JP2022050126A - Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program - Google Patents

Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program Download PDF

Info

Publication number
JP2022050126A
JP2022050126A JP2020156544A JP2020156544A JP2022050126A JP 2022050126 A JP2022050126 A JP 2022050126A JP 2020156544 A JP2020156544 A JP 2020156544A JP 2020156544 A JP2020156544 A JP 2020156544A JP 2022050126 A JP2022050126 A JP 2022050126A
Authority
JP
Japan
Prior art keywords
storage battery
power
amount
charge
distributed energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020156544A
Other languages
Japanese (ja)
Inventor
雅彦 村井
Masahiko Murai
将典 坂田
Masanori Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020156544A priority Critical patent/JP2022050126A/en
Publication of JP2022050126A publication Critical patent/JP2022050126A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To utilize an EV storage battery as DER according to the operating state of an EV without an information input operation for utilizing the EV as the DER from the EV.SOLUTION: A distributed energy resource management device comprises: a prediction unit that predicts the amount of power demanded per unit time by a user who has a storage battery of a vehicle as distributed energy resources and the amount of power supplied per unit time to the user; an input unit that receives input of use information including information on the use time zone of the vehicle; and a plan creation unit that creates a charge-discharge plan for the storage battery based on the amount of power demanded, the amount of power supplied, and the use information.SELECTED DRAWING: Figure 10

Description

本発明の実施形態は、分散型エネルギーリソース管理装置、分散型エネルギーリソース管理方法、および、分散型エネルギーリソース管理プログラムに関する。 Embodiments of the present invention relate to a distributed energy resource management device, a distributed energy resource management method, and a distributed energy resource management program.

近年、工場や家庭などの需要家(電力需要家。以下同様)が有する分散型エネルギーリソース(DER:Distributed Energy Resources)を、IoT(Internet of Things)を活用した高度なエネルギーマネジメント技術によりアグリゲーションして、遠隔・統合制御することで、あたかも一つの発電所のように機能させる、バーチャルパワープラント(VPP)の技術開発が進められている。 In recent years, distributed energy resources (DER: Distributed Energy Resources) owned by consumers such as factories and homes (electric power consumers; the same applies hereinafter) have been aggregated by advanced energy management technology utilizing IoT (Internet of Things). The development of technology for a virtual power plant (VPP) that functions as if it were a single power plant by remote and integrated control is underway.

そして、VPPや、電気の需要(消費)と供給(発電)のバランスをとるために需要家側の電力を制御する技術であるDR(Demand Response)への注目が高まっている。VPPやDRにより、負荷平準化や再生可能エネルギーの供給過剰電力の吸収、電力不足時の供給などのサービスを提供することが期待されている。 Then, attention is increasing to VPP and DR (Demand Response), which is a technology for controlling electric power on the consumer side in order to balance the demand (consumption) and supply (power generation) of electricity. It is expected that VPP and DR will provide services such as load leveling, absorption of excess power supply of renewable energy, and supply in the event of power shortage.

また、地球温暖化防止の観点から、COを排出しない太陽光発電装置のような再生可能エネルギー発電機や、再生可能エネルギー発電機による発電電力を有効活用するための蓄電池や、電気自動車(EV:Electric Vehicle)を導入するケースも増えてきており、これらをDERとして活用することが期待されている。 In addition, from the viewpoint of preventing global warming, renewable energy generators such as solar power generators that do not emit CO 2 , storage batteries for effectively utilizing the power generated by renewable energy generators, and electric vehicles (EVs). : Electric Vehicle) is being introduced more and more, and it is expected that these will be utilized as DER.

ここで、DERとしてのEVに注目すると、定置型蓄電池と異なり、EVを移動手段として利用中は、EVをDERとして利用できないという特徴があり、EVの運用状況に応じた利用が求められる。 Here, focusing on the EV as a DER, unlike a stationary storage battery, there is a feature that the EV cannot be used as a DER while the EV is being used as a means of transportation, and it is required to be used according to the operation status of the EV.

そのための技術として、例えば、EVのユーザが家や車両から所定の操作入力を行うことでEVを所定の期間運転しない旨の意思を表示すると、EV蓄電池に充電された電力を電力系統に供給する電力管理システムが知られている。 As a technique for that purpose, for example, when an EV user indicates an intention not to operate the EV for a predetermined period by inputting a predetermined operation from a house or a vehicle, the electric power charged in the EV storage battery is supplied to the power system. Power management systems are known.

国際公開第2017/170741号International Publication No. 2017/170741

しかしながら、上述の従来技術においては、EV側(ユーザの家や車両)にEVをDERとして活用するための情報入力装置が必要であり、利便性の点で改善の余地がある。 However, in the above-mentioned conventional technique, an information input device for utilizing the EV as a DER is required on the EV side (user's house or vehicle), and there is room for improvement in terms of convenience.

そこで、本発明の課題は、EV側からのEVをDERとして活用するための情報入力操作なしに、EVの運用状況に応じて、EV蓄電池をDERとして活用することができる分散型エネルギーリソース管理装置、分散型エネルギーリソース管理方法、および、分散型エネルギーリソース管理プログラムを提供することである。 Therefore, the subject of the present invention is a distributed energy resource management device capable of utilizing an EV storage battery as a DER according to the operating status of the EV without an information input operation for utilizing the EV as a DER from the EV side. , A distributed energy resource management method, and a distributed energy resource management program.

実施形態の分散型エネルギーリソース管理装置は、分散型エネルギーリソースとしての車両の蓄電池を有する需要家の時間単位ごとの需要電力量と供給電力量を予測する予測部と、前記車両の利用時間帯の情報を含む利用情報を入力する入力部と、前記需要電力量、前記供給電力量、前記利用情報に基づいて、前記蓄電池の充放電計画を作成する計画作成部と、を備える。 The distributed energy resource management device of the embodiment includes a prediction unit that predicts the amount of power demand and the amount of power supplied for each time unit of a consumer having a storage battery of a vehicle as a distributed energy resource, and a usage time zone of the vehicle. It includes an input unit for inputting usage information including information, and a planning unit for creating a charge / discharge plan for the storage battery based on the demand power amount, the supply power amount, and the usage information.

