steel sheet, an electrogalvanized steel sheet (EG), and Zn-Ni plating. Steel plate, Zn-Mg plated steel plate, Zn-Al-Mg plated steel plate (e.g. Zn-6 mass% Al-3 mass% Mg alloy plated steel plate, Zn-11 mass% Al-3 mass% Mg alloy plated steel plate, etc.), Zn -Al plated steel plate (eg, Zn-5 mass% Al alloy plated steel plate, Zn-55 mass% Al alloy plated steel plate, etc.) and the like can be exemplified. In addition, one or two of nickel, cobalt, manganese, iron, molybdenum, tungsten, titanium, chromium, aluminum, magnesium, lead, antimony, tin, copper, and silicon may be added as a small amount of dissimilar metal elements or impurities in the plating layer. It may contain more than one seed. Moreover, the plated layer may be formed by forming two or more layers of the same type or different types of plated layers.

また、亜鉛系めっき鋼板の下地となる鋼板の鋼種としては、鋼組成が質量%で、C:0.0001%以上0.25%以下、Si:0.001%以上2.0%以下、Mn:0.01%以上3.0%以下、P:0.001以上0.02%以下、S:0.0001以上0.02%以下、Al:0.001%以上0.10%以下、N:0.0001%以上0.007%以下を含有し、残部がFe及び不可避的不純物からなる鋼種を例示できる。また、上記必須元素に加え選択元素として、Cr:0%超え2.0%以下、Nb:0.001%以上1.0%以下、V:0.001%以上1.0%以下、W:0%超え0.3%以下、Ni:0%超え2.0%以下、Cu:0%超え2.0%以下、Mo:0%超え1.0%以下、B:0%超え0.01%以下Ti:0.001%以上0.1%以下、Ca:0%超え0.03%以下、Mg:0%超え0.03%以下から選ばれる1種又は2種以上の元素を必要に応じて含有してもよい。さらに、上記鋼種に加え、冷間圧延による鋼板であれば、本発明はより効果的に作用する。 In addition, as the steel type of the steel sheet that is the base of the zinc-based plated steel sheet, the steel composition is, in mass%, C: 0.0001% or more and 0.25% or less, Si: 0.001% or more and 2.0% or less, Mn : 0.01% to 3.0%, P: 0.001 to 0.02%, S: 0.0001 to 0.02%, Al: 0.001% to 0.10%, N : containing 0.0001% or more and 0.007% or less, and the balance being Fe and unavoidable impurities. In addition to the above essential elements, as optional elements, Cr: more than 0% and 2.0% or less, Nb: 0.001% or more and 1.0% or less, V: 0.001% or more and 1.0% or less, W: More than 0% and 0.3% or less, Ni: more than 0% and 2.0% or less, Cu: more than 0% and 2.0% or less, Mo: more than 0% and 1.0% or less, B: more than 0% and 0.01 % or less Ti: 0.001% or more and 0.1% or less, Ca: more than 0% and 0.03% or less, Mg: more than 0% and 0.03% or less may be included as appropriate. Furthermore, in addition to the above steel types, the present invention works more effectively if it is a cold-rolled steel sheet.

〔欠陥計測装置の構成〕
まず、図1,図2を参照して、本発明の一実施形態である欠陥計測装置の構成について説明する。
[Configuration of Defect Measuring Device]
First, referring to FIGS. 1 and 2, the configuration of a defect measuring apparatus according to an embodiment of the present invention will be described.

図1(a),(b)は、本発明の一実施形態である欠陥計測装置の構成を示す側面図及び正面図である。図1(a),(b)に示すように、本発明の一実施形態である欠陥計測装置1は、亜鉛系めっき鋼板(以下、鋼板と略記)から部分的に切り取った切板サンプルSの外観特性を、切板サンプルSの表面における筋状欠陥の指標として定量化するオフライン型の欠陥計測装置である。欠陥計測装置1は、リニアステージ2、ライン光源3、ラインセンサ4、及び演算装置5を備えている。なお、切板サンプルSはできだけ平坦なものであることが望ましい。 1(a) and 1(b) are a side view and a front view showing the configuration of a defect measuring apparatus according to an embodiment of the present invention. As shown in FIGS. 1A and 1B, a defect measuring apparatus 1 according to one embodiment of the present invention is a cut plate sample S partially cut from a zinc-based plated steel plate (hereinafter abbreviated as steel plate). This is an off-line defect measuring apparatus that quantifies the appearance characteristics as an index of streak-like defects on the surface of the cut plate sample S. A defect measuring apparatus 1 includes a linear stage 2 , a line light source 3 , a line sensor 4 and an arithmetic device 5 . It is desirable that the cut plate sample S be as flat as possible.

リニアステージ2は、上部に切板サンプルSを載置し、鋼板の圧延方向に沿って切板サンプルSを搬送する搬送装置である。 The linear stage 2 is a conveying device on which the cut plate sample S is placed and which conveys the cut plate sample S along the rolling direction of the steel plate.

ライン光源3は、鋼板の圧延方向に対して垂直な方向に延伸するライン照明光を切板サンプルSの表面に照射する。なお、ライン照明光の照射方向と切板サンプルSの搬送方向は鋼板の圧延方向に対して平行な方向であることが好ましいが、鋼板の圧延方向に対して垂直な方向や斜め方向にライン照明光を照射してもよい。また、本実施形態では、筋状欠陥の延伸方向が鋼板の圧延方向と一致することが多いために、鋼板の圧延方向に対して平行な方向にライン照明光を照射した。一方、筋状欠陥の延伸方向が鋼板の圧延方向と一致しない場合には、筋状欠陥の延伸方向に対して平行な方向にライン照明光を照射するとよい。ライン光源3は、本発明に係る照射手段として機能する。 The line light source 3 irradiates the surface of the cut plate sample S with line illumination light extending in a direction perpendicular to the rolling direction of the steel plate. The irradiation direction of the line illumination light and the conveying direction of the cut plate sample S are preferably parallel to the rolling direction of the steel plate. Light may be applied. Further, in this embodiment, the line illumination light was applied in a direction parallel to the rolling direction of the steel sheet, because the direction of stretching of the streak-like defects often coincides with the rolling direction of the steel sheet. On the other hand, when the stretching direction of the streak defects does not coincide with the rolling direction of the steel sheet, it is preferable to irradiate the line illumination light in a direction parallel to the stretching direction of the streak defects. The line light source 3 functions as irradiation means according to the present invention.