実施形態にかかる電力需給システムの概要を示す図である。It is a figure which shows the outline of the electric power supply and demand system which concerns on embodiment. 実施形態にかかるDER管理装置が有する機能の一例を示す図である。It is a figure which shows an example of the function which the DER management apparatus which concerns on embodiment has. 実施形態にかかる需要家の電力購入情報の一例を示す図である。It is a figure which shows an example of the electric power purchase information of the consumer which concerns on embodiment. 実施形態にかかる需要家のEV蓄電池およびV2X装置に関する情報の一例を示す図である。It is a figure which shows an example of the information about the EV storage battery and the V2X apparatus of the consumer which concerns on embodiment. 実施形態にかかる各EVの利用情報の一例を示す図である。It is a figure which shows an example of the use information of each EV which concerns on embodiment. 実施形態にかかる各EVの利用情報の一例を示す図である。It is a figure which shows an example of the use information of each EV which concerns on embodiment. 実施形態にかかる需要家の過去の受電電力量の実績の一例を示す図である。It is a figure which shows an example of the past record of the received power amount of the consumer which concerns on embodiment. 実施形態にかかる需要家の過去のPV発電電力量の実績の一例を示す図である。It is a figure which shows an example of the past record of the PV power generation amount of the consumer which concerns on embodiment. 実施形態にかかるDER管理装置による処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process by the DER management apparatus which concerns on embodiment. 実施形態にかかる需要家のエネルギーバランスを説明する図である。It is a figure explaining the energy balance of the consumer which concerns on embodiment. 実施形態にかかるEVの充放電計画等の一例を示すグラフである。It is a graph which shows an example of the charge / discharge plan of EV which concerns on embodiment.

以下、本発明に係る分散型エネルギーリソース管理装置、分散型エネルギーリソース管理方法、および、分散型エネルギーリソース管理プログラムの実施形態について、図面を参照して説明する。なお、以下において、時刻とは、時間の瞬間を指す場合と、所定時間単位(例えば30分単位)のその時間幅(例えば30分間)を指す場合の2種類がある。 Hereinafter, embodiments of a distributed energy resource management device, a distributed energy resource management method, and a distributed energy resource management program according to the present invention will be described with reference to the drawings. In the following, there are two types of time, one is to indicate the moment of time and the other is to indicate the time width (for example, 30 minutes) of a predetermined time unit (for example, 30 minutes unit).

(構成)
図1は、実施形態にかかる電力需給システムSの概要を示す図である。図1の系統運用者9は、電力会社や送配電事業者等であり、電力系統10を運用して、発電機11を制御することにより、複数の需要家3および需要家8へ電力を供給する。
(Constitution)
FIG. 1 is a diagram showing an outline of the power supply and demand system S according to the embodiment. The system operator 9 in FIG. 1 is an electric power company, a power transmission and distribution business operator, or the like, and supplies electric power to a plurality of consumers 3 and 8 by operating the electric power system 10 and controlling the generator 11. do.

需要家3および需要家8は、電力の供給を受け、当該電力を利用する主体である。本実施形態においては、需要家3は、DRアグリゲータ2の管理範囲に含まれる需要家であり、例えば、事務所や商業施設が入居するビル等とする。また、需要家8は、工場やビル、住宅等とする。また、ビル等を運用する事業者を、需要家3としてもよい。以下、需要家3,8のうち、主に需要家3を例にとって説明するが、需要家8についても同様である。 The consumer 3 and the consumer 8 are the main bodies that receive the electric power and use the electric power. In the present embodiment, the consumer 3 is a consumer included in the management range of the DR aggregator 2, and is, for example, a building in which an office or a commercial facility is located. The consumer 8 is a factory, a building, a house, or the like. Further, the business operator who operates the building or the like may be the consumer 3. Hereinafter, among the consumers 3 and 8, the consumer 3 will be mainly described as an example, but the same applies to the consumer 8.

需要家3は、EV4や、EV4が充放電を行う対象であるV2X装置5(充放電設備)や、太陽光発電装置6(PV:Photovoltaics)、蓄電池7のすべてまたは一部を有する。EV4は、V2X装置5と接続することにより充放電を行い、蓄電池7と同様、ピークカットやデマンドレスポンス、停電などの非常時の電力供給を行うために用いられる。V2X装置5は、例えば、蓄電池7のパワーコンディショナーと同様に、EV4の蓄電池の充放電を行う装置である。 The consumer 3 has all or a part of the EV4, the V2X device 5 (charging / discharging equipment) to which the EV4 charges / discharges, the photovoltaic power generation device 6 (PV: Photovoltaics), and the storage battery 7. The EV 4 is charged and discharged by connecting to the V2X device 5, and is used to supply electric power in an emergency such as peak cut, demand response, and power failure, like the storage battery 7. The V2X device 5 is, for example, a device that charges and discharges the storage battery of the EV 4 in the same manner as the power conditioner of the storage battery 7.

DRアグリゲータ2は、需要家3の電力負荷予測や太陽光発電装置6の発電予測等に基づいて、需要家3のV2X装置5や蓄電池7等を制御することにより、需要家3の受電電力のピーク低減や、消費電力の時間シフトを行い、需要家3の電気料金を低減させるとともに、電力系統10の負荷平準化に貢献する。 The DR aggregator 2 controls the V2X device 5 and the storage battery 7 of the consumer 3 based on the power load prediction of the consumer 3 and the power generation prediction of the photovoltaic power generation device 6, thereby supplying the power received by the consumer 3. By reducing the peak and shifting the time of power consumption, the electricity charge of the consumer 3 is reduced and the load leveling of the power system 10 is contributed.

また、DRアグリゲータ2は、系統運用者9からの受電電力量の削減要請(DR要請)に基づいて、需要家3の受電電力量を削減してDRを行う事業者であり、系統運用者9からの削減要請に基づいて、需要家3のV2X装置5および蓄電池7を制御することによって、DRを実現する。 Further, the DR aggregator 2 is a business operator that reduces the amount of power received by the consumer 3 and performs DR based on the request for reduction of the amount of power received from the grid operator 9 (DR request), and the grid operator 9 DR is realized by controlling the V2X device 5 and the storage battery 7 of the consumer 3 based on the reduction request from.