ラインセンサ4は、鋼板の圧延方向に対して垂直な方向に配列された1ライン以上の撮像素子を有する撮像装置により構成されている。ラインセンサ4は、切板サンプルSの表面から反射されたライン照明光を受光することにより、リニアステージ2によって搬送される切板サンプルSの画像を連続的に撮影し、撮影された画像のデータを演算装置5に出力する。一般的なデジタルカメラとスポット光源を用いて切板サンプルSの画像を撮影すると、撮像位置によって照明光の照射角や受光角が異なるために、筋状欠陥の見え方が変化する。そこで、本実施形態の欠陥計測装置1では、鋼板の圧延方向に対して平行な方向に照明光の照射方向及び撮像方向を限定し、リニアステージ2を用いて切板サンプルSをスキャンした。このような態様では、切板サンプルS全体を均一な光学条件で撮像することができ、非常に好ましい。ラインセンサ4は、本発明に係る撮像手段として機能する。 The line sensor 4 is composed of an imaging device having one or more lines of imaging elements arranged in a direction perpendicular to the rolling direction of the steel plate. The line sensor 4 continuously captures images of the cut-plate sample S transported by the linear stage 2 by receiving line illumination light reflected from the surface of the cut-plate sample S, and stores data of the captured images. is output to the arithmetic unit 5 . When an image of the cut plate sample S is captured using a general digital camera and a spot light source, the appearance of the streak defect changes because the irradiation angle and the light receiving angle of the illumination light differ depending on the imaging position. Therefore, in the defect measuring apparatus 1 of the present embodiment, the cut plate sample S is scanned using the linear stage 2 while limiting the illumination light irradiation direction and the imaging direction to a direction parallel to the rolling direction of the steel plate. In such a mode, the entire cut plate sample S can be imaged under uniform optical conditions, which is very preferable. The line sensor 4 functions as imaging means according to the present invention.

なお、図2に示す切板サンプルSの表面垂直方向に対するライン光源3の照射角とラインセンサ4の受光角が等しい場合には、光学条件は正反射条件となり、切板サンプルSの鏡面反射成分の画像を取得することができる。そして、鏡面反射成分はライン光源3の照射角とラインセンサ4の受光角の差が大きくなるのに応じて減少し、逆に拡散反射成分が増加する。本発明の発明者らは、切板サンプルSの表面を詳細に観察した結果、光学条件が正反射条件に近づくと鏡面反射成分がノイズとなる一方、光学条件が正反射条件から遠ざかり過ぎると、切板サンプルSの地合いそのものが持つ表面粗さが強調され、筋状欠陥の信号が埋もれてしまうことを知見した。このため、ライン光源3の照射角とラインセンサ4の受光角の差は20度以上40度以下の範囲内に設定されている。なお、この角度範囲は、後述する筋状欠陥の指標の差が筋状欠陥の有無により最も大きくなる角度範囲を例えば機械学習手法により学習することによって求めることができる。 When the irradiation angle of the line light source 3 and the light receiving angle of the line sensor 4 with respect to the direction perpendicular to the surface of the cut plate sample S shown in FIG. image can be obtained. The specular reflection component decreases as the difference between the irradiation angle of the line light source 3 and the light receiving angle of the line sensor 4 increases, while the diffuse reflection component increases. As a result of detailed observation of the surface of the cut plate sample S, the inventors of the present invention found that when the optical condition approaches the regular reflection condition, the specular reflection component becomes noise. It was found that the surface roughness of the texture itself of the cut plate sample S was emphasized, and the signal of the streak defect was buried. Therefore, the difference between the irradiation angle of the line light source 3 and the light receiving angle of the line sensor 4 is set within a range of 20 degrees or more and 40 degrees or less. This angle range can be obtained by learning, for example, a machine learning method for the angle range in which the difference in the indices of the streak-like defect described later becomes the largest depending on the presence or absence of the streak-like defect.

また、ラインセンサ4の受光輝度は暗すぎずかつ飽和しない条件であることが好ましい。また、切板サンプルSの画像の幅方向(鋼板の圧延方向に対して垂直な方向)分解能は、評価したい筋状欠陥の幅方向ピッチに対し十分小さいことが好ましい。例えば最小0.5mm幅の筋状欠陥を評価したい場合には、幅方向分解能は0.25mm以下とすることが好ましい。一方、切板サンプルSの画像の長手方向(鋼板の圧延方向)分解能は特に制限はないが、切板サンプルSの搬送時に変化しないことが好ましい。そのためには、リニアステージ2を用いて切板サンプルSを一定速度で搬送したり、切板サンプルSの搬送量に応じたパルス信号をトリガー信号として切板サンプルSの画像を撮影したりするとよい。 Moreover, it is preferable that the light-receiving luminance of the line sensor 4 is not too dark and not saturated. Further, it is preferable that the resolution of the image of the cut plate sample S in the width direction (the direction perpendicular to the rolling direction of the steel plate) is sufficiently smaller than the width direction pitch of the streak defects to be evaluated. For example, when evaluating a streak defect with a minimum width of 0.5 mm, the resolution in the width direction is preferably 0.25 mm or less. On the other hand, the resolution of the image of the cut plate sample S in the longitudinal direction (rolling direction of the steel plate) is not particularly limited, but preferably does not change when the cut plate sample S is conveyed. For this purpose, the linear stage 2 may be used to transport the cut sample S at a constant speed, or an image of the cut sample S may be captured using a pulse signal corresponding to the transport amount of the cut sample S as a trigger signal. .

また、ライン照明光の波長及びラインセンサ4の受光波長としては、本実施形態の目的が目視での亜鉛系めっき鋼板の外観特性に対する判断を、筋状欠陥の指標として定量化することであることから、可視光領域の波長を用いることが好ましい。また、通常可視光用カメラに用いられるSi素子の感度特性は近赤外光を含むことから、赤外光カットフィルターを入れることによって赤外光領域の波長を除去するとよい。さらに、ライン照明光の波長は目視に合わせてブロードであることが好ましく、この場合、ライン光源3としてキセノン光源やハロゲン光源、メタルハライド光源等を用いるとよい。 As for the wavelength of the line illumination light and the wavelength of the light received by the line sensor 4, the purpose of the present embodiment is to quantify the appearance characteristics of the zinc-based plated steel sheet by visual inspection as an index of streak defects. Therefore, it is preferable to use a wavelength in the visible light region. In addition, since the sensitivity characteristics of Si elements used in cameras for visible light generally include near-infrared light, it is preferable to remove wavelengths in the infrared region by inserting an infrared light cut filter. Furthermore, it is preferable that the wavelength of the line illumination light is broad enough for visual observation.

演算装置5は、情報処理装置によって構成されている。演算装置5は、ラインセンサ4によって連続的に撮影された幅方向の画像のデータを長手方向に繋ぎ合わせることにより切板サンプルSの表面画像を生成する。そして、演算装置5は、生成された切板サンプルSの表面画像に対して後述する定量化処理を実行ことにより筋状欠陥の指標を定量化する。演算装置5は、本発明に係る演算手段として機能する。 The computing device 5 is configured by an information processing device. The computing device 5 generates a surface image of the cut plate sample S by connecting the data of the images in the width direction continuously photographed by the line sensor 4 in the longitudinal direction. Then, the arithmetic device 5 quantifies the index of the streak defect by executing a quantification process, which will be described later, on the surface image of the cut plate sample S that has been generated. The computing device 5 functions as computing means according to the present invention.

〔定量化処理〕
次に、図3を参照して、本発明の一実施形態である定量化処理について説明する。
[Quantification processing]
Next, a quantification process that is an embodiment of the present invention will be described with reference to FIG.

図3は、本発明の一実施形態である定量化処理の流れを示すフローチャートである。図3に示すフローチャートは、演算装置5が、切板サンプルSの表面画像を生成したタイミングで開始となり、定量化処理はステップS1の処理に進む。 FIG. 3 is a flow chart showing the flow of quantification processing, which is an embodiment of the present invention. The flowchart shown in FIG. 3 starts at the timing when the calculation device 5 generates the surface image of the cut plate sample S, and the quantification process proceeds to the process of step S1.

ステップS1の処理では、演算装置5が、切板サンプルSの表面画像の幅方向(鋼板の圧延方向に対して垂直な方向)の輝度むらを補正(除去)することにより、筋状欠陥が表面画像内のどの位置で発生したとしても同一の計測値が得られるようにする。具体的には、光学系は幅方向に均一な輝度が得られるように設計されているが、それでも鋼板自体が持つ面的になだらかな反射特性の変化等の影響によって幅方向に輝度むらが発生する。そこで、演算装置5は、まず、切板サンプルSの表面画像に含まれる低周波成分を除去する。そして、演算装置5は、低周波成分のみを抽出した表面画像の輝度と低周波成分を除去した画像の輝度との比をとった画像を補正画像として生成する。 In the process of step S1, the arithmetic device 5 corrects (removes) the luminance unevenness in the width direction (the direction perpendicular to the rolling direction of the steel plate) of the surface image of the cut plate sample S, thereby removing the streak defects from the surface. To obtain the same measurement value regardless of the position in the image. Specifically, the optical system is designed to obtain uniform brightness in the width direction, but even so, uneven brightness occurs in the width direction due to the influence of the smooth changes in reflection characteristics of the steel plate itself. do. Therefore, the arithmetic unit 5 first removes the low-frequency components contained in the surface image of the cut plate sample S. FIG. Then, the arithmetic unit 5 generates, as a corrected image, an image obtained by taking the ratio of the luminance of the surface image from which only the low-frequency components are extracted and the luminance of the image from which the low-frequency components are removed.

単純に低周波成分を除去しただけでは、同じ筋状欠陥でも周辺部の輝度値が高ければコントラストが強くなり、低ければコントラストが弱くなるので、後工程で行われる筋状欠陥の計測値が表面画像内の位置に依存してしまう。これに対して、低周波成分のみを抽出した表面画像と低周波成分を除去した画像との輝度比をとった画像を補正画像として生成することにより、周辺部の輝度値が高い部分と低い部分に発生した筋状欠陥のコントラストの差を平均化することができる。ライン光源3の照射角を10度、ラインセンサ4の受光角を40度、幅方向分解能を0.11mm、長手方向分解能を0.08mmとして筋状欠陥が発生した溶融亜鉛めっき鋼板の表面を撮影した画像を図4に示す。また、図4に示す表面画像の補正画像を図5に示す。これにより、ステップS1の処理は完了し、定量化処理はステップS2の処理に進む。 If the low-frequency component is simply removed, the same streak defect will have a stronger contrast if the peripheral brightness value is high, and will become weaker if it is low. It depends on the position in the image. On the other hand, by generating, as a corrected image, an image obtained by taking the luminance ratio of the surface image from which only the low-frequency components are extracted and the image from which the low-frequency components are removed, the high-luminance and low-luminance portions of the peripheral portion can be obtained. It is possible to average the difference in the contrast of the streak defects that occurred in the The irradiation angle of the line light source 3 is 10 degrees, the light receiving angle of the line sensor 4 is 40 degrees, the resolution in the width direction is 0.11 mm, and the resolution in the longitudinal direction is 0.08 mm. FIG. 4 shows the resulting image. FIG. 5 shows a corrected image of the surface image shown in FIG. Thereby, the process of step S1 is completed, and the quantification process proceeds to the process of step S2.