また、DRアグリゲータ2は、DER管理装置12(分散型エネルギーリソース管理装置)によってEV蓄電池(EV4の蓄電池)の充電または放電のスケジュール(充放電計画)を作成し、当該充放電計画に従ってEV蓄電池の充放電を制御する。DER管理装置12は、PC(Personal Computer)等であり、CPU(Central Processing Unit)と、メモリと、HDD(Hard Disk Drive)と、通信インタフェース(I/F)と、ディスプレイ等の表示装置と、キーボードやマウス等の入力装置とを備える通常のコンピュータを利用したハードウェア構成となっている。 Further, the DR aggregator 2 creates a charging or discharging schedule (charging / discharging plan) of the EV storage battery (EV4 storage battery) by the DER management device 12 (distributed energy resource management device), and prepares the EV storage battery according to the charge / discharge plan. Control charging and discharging. The DER management device 12 is a PC (Personal Computer) or the like, and includes a CPU (Central Processing Unit), a memory, an HDD (Hard Disk Drive), a communication interface (I / F), a display device such as a display, and the like. It has a hardware configuration that uses a normal computer equipped with an input device such as a keyboard and mouse.

図2は、本実施形態にかかるDER管理装置12が有する機能の一例を示す図である。図2に示すように、DER管理装置12は、入力部13と、記憶部14と、取得部15と、表示制御部16と、演算部17と、制御部18と、を備える。演算部17は、予測部19と、計画作成部20とを備える。 FIG. 2 is a diagram showing an example of a function of the DER management device 12 according to the present embodiment. As shown in FIG. 2, the DER management device 12 includes an input unit 13, a storage unit 14, an acquisition unit 15, a display control unit 16, a calculation unit 17, and a control unit 18. The calculation unit 17 includes a prediction unit 19 and a plan creation unit 20.

入力部13は、EV4の利用時間帯の情報を含む利用情報を入力する。より詳細には、入力部13は、入力装置(不図示)を介してデータの入力を受け、需要家3の電力購入に関する情報や、EV4の蓄電池に関する情報や利用情報、V2X装置5に関する情報などを入力し、記憶部14に保存する。各情報は、例えば、後述の最適化モデルにおけるパラメータ等として用いられる(詳細は後述)。 The input unit 13 inputs usage information including information on the usage time zone of EV4. More specifically, the input unit 13 receives data input via an input device (not shown), and includes information on the purchase of power by the consumer 3, information on the storage battery of the EV4, usage information, information on the V2X device 5, and the like. Is input and saved in the storage unit 14. Each piece of information is used, for example, as a parameter in an optimization model described later (details will be described later).

記憶部14は、入力部13から入力された情報や、取得部15が取得したデータ、非常時の想定負荷、予測部19、および計画作成部20でデータ処理を行うための計算条件、予測部19、および計画作成部20の演算結果等を記憶する。記憶部14は、例えばHDDや、メモリである。 The storage unit 14 includes information input from the input unit 13, data acquired by the acquisition unit 15, assumed load in an emergency, calculation conditions for data processing by the prediction unit 19, and the planning unit 20, and a prediction unit. 19 and the calculation result of the plan creation unit 20 are stored. The storage unit 14 is, for example, an HDD or a memory.

図3は、本実施形態にかかる需要家3の電力購入に関する情報の一例である。電力購入に関する情報は、より詳細には、需要家名と、需要家3の契約電力と、需要家3のピークカット電力とが対応付けられたデータである。ピークカット電力は、需要家3が受電電力の最大値の目標値として電力会社やDRアグリゲータ2と契約した値である。ピークカット電力を30分ごとの電力量に変換すると、ピークカットの目標値(目標電力量)となる。需要家3は、一定期間以上、受電電力をピークカット電力以下に保つことができた場合に、契約電力を引き下げることが可能となり、基本料金を低くすることができる。 FIG. 3 is an example of information regarding the purchase of electric power by the consumer 3 according to the present embodiment. More specifically, the information regarding the purchase of electric power is data in which the customer name, the contracted electric power of the consumer 3, and the peak cut electric power of the consumer 3 are associated with each other. The peak cut power is a value contracted by the consumer 3 with the electric power company or the DR aggregator 2 as the target value of the maximum value of the received power. When the peak cut power is converted into the electric energy every 30 minutes, the peak cut target value (target electric energy) is obtained. When the consumer 3 can keep the received power below the peak cut power for a certain period of time or more, the contract power can be reduced and the basic charge can be lowered.

図4は、本実施形態にかかる需要家3のEV4の蓄電池およびV2X装置5に関する情報の一例である。EV4の蓄電池に関する情報は、EV4を特定可能なEV名称と、当該EV4を有する需要家名と、EV4の蓄電池容量、蓄電量の上限(充電上限)および下限(放電下限)とが対応付けられたデータである。 FIG. 4 is an example of information regarding the storage battery of EV4 and the V2X device 5 of the consumer 3 according to the present embodiment. The information about the storage battery of the EV4 is associated with the EV name that can identify the EV4, the name of the customer who has the EV4, the storage battery capacity of the EV4, the upper limit (charge upper limit) and the lower limit (discharge lower limit) of the storage amount. It is data.

また、V2X装置5に関する情報は、V2X装置5に対応するEV名称と、V2X装置5を有する需要家名と、V2X装置5の充電時の出力電力と効率、放電時の出力電力と効率と、が対応付けられたデータである。本実施形態においては、1つの需要家3においてEV4とV2X装置5とが複数台ある場合には、EV4とV2X装置5とは1対1で対応しているものとする。 The information about the V2X device 5 includes the EV name corresponding to the V2X device 5, the name of the customer having the V2X device 5, the output power and efficiency during charging of the V2X device 5, and the output power and efficiency during discharging. Is the associated data. In the present embodiment, when there are a plurality of EV4 and V2X apparatus 5 in one consumer 3, it is assumed that the EV4 and the V2X apparatus 5 have a one-to-one correspondence.

また、図5A、図5Bは、本実施形態にかかる需要家3のEV4の利用情報の一例である。利用情報は、EV4の利用開始時刻と利用終了時刻と、利用開始時刻におけるEV蓄電池の充電目標値と、利用終了時刻におけるEV蓄電池の残量想定値と、の少なくともいずれかを含む。具体的には以下の通りである。 Further, FIGS. 5A and 5B are examples of usage information of EV4 of the consumer 3 according to the present embodiment. The usage information includes at least one of the usage start time and usage end time of EV4, the charging target value of the EV storage battery at the usage start time, and the remaining amount estimated value of the EV storage battery at the usage end time. Specifically, it is as follows.