ステップS2の処理では、演算装置5が、ステップS1の処理によって生成された補正画像から、筋状欠陥を含んだある範囲の領域の画像を選択し、選択された筋状欠陥を含んだ領域の画像を筋状欠陥画像と設定することにより筋状欠陥画像を生成する。筋状欠陥を含んだ領域を選択した例を図6(a)に示す。領域選択後の画像はわかりやすいように色調補正している。本例では、外観不良となる縦筋である白い筋と黒い筋の安定した領域を含むように十分な長手方向の長さを選択している。なお、筋状欠陥画像において筋状欠陥は場所によって薄まっていることがあるので、できるだけ安定して発生している領域を選択することが好ましい。また、筋状欠陥の周辺に、汚れや欠陥等の筋状欠陥以外の異物がある場合、異物の画像が筋状欠陥画像におけるノイズ要因となるので、画像を選択する範囲から異物の画像を外すことが好ましい。これにより、ステップS2の処理は完了し、定量化処理はステップS3の処理に進む。 In the process of step S2, the arithmetic unit 5 selects an image of a certain range of areas including the streak defect from the corrected image generated by the process of step S1, and selects an image of the area including the selected streak defect. A streak defect image is generated by setting the image as a streak defect image. FIG. 6A shows an example of selecting a region containing streak defects. After selecting the area, the image is color-corrected to make it easier to understand. In this example, the longitudinal length is chosen to be sufficient to include stable regions of white and black streaks that are unsightly vertical streaks. In addition, since the streak-like defect in the streak-like defect image may be thin depending on the location, it is preferable to select an area where the streak-like defect is stably generated as much as possible. Also, if there is foreign matter other than the linear defect such as dirt or defects around the linear defect, the image of the foreign matter becomes a noise factor in the linear defect image, so the image of the foreign matter is excluded from the image selection range. is preferred. Thereby, the process of step S2 is completed, and the quantification process proceeds to the process of step S3.

ステップS3の処理では、演算装置5が、ステップS2の処理によって生成された筋状欠陥画像に対して長手方向における輝度の平均化処理等を実施する。具体的には、ステップS2の処理によって生成された筋状欠陥画像における筋状欠陥部の輝度と周辺部の輝度をそのまま単純に比較してしまうと、鋼板そのものが持つ表面粗さ等の表面性状によってばらつきが大きくなる。そこで、筋状欠陥が長手方向に延伸する特徴を考慮して、演算装置5は、筋状欠陥画像に対して長手方向における輝度の平均化処理等を実施する。言い換えると、演算装置5は、2次元の筋状欠陥画像を幅方向は1次元のままで長手方向は0次元に圧縮した1次元(線状)プロファイルを生成する。詳しくは、演算装置5は、長手方向に対しては2次元の筋状欠陥画像における長手方向の特徴を反映した代表値が得られるように処理を行う。例えば筋状欠陥画像は2次元の行列であるので、筋状欠陥画像はI(p,q)(1≦p≦P、1≦q≦Q、P×Qの解像度)と表現できる(図6(a)参照)。従って、平均化処理の場合には、1次元プロファイルL(p)(1≦p≦P)は以下に示す数式(1)により算出することができる。図6(a)に示す筋状欠陥画像から算出された1次元プロファイルL(p)を図6(b)に示す。 In the process of step S3, the arithmetic unit 5 performs luminance averaging process in the longitudinal direction on the linear defect image generated by the process of step S2. Specifically, if the luminance of the linear defect portion and the luminance of the peripheral portion in the linear defect image generated by the process of step S2 are simply compared as they are, the surface properties such as the surface roughness of the steel sheet itself increases the variability. Therefore, considering the feature that the streak defect extends in the longitudinal direction, the arithmetic device 5 performs luminance averaging processing in the longitudinal direction on the streak defect image. In other words, the arithmetic unit 5 generates a one-dimensional (linear) profile by compressing the two-dimensional streak defect image to 0-dimensional in the longitudinal direction while keeping the width in the one-dimensional direction. Specifically, the arithmetic unit 5 performs processing in the longitudinal direction so as to obtain a representative value that reflects the characteristics of the longitudinal direction in the two-dimensional streak defect image. For example, since the streak defect image is a two-dimensional matrix, the streak defect image can be expressed as I(p, q) (1≤p≤P, 1≤q≤Q, P×Q resolution) (FIG. 6). (a)). Therefore, in the case of the averaging process, the one-dimensional profile L(p) (1≤p≤P) can be calculated by Equation (1) shown below. A one-dimensional profile L(p) calculated from the linear defect image shown in FIG. 6(a) is shown in FIG. 6(b).

Figure 2023123908000002
Figure 2023123908000002

なお、平均化処理以外の処理としては、最大値処理(長手方向の輝度の最大値を代表値とする処理)、最小値処理(長手方向の輝度の最小値を代表値とする処理)、中央値処理(長手方向の輝度の中央値を代表値とする処理)、及びパーセンタイル処理(大きい順に並び変えて決まった順位の輝度値を採用する処理)等を例示することができる。但し、長手方向に対して安定して筋状欠陥部の代表値が得られるのであれば、どのような処理であってもよい。また、筋状欠陥画像の長手方向の長さは、表面粗さによるばらつきを低減できるように十分長いことが好ましい。例えば平均値処理を採用する場合、表面粗さ起因のノイズがランダムに発生し、ノイズが正規分布であると仮定すると、Q点の平均化によってノイズは√Q倍される。従って、筋状欠陥画像の長手方向の長さ、すなわち長手方向の平均化する点数をQ、筋状欠陥の代表点の信号をS、健全部のノイズをN、必要なSN比をρと置くと、ρは以下に示す数式(2)を満たすとよい。 Processing other than averaging includes maximum value processing (processing using the maximum luminance value in the longitudinal direction as the representative value), minimum value processing (processing using the minimum luminance value in the longitudinal direction as the representative value), central Examples include value processing (processing using the median value of luminance in the longitudinal direction as a representative value) and percentile processing (processing in which luminance values are rearranged in descending order and the luminance values of a predetermined order are adopted). However, any processing may be used as long as the representative value of the streak-like defect portion can be stably obtained in the longitudinal direction. Also, the length of the streak defect image in the longitudinal direction is preferably long enough to reduce variations due to surface roughness. For example, when averaging processing is employed, noise due to surface roughness is generated randomly, and assuming that the noise has a normal distribution, the noise is multiplied by √Q by averaging the Q points. Therefore, let the length of the linear defect image in the longitudinal direction, that is, the number of points to be averaged in the longitudinal direction be Q, the signal of the representative point of the linear defect be S, the noise of the healthy portion be N, and the required SN ratio be ρ. , ρ preferably satisfies the following formula (2).

Figure 2023123908000003
Figure 2023123908000003

ステップS4の処理では、演算装置5が、ステップS3の処理によって得られた1次元プロファイルから筋状欠陥に対応する位置の数値を抽出し、その数値を筋状欠陥の指標とする。なお、周辺部と比較し筋状欠陥が明るい場合は正側、暗い場合は負側に信号強度が出るので、絶対値を筋状欠陥の指標としてもよいし、最大値から最小値を引いた値を筋状欠陥の指標としてもよい。ここで、図7(a),(b)に筋状欠陥がある場合と筋状欠陥がない場合における筋状欠陥画像及び1次元プロファイルを示す。図7(a)の黒矢印及び白矢印は目視によって確認された筋状欠陥の位置を示し、数値-6.8及び+3,4は筋状欠陥の位置における1次元プロファイルの数値を示す。得られた数値は目視の直感的な判定とよく一致していることがわかる。また、ライン光源3の照射角を10度に固定し、ラインセンサ4の受光角を変化させたときの筋状欠陥があるサンプルと筋状欠陥のないサンプルにおける指標の推移を図8に示す。なお、図8に示す例では、抽出した数値を筋状欠陥の指標とするために、指標は最大値と最小値の差とした。抽出した数値の最大値と最小値の差が大きければ大きいほど、筋状欠陥の程度が酷く亜鉛系めっき鋼板の外観特性は悪化することが明らかであるためである。また、図8中の「欠陥ありの指標と欠陥なしの指標との差」は、各受光角(単位は度)における、筋状欠陥ありの場合の指標から筋状欠陥なしの場合の指標を引いた値である。筋状欠陥なしの場合の指標(図8の場合、筋状欠陥がない領域における最大値と最小値の差)は、計測対象である亜鉛系めっき鋼板が元々持っている指標、例えば背景ノイズに相当すると考えられる。そこで、筋状欠陥ありの場合の指標(図8の場合、筋状欠陥がある領域における最大値と最小値の差)からさらに背景ノイズに相当する筋状欠陥なしの場合の指標を引けば、筋状欠陥ありの場合における指標の変化をより強調できる。 In the process of step S4, the arithmetic unit 5 extracts the numerical value of the position corresponding to the streak defect from the one-dimensional profile obtained by the process of step S3, and uses the numerical value as the index of the streak defect. When the streak defect is brighter than the surrounding area, the signal intensity appears on the positive side, and when it is dark, the signal strength appears on the negative side. The value may be used as an indicator of streak defects. Here, FIGS. 7A and 7B show a linear defect image and a one-dimensional profile when there is a linear defect and when there is no linear defect. The black and white arrows in FIG. 7(a) indicate the positions of visually confirmed streak defects, and the numerical values −6.8 and +3, 4 indicate the numerical values of the one-dimensional profile at the streak defect positions. It can be seen that the numerical values obtained are in good agreement with the intuitive visual judgment. FIG. 8 shows the transition of the index for a sample with a streak defect and a sample without a streak defect when the irradiation angle of the line light source 3 is fixed at 10 degrees and the light receiving angle of the line sensor 4 is changed. In the example shown in FIG. 8, the difference between the maximum value and the minimum value is used as the index in order to use the extracted numerical value as the index of the streak defect. This is because it is clear that the larger the difference between the maximum value and the minimum value of the extracted numerical values, the more serious the streak defects and the worse the appearance characteristics of the galvanized steel sheet. In addition, the "difference between the indicator with defect and the indicator without defect" in FIG. is the subtracted value. The index for the absence of streak defects (in the case of FIG. 8, the difference between the maximum value and the minimum value in the region without streak defects) is an index originally possessed by the galvanized steel sheet to be measured, such as background noise. considered to be equivalent. Therefore, by subtracting the index without the streak defect corresponding to the background noise from the index with the streak defect (in the case of FIG. 8, the difference between the maximum value and the minimum value in the region with the streak defect), It is possible to emphasize the change in the index when there is a streak defect.