図5Aに示すEV4の利用情報は、EV名称と、日付と、各日付におけるEV4の利用開始時刻と、利用終了時刻である。また、図5Bに示すEV4の利用情報は、EV名称と、EVの利用開始時の充電量の目標値と、利用終了時の充電量の想定値(残量想定値)である。なお、EV4の利用情報は、新規で作成してもよいし、あるいは、元からあるEV4の予定表などの情報を流用してもよい。 The EV4 usage information shown in FIG. 5A is an EV name, a date, an EV4 usage start time on each date, and a usage end time. Further, the usage information of the EV 4 shown in FIG. 5B is an EV name, a target value of the charge amount at the start of use of the EV, and an assumed value (estimated remaining amount) of the charge amount at the end of use. The usage information of EV4 may be newly created, or the original information such as the schedule of EV4 may be diverted.

図2に戻って、取得部15は、需要家3に設置された電力量計21から、需要家3の受電電力量の計測値を取得する。図6は、本実施形態にかかる需要家3の過去の受電電力量の実績の一例である。受電電力量の実績データは、30分単位の時刻(「0:00」はその時刻からの30分間を示す。)ごとの需要家3の電力受電量の実績に関するデータである。取得部15は、日付と、時刻と、需要家3ごとに、30分間隔の時間単位ごとの受電電力量のデータを電力量計21から取得し、これらのデータを対応付けて、受電電力量の実績データとして記憶部14に保存する。 Returning to FIG. 2, the acquisition unit 15 acquires the measured value of the received power amount of the consumer 3 from the watt-hour meter 21 installed in the consumer 3. FIG. 6 is an example of the actual amount of power received in the past by the consumer 3 according to the present embodiment. The actual power received data is data related to the actual power received by the consumer 3 for each time in 30-minute units (“0:00” indicates 30 minutes from that time). The acquisition unit 15 acquires data on the amount of power received for each time unit at 30-minute intervals for each of the date, time, and consumer 3 from the watt-hour meter 21, and associates these data with the amount of power received. It is stored in the storage unit 14 as the actual data of.

図2に戻って、取得部15は、太陽光発電装置6から、需要家3のPV発電電力量のデータを取得する。ここで、図7は、本実施形態にかかる需要家3の過去のPV発電電力量の実績データの一例である。PV発電電力量の実績データは、30分単位の時刻ごとの需要家3ごとのPV発電電力量の実績に関するデータである。また、取得部15は、V2X装置5から、EV4の蓄電池の充放電電力量や、蓄電量、および、蓄電池7から、充放電電力量や蓄電量を取得する。 Returning to FIG. 2, the acquisition unit 15 acquires the data of the PV power generation amount of the consumer 3 from the photovoltaic power generation device 6. Here, FIG. 7 is an example of actual data of the past PV power generation amount of the consumer 3 according to the present embodiment. The actual data of the amount of PV power generation is data related to the actual amount of PV power generation for each customer 3 at each time of 30 minutes. Further, the acquisition unit 15 acquires the charge / discharge electric energy and the electric energy of the storage battery of the EV 4 from the V2X device 5, and the charge / discharge electric energy and the electric energy of the accumulator from the storage battery 7.

図2に戻って、取得部15は、EV4とV2X装置5との接続状態(例えば、接続あり、接続なし)に関する情報である接続情報を取得する。 Returning to FIG. 2, the acquisition unit 15 acquires connection information which is information regarding the connection state (for example, with or without connection) between the EV 4 and the V2X device 5.

表示制御部16は、予測部19、および計画作成部20の演算結果等を表示装置(不図示)に表示する。 The display control unit 16 displays the calculation results of the prediction unit 19 and the plan creation unit 20 on a display device (not shown).

予測部19は、需要家3ごとの時間単位ごとの負荷電力量を予測する。より詳細には、予測部19は、記憶部14に保存された受電電力量の実績データや、PV発電電力量の実績データ、蓄電池7の充放電電力量データや、EV4の充放電電力量データ、および、曜日等のカレンダー情報に基づいて、翌日の時間単位ごとの需要家3ごとの負荷電力量を予測する。 The prediction unit 19 predicts the load power amount for each time unit for each consumer 3. More specifically, the prediction unit 19 includes actual data on the amount of received power stored in the storage unit 14, actual data on the amount of PV generated power, data on the amount of charge / discharge power of the storage battery 7, and data on the amount of charge / discharge power of EV4. , And, based on the calendar information such as the day of the day, the load power amount for each consumer 3 for each time unit of the next day is predicted.

また、予測部19は、需要家3の時間単位ごとのPV発電電力量(供給電力量)を予測する。より詳細には、予測部19は、記憶部14に保存されたPV発電電力量の実績データや、天気予報情報に基づいて、翌日の時間単位ごとの需要家3ごとのPV発電電力量を予測する。 Further, the prediction unit 19 predicts the PV power generation amount (supply power amount) for each time unit of the consumer 3. More specifically, the prediction unit 19 predicts the PV power generation amount for each consumer 3 for each hour unit of the next day based on the actual data of the PV power generation amount stored in the storage unit 14 and the weather forecast information. do.

負荷電力量やPV発電電力量は、入力部13から入力し、記憶部14に記憶しておいたものを取得して用いてもよい。また、他システムから入力した値を用いてもよい。 The load power amount and the PV power generation power amount may be input from the input unit 13 and stored in the storage unit 14 to be acquired and used. Moreover, the value input from another system may be used.

計画作成部20は、需要家3ごとに、予測部19によって予測された負荷電力量(需要電力量)およびPV発電電力量(供給電力量)と利用情報に基づいて、EV4の蓄電池の蓄電量が上下限値の範囲内で、電気料金が最小となるように、EV4の時間単位ごとの充電量および放電量を規定する充放電計画を作成する。 The planning unit 20 stores the stored battery of the EV4 based on the load power amount (demand power amount), PV power generation power amount (supply power amount) and usage information predicted by the prediction unit 19 for each consumer 3. Create a charge / discharge plan that defines the charge amount and discharge amount for each time unit of EV4 so that the electricity charge is minimized within the range of the upper and lower limits.

なお、計画作成部20は、充放電計画を作成する際に、さらに、上述の接続情報を用いてもよい。また、充放電計画は、EV蓄電池の充電のみの計画であってもよい。 The plan creation unit 20 may further use the above-mentioned connection information when creating a charge / discharge plan. Further, the charge / discharge plan may be a plan of only charging the EV storage battery.