図8に示すように、ラインセンサ4の受光角が10度付近と正反射領域に近い場合、ミクロな鏡面反射がまばらに存在し、筋状欠陥の有無にかかわらず指標の値は大きくなった。これに対して、ラインセンサ4の受光角を大きくしていくと、筋状欠陥そのものの信号値が弱まり、筋状欠陥の有無にかかわらず指標の値は低下した。そして、ラインセンサ4の受光角が40度と正反射方向から30度離れたとき(ライン光源3の照射角との差が30度になったとき)に、筋状欠陥の有無による指標の差が最も大きくなった。詳しくは、ラインセンサ4の受光角を正反射方向である10度から大きくしていくと、30度で指標が上がり始め40度でピークとなり、その後50度まで低下した。これにより、ライン光源3の照射角が10度である場合、ラインセンサ4の受光角が30度から50度の範囲内で上述の指標の差を大きくできることが確認された。従って、本例では、ライン光源3の照射角を10度に固定しているため、ラインセンサ4の受光角を正反射方向から20度以上40度以下の範囲で異なるようにラインセンサ4を配置するとよく、30度異なる条件が最もよいと言える。また、このことから、ライン光源3の照射角とラインセンサ4の受光角の差は20度以上40度以下の範囲内に設定するとよい。これにより、ステップS4の処理は完了し、一連の定量化処理は終了する。 As shown in FIG. 8, when the light-receiving angle of the line sensor 4 is around 10 degrees, which is close to the specular reflection area, microscopic specular reflections are sparsely present, and the index value is large regardless of the presence or absence of streak defects. . On the other hand, when the light-receiving angle of the line sensor 4 was increased, the signal value of the streak defect itself weakened, and the index value decreased regardless of the presence or absence of the streak defect. Then, when the light-receiving angle of the line sensor 4 is 40 degrees and is 30 degrees away from the regular reflection direction (when the difference from the irradiation angle of the line light source 3 is 30 degrees), the index difference due to the presence or absence of the streak defect became the largest. Specifically, when the light-receiving angle of the line sensor 4 was increased from 10 degrees, which is the regular reflection direction, the index began to rise at 30 degrees, reaching a peak at 40 degrees, and then decreased to 50 degrees. As a result, it was confirmed that when the irradiation angle of the line light source 3 is 10 degrees, the difference in the index can be increased when the light receiving angle of the line sensor 4 is within the range of 30 degrees to 50 degrees. Therefore, in this example, since the irradiation angle of the line light source 3 is fixed at 10 degrees, the line sensor 4 is arranged so that the light receiving angle of the line sensor 4 differs from the regular reflection direction within a range of 20 degrees or more and 40 degrees or less. Then, it can often be said that the conditions differing by 30 degrees are the best. For this reason, the difference between the irradiation angle of the line light source 3 and the light receiving angle of the line sensor 4 should be set within the range of 20 degrees or more and 40 degrees or less. As a result, the processing of step S4 is completed, and the series of quantification processing ends.

以上の説明から明らかなように、本発明の一実施形態である欠陥計測装置1は、亜鉛系めっき鋼板の表面にライン照明光を照射するライン光源3と、亜鉛系めっき鋼板の表面で反射されたライン照明光を受光することによって亜鉛系めっき鋼板の表面画像を撮影するラインセンサ4と、を備え、ライン光源3及びラインセンサ4は、ライン照明光の照射角と受光角との差が20度以上40度以下の範囲内になるように配置されている。これにより、簡素な光学系で筋状欠陥を直接的に短時間で計測することができる。 As is clear from the above description, the defect measuring apparatus 1 according to one embodiment of the present invention includes the line light source 3 that irradiates the surface of the zinc-based plated steel sheet with line illumination light, and the line light that is reflected from the surface of the zinc-based plated steel sheet. and a line sensor 4 for capturing a surface image of the zinc-based plated steel sheet by receiving the line illumination light. It is arranged so as to be within the range of 40 degrees or more. Thereby, it is possible to directly measure a streak-like defect in a short time with a simple optical system.

また、本指標を用いて製品毎に筋状欠陥の発生状況(例えば、筋状欠陥の外観程度、発生頻度および大きさ等)を等級化することにより様々な効果を得ることができる。例えば、指標を製品の合否判定に用いる、製品の製造工程のオペレーションに指標をフィードバックして筋状欠陥の発生を抑制する、指標をほかの様々な操業データと合わせて大規模データとして取り扱い、多変量解析により筋状欠陥の発生要因や発生条件を特定する、他操業データから筋状欠陥の発生リスクを予測する、予測結果を操業現場に提示する、予測結果を用いて自動操業する等が挙げられる。 In addition, various effects can be obtained by using this index to grade the occurrence of streak defects (for example, the degree of appearance, frequency and size of streak defects, etc.) for each product. For example, indicators can be used for pass/fail judgment of products, indicators can be fed back to the operation of the manufacturing process to suppress the occurrence of streak defects, indicators can be combined with various other operational data and handled as large-scale data, Identifying the causes and conditions of occurrence of streak defects by variable analysis, predicting the risk of streak defect occurrence from other operation data, presenting the prediction results to the operation site, and automatically operating using the prediction results. be done.

また、本発明を亜鉛系めっき鋼板の製造設備を構成する欠陥計測装置に適用し、本発明に係る欠陥計測装置によって公知又は既存の製造設備によって製造された亜鉛系めっき鋼板を計測し、当該亜鉛系めっき鋼板の筋状欠陥を計測するようにしてもよい。また、本発明を亜鉛系めっき鋼板の製造方法に含まれる欠陥計測方法に適用し、公知又は既存の製造ステップで製造された亜鉛系めっき鋼板を計測する計測ステップを備えることで、当該亜鉛系めっき鋼板において筋状欠陥を計測するようにしてもよい。このような亜鉛系めっき鋼板の製造設備及び金属帯の製造方法によれば、亜鉛系めっき鋼板を歩留りよく製造することができる。さらに、本発明を亜鉛系めっき鋼板の品質管理方法に適用し、亜鉛系めっき鋼板を計測する計測ステップを備えることにより、亜鉛系めっき鋼板の筋状欠陥の計測結果から、亜鉛系めっき鋼板の品質管理を行うようにしてもよい。このような亜鉛系めっき鋼板の品質管理方法によれば、高品質の亜鉛系めっき鋼板を提供することができる。 In addition, the present invention is applied to a defect measuring device that constitutes a manufacturing facility for a zinc-based plated steel sheet, and the zinc-based steel sheet manufactured by a known or existing manufacturing facility is measured by the defect measuring device according to the present invention, and the zinc It is also possible to measure streak-like defects in the system-plated steel sheet. In addition, by applying the present invention to a defect measurement method included in a method for manufacturing a zinc-based steel sheet and providing a measurement step for measuring a zinc-based steel sheet manufactured by a known or existing manufacturing step, the zinc-based coating You may make it measure a line-like defect in a steel plate. According to such a zinc-based plated steel sheet manufacturing facility and metal strip manufacturing method, a zinc-based plated steel sheet can be manufactured with a high yield. Furthermore, by applying the present invention to a quality control method for a zinc-based plated steel sheet and providing a measurement step for measuring the zinc-based steel sheet, the quality of the zinc-based steel sheet can be determined from the measurement result of the streak defect of the zinc-based steel sheet. You may make it manage. According to such a quality control method for a zinc-based plated steel sheet, it is possible to provide a high-quality zinc-based plated steel sheet.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。 Although the embodiments to which the inventions made by the present inventors are applied have been described above, the present invention is not limited by the descriptions and drawings forming part of the disclosure of the present invention according to the embodiments.

例えば、上記実施形態は切板サンプルを用いた例であるが、オンラインで搬送中の亜鉛系めっき鋼板に本発明を適用することにより、製品の全長全幅に発生する筋状欠陥の指標、すなわち亜鉛系めっき鋼板の外観特性の定量化をオンラインで実施することもできる。オンラインでの本発明の適用例を図9に示す。図9に示す例では、搬送中の亜鉛系めっき鋼板STに対して切板サンプルSと同様にライン光源3とラインセンサ4を設置し、ロールRの回転に合わせてエンコーダ6によりパルス信号を発生させ、パルス信号をトリガーとして亜鉛系めっき鋼板STの表面画像を撮影する。このとき、エンコーダ6のパルス値をカウントして筋状欠陥の発生位置を突合せできるようにしておくことが好ましい。そして、演算装置5は、撮影された表面画像から筋状欠陥の指標をリアルタイムで算出する。また、演算装置5は、上位PC7から亜鉛系めっき鋼板STの情報を得て指標の有害度を判定し、上位PC7に指標を伝送することによって筋状欠陥の指標を管理する。また、演算装置5は、亜鉛系めっき鋼板STの全長全幅において筋状欠陥の指標を算出して指標マップを作成する。この時、閾値を設けることにより実際に筋状欠陥が発生した部位の画像のみを保存し、その後筋状欠陥の強度や幅、発生範囲等でより詳細に筋状欠陥の特徴を分析し、品質保証や要因解析に役立てても良い。このように、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 For example, the above embodiment is an example using a cut plate sample, but by applying the present invention to a zinc-based plated steel sheet being transported online, an index of streak defects occurring over the entire length and width of the product, that is, zinc Quantification of the appearance properties of the system plated steel sheet can also be performed online. An application example of the present invention on-line is shown in FIG. In the example shown in FIG. 9, a line light source 3 and a line sensor 4 are installed for the zinc-based plated steel sheet ST being conveyed in the same manner as for the cut plate sample S, and pulse signals are generated by the encoder 6 in accordance with the rotation of the roll R. A surface image of the galvanized steel sheet ST is photographed using the pulse signal as a trigger. At this time, it is preferable to count the pulse values of the encoder 6 so as to be able to compare the occurrence positions of the streak defects. Then, the arithmetic unit 5 calculates the index of the streak defect in real time from the photographed surface image. Further, the arithmetic device 5 obtains information on the zinc-based plated steel sheet ST from the host PC 7 to determine the degree of harm of the index, and transmits the index to the host PC 7 to manage the index of the streak defect. Further, the arithmetic unit 5 calculates the index of the streak defects in the entire length and width of the zinc-based plated steel sheet ST to create an index map. At this time, by setting a threshold, only the image of the part where the streak defect actually occurred is saved. It may be useful for guarantee and factor analysis. Thus, other embodiments, examples, operation techniques, etc. made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

1 欠陥計測装置
2 リニアステージ
3 ライン光源
4 ラインセンサ
5 演算装置
S 切板サンプル
ST 亜鉛系めっき鋼板
REFERENCE SIGNS LIST 1 defect measuring device 2 linear stage 3 line light source 4 line sensor 5 computing device S cutting plate sample ST galvanized steel sheet

Claims (7)