制御部18は、計画作成部20によって作成されたEV4の充放電計画に従って、V2X装置5の充放電を制御する。より詳細には、制御部18は、充放電計画を、時間単位ごとの充電または放電の電力値を示す指令信号に変換して、それぞれのV2X装置5に送信する。 The control unit 18 controls the charge / discharge of the V2X device 5 according to the charge / discharge plan of the EV4 created by the plan creation unit 20. More specifically, the control unit 18 converts the charge / discharge plan into a command signal indicating a charge or discharge power value for each time unit, and transmits the charge / discharge plan to each V2X device 5.

V2X装置5は、制御部18から充電を指示する指令信号を受信した場合は、時間単位ごとに指定された量だけ、電力系統10から電力を取得して充電をする。また、V2X装置5は、放電を指示する指令信号を受信した場合は、時間単位ごとに指定された量だけ、放電をして構内系統22を介して負荷23に電力を供給する。負荷23は、照明や空調等の電力を消費する機器である。 When the V2X device 5 receives a command signal instructing charging from the control unit 18, the V2X device 5 acquires electric power from the power system 10 by a specified amount for each time unit and charges the device. When the V2X device 5 receives a command signal instructing discharge, the V2X device 5 discharges a specified amount for each time unit and supplies electric power to the load 23 via the premises system 22. The load 23 is a device that consumes electric power such as lighting and air conditioning.

(作用)
次に、以上のように構成された本実施形態のDER管理装置12が実行する処理の流れについて説明する。図8は、本実施形態にかかるDER管理装置12による処理の流れの一例を示すフローチャートである。
(Action)
Next, the flow of processing executed by the DER management device 12 of the present embodiment configured as described above will be described. FIG. 8 is a flowchart showing an example of the flow of processing by the DER management device 12 according to the present embodiment.

まず、予測部19は、記憶部14から受電電力量の実績データ(図6)や、PV発電電力量の実績データ(図7)、蓄電池7の充放電電力量データや、EV4の充放電電力量データ、および、曜日等のカレンダー情報を読み出し、これらの情報に基づいて、翌日の時間単位ごとの需要家3ごとの負荷電力量を予測する(S1)。また、予測部19は、記憶部14からPV発電電力量の実績データや、日射量等の気象情報を読み出し、これらの情報に基づいて、翌日および翌々日の時間単位ごとの需要家3ごとのPV発電電力量(太陽光発電電力量)を予測する(S2)。 First, the prediction unit 19 receives actual data of the amount of power received from the storage unit 14 (FIG. 6), actual data of the amount of PV generated power (FIG. 7), charge / discharge power amount data of the storage battery 7, and charge / discharge power of the EV 4. The amount data and calendar information such as the day of day are read out, and based on these information, the load power amount for each consumer 3 for each time unit of the next day is predicted (S1). Further, the prediction unit 19 reads out the actual data of the PV power generation amount and the weather information such as the amount of solar radiation from the storage unit 14, and based on these information, the PV for each customer 3 for each hour unit of the next day and the day after next. Predict the amount of power generation (the amount of photovoltaic power generation) (S2).

負荷電力量やPV発電電力量は、入力部13より入力し、記憶部14に記憶しておいたものを取得して用いてもよい。また、他システムより入力した値を用いてもよい。 The load power amount and the PV power generation power amount may be input from the input unit 13 and stored in the storage unit 14 to be acquired and used. Further, a value input from another system may be used.

次に、計画作成部20は、予測部19によって予測された負荷電力量、PV発電電力量と、需要家3ごとのEV4の蓄電池およびV2X装置5に関する情報(図4)とに基づいて、翌日の充放電計画を作成する(S3)。より詳細には、計画作成部20は、式(2)~(16)に示される制約条件下で、式(1)の目的関数(評価式)を最小化する最適化モデル(最適化問題)の最適解を算出することによって、需要家3ごとのEV4の蓄電池の時間単位ごとの充放電量を求める。式(1)~(16)の最適化問題は、線形計画問題と呼ばれる問題である。計画作成部20は、例えば、単体法や内点法等の手法によって(1)の目的関数を最小化する最適解を算出する。また、以下では、EV4の充放電を行うV2X装置5が太陽光発電装置6や蓄電池7とパワーコンディショナーを共有するハイブリッド蓄電池24(図2)を用いるものとする。 Next, the planning unit 20 determines the next day based on the load power amount and PV power generation amount predicted by the prediction unit 19 and the information on the EV4 storage battery and the V2X device 5 for each customer 3 (FIG. 4). Create a charge / discharge plan (S3). More specifically, the planning unit 20 uses an optimization model (optimization problem) that minimizes the objective function (evaluation formula) of the formula (1) under the constraint conditions shown in the formulas (2) to (16). By calculating the optimum solution of, the charge / discharge amount of the EV4 storage battery for each customer 3 for each time unit is obtained. The optimization problem of equations (1) to (16) is a problem called a linear programming problem. The planning unit 20 calculates the optimum solution that minimizes the objective function of (1) by, for example, a method such as a simplex method or an interior point method. Further, in the following, it is assumed that the V2X device 5 that charges and discharges the EV 4 uses a hybrid storage battery 24 (FIG. 2) that shares a power conditioner with the solar power generation device 6 and the storage battery 7.

Figure 2022050126000002
Figure 2022050126000002

ここで、変数は以下の通りである。

Figure 2022050126000003
Here, the variables are as follows.
Figure 2022050126000003

ここで、パラメータは以下の通りである。

Figure 2022050126000004
Here, the parameters are as follows.
Figure 2022050126000004

式(1)は、計画対象の時間Tにおける需要家3の電力コスト(基本料金+従量料金)を示す。ここでは、Tは、この処理が実行される日の翌日の24時間とする。tは30分間隔の時間単位を示す。式(1)~(16)の説明では、時間単位を時刻tという。 Equation (1) shows the power cost (basic charge + metered charge) of the consumer 3 at the time T to be planned. Here, T is 24 hours on the day following the day when this process is executed. t indicates a time unit at intervals of 30 minutes. In the description of the equations (1) to (16), the time unit is referred to as time t.

計画作成部20は、式(2)~(16)を満たした上で、需要家3の電力コストがより少なくなる変数P(t)、P max、Ppcs(t)、Ppvr(t)、S(t)、Pvc(t)、Pvd(t)、S(t)、Pbc(t)、Pbd(t)の値を求める。 The planning unit 20 satisfies the variables Pr (t), Pr max , P pcs ( t ), and P pvr (t), which satisfy the equations (2) to (16) and further reduce the power cost of the consumer 3. The values of t), S v (t), P vc (t), P vd (t), S b (t), P bc (t), and P bd (t) are obtained.

(t)は、需要家3の時刻tにおける受電電力量(kWh)である。P maxは、需要家3のピーク電力(kW)である。Ppcs(t)は、需要家3ごとの時刻tにおけるハイブリッド蓄電池24の出力電力量(kWh)である。Ppvr(t)は、需要家3ごとの時刻tにおける太陽光発電装置6の発電電力量の抑制量(kWh)である。 Pr ( t ) is the amount of power received (kWh) at time t of the consumer 3. Pr max is the peak power (kW) of the consumer 3. P pcs (t) is the output power amount (kWh) of the hybrid storage battery 24 at time t for each consumer 3. P pvr (t) is a suppression amount (kWh) of the amount of power generated by the photovoltaic power generation device 6 at time t for each consumer 3.

(t)は、需要家3に停車しているEV4ごとの時刻tにおける蓄電残量(kWh)である。また、Pvc(t)は、V2X装置5の時刻tにおける充電電力量(kWh)である。Pvd(t)は、V2X装置5の時刻tにおける放電電力量(kWh)である。 S v (t) is the remaining charge (kWh) at time t for each EV 4 stopped at the consumer 3. Further, P vc (t) is a charging electric energy (kWh) at time t of the V2X device 5. P vd (t) is the amount of discharge power (kWh) at time t of the V2X device 5.

また、S(t)は、需要家3の蓄電池7の時刻tにおける蓄電量(kWh)である。Pbc(t)は、蓄電池7の時刻tにおける充電電力量(kWh)である。Pbd(t)は、蓄電池7の時刻tにおける放電電力量(kWh)である。 Further, S b (t) is the amount of electricity stored (kWh) at time t of the storage battery 7 of the consumer 3. P bc (t) is the amount of charging power (kWh) at time t of the storage battery 7. P bd (t) is the amount of discharge power (kWh) at time t of the storage battery 7.

この最適化モデルによって計画作成部20が算出するPvc(t)とPvd(t)の値が、EV4の蓄電池の充放電計画となる。計画作成部20は、記憶部14に保存されたデータから入力パラメータΔT、D、c、c(t)、P(t)、Ppv(t)、Ppcs max、tvl、tvr、ηvc、ηvd、Pvc max、Pvd max、S max、S min、S 、ηbc、ηbd、Pbc max、Pbd max、S max、S minについて、式(1)~(16)への入力値を取得し、各入力パラメータに入力した上で、式(1)~(16)の最適化モデルの最適解を求める。 The values of P vc (t) and P vd (t) calculated by the plan creation unit 20 by this optimization model are the charge / discharge plans of the storage battery of EV4. The planning unit 20 has input parameters ΔT, D m , cd, ce (t), P d (t), P pv (t), P pcs max , t vr , from the data stored in the storage unit 14 . t vr , η vc , η vd , P vc max , P vd max , S v max , S v min , S v 0 , η bc , η bd , P bc max , P bd max , S b max , S b min The input values to the equations (1) to (16) are acquired, input to each input parameter, and then the optimum solution of the optimization model of the equations (1) to (16) is obtained.

ΔTは、時間ステップ(time step)であり、各式の時間単位を示す。本実施形態の時間ステップは、30分刻みである。P(t)は、時刻tにおける電力負荷の予測値(kWh)である。Dは、1か月の日数である。cは、購入電力の基本料金単価(円/kW・月)である。c(t)は、時刻tにおける従量料金単価(円/kWh)である。ηvcは、V2X装置5の充電効率である。ηvdは、V2X装置5の放電効率である。 ΔT is a time step and indicates the time unit of each equation. The time step of this embodiment is in 30 minute increments. P d (t) is a predicted value (kWh) of the power load at time t. D m is the number of days in a month. cd is the basic charge unit price (yen / kW / month) of the purchased electric power. c e (t) is a pay-as-you-go unit price (yen / kWh) at time t. η vc is the charging efficiency of the V2X device 5. η vd is the discharge efficiency of the V2X device 5.

vc maxは、EV4の蓄電池の充電量上限(kWh)である。Pvd maxは、EV4の蓄電池の放電量上限(kWh)である。S maxは、EV4の蓄電池の蓄電量上限(kWh)である。S minは、EV4の蓄電池の蓄電量下限(kW)である。S は、EV4の蓄電池のEV利用時間終了時の蓄電量(kWh)である。ηbcは、蓄電池7の充電効率である。ηbdは、蓄電池7の放電効率である。Pbc maxは、蓄電池7の充電量上限(kWh)である。Pbd maxは、蓄電池7の放電量上限(kWh)である。S maxは、蓄電池7の蓄電量上限(kWh)である。S minは、蓄電池7の蓄電量下限(kWh)である。 P vc max is the upper limit of the charge amount (kWh) of the storage battery of EV4. P vd max is the upper limit of the discharge amount (kWh) of the storage battery of EV4. Sv max is the upper limit of the storage amount (kWh) of the storage battery of EV4 . Sv min is the lower limit of the storage amount (kW) of the storage battery of EV4 . Sv 0 is the amount of electricity stored (kWh) at the end of the EV usage time of the EV4 storage battery. η bc is the charging efficiency of the storage battery 7. η bd is the discharge efficiency of the storage battery 7. P bc max is the upper limit of the charge amount (kWh) of the storage battery 7. P bd max is the upper limit of the discharge amount (kWh) of the storage battery 7. S b max is the upper limit of the storage amount (kWh) of the storage battery 7. Sb min is the lower limit of the storage amount (kWh) of the storage battery 7.

また、c(t)は、電力取引所の時刻tにおける電力単価の予測値(円/kWh)であってもよい。この場合、式(1)は、計画対象の時間Tにおいて電力小売り事業者が電力取引所より調達する電力調達コストの合計値を示す。 Further, c e (t) may be a predicted value (yen / kWh) of the electric power unit price at the time t of the electric power exchange. In this case, the formula (1) shows the total value of the electric power procurement cost procured from the electric power exchange by the electric power retailer at the time T to be planned.

式(2)は、需要家3ごとのピークカットの制約条件である。式(2)は、需要家3ごとの時刻tにおける受電電力量が、需要家3ごとのピーク電力によって決まる30分電力量以下となるように規定する。 Equation (2) is a constraint condition for peak cut for each consumer 3. Equation (2) stipulates that the amount of power received at time t for each consumer 3 is equal to or less than the amount of power for 30 minutes determined by the peak power for each consumer 3.