亜鉛系めっき鋼板の表面の筋状欠陥を計測する欠陥計測装置であって、
前記亜鉛系めっき鋼板の表面にライン照明光を照射する照射手段と、
前記亜鉛系めっき鋼板の表面で反射された前記ライン照明光を受光することによって、前記亜鉛系めっき鋼板の表面画像を撮影する撮像手段と、を備え、
前記照射手段及び前記撮像手段は、前記ライン照明光の照射角と受光角との差が20度以上40度以下の範囲内になるように配置されている、
欠陥計測装置。
A defect measuring device for measuring streak defects on the surface of a zinc-based plated steel sheet,
irradiating means for irradiating the surface of the zinc-based plated steel sheet with line illumination light;
an imaging means for capturing a surface image of the zinc-based plated steel sheet by receiving the line illumination light reflected on the surface of the zinc-based plated steel sheet,
The irradiation means and the imaging means are arranged so that the difference between the irradiation angle and the light reception angle of the line illumination light is within a range of 20 degrees or more and 40 degrees or less.
Defect measuring device.
前記亜鉛系めっき鋼板の表面画像から、前記亜鉛系めっき鋼板の圧延方向に対して平行な方向における前記筋状欠陥の特徴量を前記筋状欠陥の指標として算出する演算手段を備え、
前記照射手段は、前記ライン照明光の延伸方向が前記亜鉛系めっき鋼板の圧延方向に対して垂直な方向になるように配置されている、請求項1に記載の欠陥計測装置。
computing means for calculating, as an index of the line defect, a feature quantity of the line defect in a direction parallel to the rolling direction of the zinc-base plated steel sheet from the surface image of the zinc-base plated steel sheet;
2. The defect measuring apparatus according to claim 1, wherein said irradiation means is arranged such that the extending direction of said line illumination light is perpendicular to the rolling direction of said galvanized steel sheet.
前記演算手段は、前記亜鉛系めっき鋼板の表面画像から前記垂直な方向の輝度むらを補正した補正画像を生成し、前記補正画像から筋状欠陥を含んだ領域の画像を選択し、選択した前記筋状欠陥の画像から前記指標を算出する、請求項2に記載の欠陥計測装置。 The computing means generates a corrected image in which the luminance unevenness in the vertical direction is corrected from the surface image of the zinc-based plated steel sheet, selects an image of an area including the streak defect from the corrected image, and selects the selected image. 3. The defect measuring apparatus according to claim 2, wherein said index is calculated from an image of a streak defect. 亜鉛系めっき鋼板の表面の筋状欠陥を計測する欠陥計測方法であって、
照射手段が前記亜鉛系めっき鋼板の表面にライン照明光を照射する照射ステップと、
撮像手段が前記亜鉛系めっき鋼板の表面で反射された前記ライン照明光を受光することによって、前記亜鉛系めっき鋼板の表面画像を撮影する撮像ステップと、を含み、
前記照射手段及び前記撮像手段は、前記ライン照明光の照射角と受光角との差が20度以上40度以下の範囲内になるように配置されている、
欠陥計測方法。
A defect measurement method for measuring streak defects on the surface of a zinc-based plated steel sheet,
an irradiation step in which irradiation means irradiates the surface of the zinc-based plated steel sheet with line illumination light;
an imaging step of capturing an image of the surface of the zinc-based plated steel sheet by receiving the line illumination light reflected by the surface of the zinc-based plated steel sheet by an imaging means;
The irradiation means and the imaging means are arranged so that the difference between the irradiation angle and the light reception angle of the line illumination light is within a range of 20 degrees or more and 40 degrees or less.
Defect measurement method.
亜鉛系めっき鋼板を製造する製造設備と、
前記製造設備により製造された亜鉛系めっき鋼板の表面を計測する請求項1~3のうち、いずれか1項に記載の欠陥計測装置と、
を備える、亜鉛系めっき鋼板の製造設備。
Manufacturing facilities for manufacturing zinc-based plated steel sheets,
The defect measuring device according to any one of claims 1 to 3, which measures the surface of the zinc-based plated steel sheet manufactured by the manufacturing equipment;
A manufacturing facility for zinc-based plated steel sheets.
亜鉛系めっき鋼板を製造する製造ステップと、
請求項4に記載の欠陥計測方法を用いて前記製造ステップにおいて製造された亜鉛系めっき鋼板の表面を計測する計測ステップと、
を含む、亜鉛系めっき鋼板の製造方法。
A manufacturing step for manufacturing a zinc-based plated steel sheet;
A measuring step of measuring the surface of the zinc-based plated steel sheet manufactured in the manufacturing step using the defect measuring method according to claim 4;
A method for producing a zinc-based plated steel sheet, comprising:
請求項4に記載の欠陥計測方法を用いて亜鉛系めっき鋼板の表面を計測する計測ステップと、
前記計測ステップにおける筋状欠陥の計測結果から前記亜鉛系めっき鋼板の品質管理を行う品質管理ステップと、
を含む、亜鉛系めっき鋼板の品質管理方法。
A measurement step of measuring the surface of a zinc-based plated steel sheet using the defect measurement method according to claim 4;
a quality control step of performing quality control of the zinc-based plated steel sheet from the measurement results of the streak-like defects in the measurement step;
A quality control method for a zinc-based plated steel sheet, comprising:
JP2022027379A 2022-02-25 2022-02-25 Defect measuring device, defect measuring method, manufacturing facility for galvanized steel plate, manufacturing method for galvanized steel plate, and quality control method for galvanized steel plate Pending JP2023123908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022027379A JP2023123908A (en) 2022-02-25 2022-02-25 Defect measuring device, defect measuring method, manufacturing facility for galvanized steel plate, manufacturing method for galvanized steel plate, and quality control method for galvanized steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022027379A JP2023123908A (en) 2022-02-25 2022-02-25 Defect measuring device, defect measuring method, manufacturing facility for galvanized steel plate, manufacturing method for galvanized steel plate, and quality control method for galvanized steel plate

Publications (1)

Publication Number Publication Date
JP2023123908A true JP2023123908A (en) 2023-09-06

Family

ID=87886295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022027379A Pending JP2023123908A (en) 2022-02-25 2022-02-25 Defect measuring device, defect measuring method, manufacturing facility for galvanized steel plate, manufacturing method for galvanized steel plate, and quality control method for galvanized steel plate

Country Status (1)

Country Link
JP (1) JP2023123908A (en)

Similar Documents

Publication Publication Date Title
JP3764890B2 (en) Method for on-line characterization of a moving surface and apparatus for implementing it
US8194967B2 (en) Article visual inspection apparatus
US10267747B2 (en) Surface defect inspecting device and method for steel sheets
US20180017503A1 (en) Surface defect inspecting device and method for hot-dip coated steel sheets
JP5264995B2 (en) How to measure the cleanliness of steel strips
JP6275248B2 (en) Method and apparatus for determining the wear characteristics of a coated flat product
JPWO2020067262A1 (en) Method and device for detecting surface defects of metal plate and manufacturing method for plated steel sheet
JP2012251983A (en) Wrap film wrinkle inspection method and device
JP4705277B2 (en) Oil amount distribution measuring device and oil amount distribution measuring method
JP2023123908A (en) Defect measuring device, defect measuring method, manufacturing facility for galvanized steel plate, manufacturing method for galvanized steel plate, and quality control method for galvanized steel plate
JP7363462B2 (en) Material evaluation method
JP5949690B2 (en) Evaluation method and evaluation apparatus
JP7370355B2 (en) Evaluation method and device for roughening metal surfaces
JP2007506072A (en) Sheet surface analyzer and analysis method
JP4411918B2 (en) Quality control method and manufacturing method of steel sheet having oxide film on surface
JP3580137B2 (en) Method and apparatus for measuring crystal grain size
JP6470293B2 (en) Method and apparatus for measuring wear characteristics of galvanyl flat steel products
JP3239793B2 (en) Method for determining the surface properties of chromium-based stainless steel sheets
JP2001116693A (en) Surface glossiness inspection method and device
WO2015027014A1 (en) Method for measuring surface characteristics of hot dipped galvanneal steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230926