図9は需要家3の受電点での電力の需給バランス(エネルギーバランス)を説明する図である。図9に示す通り、式(3)は、需要家3の時刻tごとの受電電力量Pr(t)と、ハイブリッド蓄電池の充放電電力量Ppcs(t)を加算した値が、需要家3の時刻tごとの電力負荷予測値P(t)と等しくなるという制約条件である。 FIG. 9 is a diagram for explaining the supply and demand balance (energy balance) of electric power at the receiving point of the consumer 3. As shown in FIG. 9, in the equation (3), the value obtained by adding the received power amount Pr (t) of the consumer 3 at each time t and the charge / discharge power amount P pcs (t) of the hybrid storage battery is the value of the consumer 3. It is a constraint condition that it becomes equal to the predicted power load value P d (t) for each time t.

式(4)は、ハイブリッド蓄電池のエネルギーバランスの制約条件である。式(4)は、ハイブリッド蓄電池の充放電電力量Ppcs(t)が、PV発電電力量予測値Ppv(t)からPV発電抑制電力量Ppvr(t)を減算し、EV4の蓄電池の充電電力量Pvc(t)を減算し、EV4の蓄電池の放電量Pvd(t)を加算し、蓄電池7の充電電力量Pbc(t)を減算し、蓄電池7の放電電力量Pbd(t)を加算した値と等しくなるという制約条件である。 Equation (4) is a constraint on the energy balance of the hybrid storage battery. In the formula (4), the charge / discharge electric energy P pcs (t) of the hybrid storage battery is obtained by subtracting the PV power generation suppression electric energy P pvr (t) from the PV power generation electric energy predicted value P pv (t), and the EV 4 storage battery. The charging electric energy P vc (t) is subtracted, the discharging amount P vd (t) of the storage battery of EV4 is added, the charging electric energy P bc (t) of the storage battery 7 is subtracted, and the discharging electric energy P bd of the storage battery 7 is subtracted. It is a constraint condition that it becomes equal to the value obtained by adding (t).

式(5)は、ハイブリッド蓄電池の出力上限の制約条件である。式(5)はハイブリッド蓄電池の出力が、出力上限以下であることを規定する。 Equation (5) is a constraint condition for the upper limit of the output of the hybrid storage battery. Equation (5) defines that the output of the hybrid storage battery is equal to or less than the output upper limit.

式(6)は、EV4の蓄電池におけるエネルギー保存則の制約条件である。より詳細には、式(6)は、時間単位におけるEV4の蓄電池の蓄電残量の変化量は、充電電力量に充電効率を乗算した値から、放電電力量を放電効率で除算した値を減算した値となることを規定する。 Equation (6) is a constraint on the energy conservation law in the EV4 storage battery. More specifically, in the equation (6), the amount of change in the remaining charge of the EV4 storage battery in time units is obtained by subtracting the value obtained by dividing the amount of discharge power by the discharge efficiency from the value obtained by multiplying the amount of charge power by the charge efficiency. It is stipulated that the value will be the same.

式(7)は、V2X装置5の充電電力量の上下限の制約条件である。また、式(8)は、V2X装置5の放電電力量の上下限の制約条件である。需要家3に設置されたV2X装置5の時刻tにおける充電電力量および放電電力量は、V2X装置5のそれぞれの出力電力によって規定される。 Equation (7) is a constraint condition for the upper and lower limits of the charge power amount of the V2X device 5. Further, the equation (8) is a constraint condition of the upper and lower limits of the discharge power amount of the V2X device 5. The charge power amount and the discharge power amount at time t of the V2X device 5 installed in the consumer 3 are defined by the respective output powers of the V2X device 5.

式(9)は、EV4の蓄電池の蓄電量の上下限の制約条件である。式(9)は、EV4の蓄電池の蓄電量が、蓄電量の上下限値の範囲内にあることを規定する。 Equation (9) is a constraint condition for the upper and lower limits of the storage amount of the storage battery of EV4. Equation (9) defines that the stored amount of the storage battery of EV4 is within the range of the upper and lower limit values of the stored amount.

式(10)は、EV4利用時のV2X装置5の充放電電力量の制約条件である。式(10)は、EV4の利用時(時刻tvl(例えば9時)~tvr(例えば17時))には、V2X装置5の充電電力量Pvc(t)および放電電力量Pvd(t)はゼロであることを規定する。 Equation (10) is a constraint condition for the amount of charge / discharge power of the V2X device 5 when EV4 is used. In the formula (10), when EV4 is used (time t vr (for example, 9 o'clock) to t vr (for example, 17:00)), the charge power amount P vc (t) and the discharge power amount P vd of the V2X device 5 ( t) specifies that it is zero.

式(11)は、EV4利用終了時のEV蓄電池の蓄電量の制約条件である。式(11)は、EV4が利用を終了し、需要家3へ帰着した際には、蓄電量は所定値S であることを規定する。なお、所定値S は、EV蓄電池の蓄電量の上限値の数十%として設定してもよいし、あるいは、実際の値を取得できる場合は実際の値を用いてもよい。 Equation (11) is a constraint condition for the amount of electricity stored in the EV storage battery at the end of EV4 use. Equation (11) stipulates that the stored amount is a predetermined value Sv 0 when the EV 4 ends the use and returns to the consumer 3. The predetermined value Sv 0 may be set as several tens of percent of the upper limit of the stored amount of the EV storage battery, or may use an actual value if an actual value can be obtained.

式(12)は、EV4利用開始時のEV蓄電池の蓄電量の制約条件である。式(12)は、EV4の利用開始時刻において、蓄電量が満充電S maxとなることを規定する。 Equation (12) is a constraint condition for the amount of electricity stored in the EV storage battery at the start of using EV4. Equation (12) stipulates that the amount of stored electricity reaches the fully charged Sv max at the time when the EV4 is used.

式(13)~(16)は、蓄電池7に対する、EV4およびV2X装置5の制約式(6)~(9)と同様の制約であり、説明を省略する。 Equations (13) to (16) are the same restrictions as the constraint equations (6) to (9) of the EV4 and the V2X device 5 with respect to the storage battery 7, and the description thereof will be omitted.

図10は、本実施形態にかかるEV蓄電池の充放電計画等の一例を示すグラフである。図10(a)~(c)において、横軸は2日間の時刻tを示す。図10(a)の縦軸は従量料金単価(円/kWh)を示す。図10(b)の縦軸は30分ごとの電力量(kWh)を示す。図10(c)の縦軸はEV蓄電池の蓄電量(kWh)を示す。 FIG. 10 is a graph showing an example of a charge / discharge plan of the EV storage battery according to the present embodiment. In FIGS. 10A to 10C, the horizontal axis indicates the time t for two days. The vertical axis of FIG. 10A shows the pay-as-you-go unit price (yen / kWh). The vertical axis of FIG. 10B shows the electric energy (kWh) every 30 minutes. The vertical axis of FIG. 10C shows the storage capacity (kWh) of the EV storage battery.

図10(a)の折れ線グラフは、購入電力の従量料金単価を示す。図10(b)において、曲線B11は負荷電力量の実績値を示し、曲線B12は負荷電力量の予測値を示す。また、曲線B21はPV発電電力量の実績値を示し、曲線B22はPV発電電力量の予測値を示す。また、図10(b)の棒グラフは、EV4のV2X装置5による充放電電力量の計画値(正の数は放電、負の数は充電)を示す。また、図10(c)の曲線Cは、EV4の蓄電池の蓄電量計画値を示す。 The line graph in FIG. 10A shows the unit price of the purchased electric power. In FIG. 10B, the curve B11 shows the actual value of the load electric energy, and the curve B12 shows the predicted value of the load electric energy. Further, the curve B21 shows the actual value of the PV power generation amount, and the curve B22 shows the predicted value of the PV power generation amount. Further, the bar graph in FIG. 10B shows the planned value of the amount of charge / discharge power by the V2X device 5 of EV4 (positive number is discharge, negative number is charge). Further, the curve C in FIG. 10C shows the planned storage amount of the storage battery of EV4.

また、本実施形態では、1日目のEV利用終了時(17時)に、EV4がV2X装置5に接続されたことが確認されると、図8のDER管理処理のステップS1以降の処理を実行するものとする。1日目のEV利用終了時(17時)より先の2日目までの電力負荷予測(曲線B12)とPV発電予測(曲線B22)に対し、2日目のEV利用時間(9時~17時)を除いた時間でEV4の充放電計画を作成し、EV利用開始時(9時)には蓄電量が上限まで充電する制約を満たしていることが確認できる。 Further, in the present embodiment, when it is confirmed that the EV 4 is connected to the V2X device 5 at the end of EV use (17:00) on the first day, the processes after step S1 of the DER management process in FIG. 8 are performed. Shall be executed. The EV usage time (9:00 to 17) on the second day is compared with the power load prediction (curve B12) and PV power generation prediction (curve B22) from the end of EV usage on the first day to the second day. It can be confirmed that the EV4 charge / discharge plan is created in the time excluding the time), and the restriction that the amount of electricity stored reaches the upper limit is satisfied at the start of EV use (9 o'clock).

また、2日目の電力負荷のピーク時間帯はEV利用時間のため、EV4からの放電はできず、電気料金基本料金の削減はできないものの、1日目のEV利用終了時の後の時間帯(17時~19時)にEV蓄電池に残っていた蓄電量は電気料金従量料金単価の高いうちにいったん放電され、単価が安くなった22時~1時に充電されることで、従量料金の削減を行っていることが確認できる。 In addition, since the peak time of the power load on the second day is the EV usage time, it is not possible to discharge from the EV4 and the basic electricity charge cannot be reduced, but the time zone after the end of the EV usage on the first day. The amount of electricity stored in the EV storage battery between 17:00 and 19:00 is discharged once while the unit price of electricity is high, and is charged from 22:00 to 1:00 when the unit price is low, reducing the metered rate. You can confirm that you are doing.

さらに、2日目の7時~9時には、PV発電予測値(曲線B22)が電力負荷予測値(曲線B12)を上回り、PV余剰電力が発生することが予測される。そのため、これをEV蓄電池で吸収するために、1日目22時以降において、すぐにEV蓄電池を満充電にするのではなく、PV余剰電力を吸収するための空き容量を確保し、7時~9時にPV余剰電力を使ってEV蓄電池の充電を行っている。これにより、PV発電電力を有効利用することで、電力系統からの購入電力を削減していることが確認できる。 Further, from 7:00 to 9:00 on the second day, the PV power generation predicted value (curve B22) exceeds the power load predicted value (curve B12), and it is predicted that PV surplus power will be generated. Therefore, in order to absorb this with the EV storage battery, after 22:00 on the first day, instead of immediately charging the EV storage battery to full charge, secure a free capacity for absorbing the PV surplus power, and from 7 o'clock. The EV storage battery is being charged using the PV surplus power at 9 o'clock. As a result, it can be confirmed that the power purchased from the power system is reduced by effectively using the PV generated power.

なお、需要家3のうち、EV4はあるが蓄電池7のない需要家3にとっては、特に、このような手法により効果的に電気料金を低減することができる。また、EV4と蓄電池7の両方がある需要家3にとっても、例えば、蓄電池7が満充電の場合に効果的に電気料金を低減することができ、また、蓄電池7の充電や放電による電力ロスを考慮した場合にPV余剰電力を蓄電池7よりもEV4に優先的に吸収させることで電力をより効率的に活用できる。 Among the consumers 3, the consumer 3 who has the EV 4 but does not have the storage battery 7 can effectively reduce the electricity charge by such a method. Further, for the consumer 3 who has both the EV 4 and the storage battery 7, for example, when the storage battery 7 is fully charged, the electricity charge can be effectively reduced, and the power loss due to the charging and discharging of the storage battery 7 can be reduced. When taken into consideration, the surplus PV power can be used more efficiently by allowing the EV 4 to preferentially absorb the surplus power power over the storage battery 7.

図8に戻って、S3において、計画作成部20は、作成した充放電計画を、記憶部14に保存する。 Returning to FIG. 8, in S3, the plan creation unit 20 stores the created charge / discharge plan in the storage unit 14.

次に、表示制御部16は、充放電計画を表示装置(不図示)に表示する(S4)。DRアグリゲータ2の担当者等(ユーザ)は、充放電計画を表示装置上で確認することができる。 Next, the display control unit 16 displays the charge / discharge plan on a display device (not shown) (S4). The person in charge (user) of the DR aggregator 2 can confirm the charge / discharge plan on the display device.

次に、制御部18は、作成された充放電計画に従って、V2X装置5の充放電を制御することによって、充放電計画を実行する(S5)。ここで、このフローチャートの処理は終了する。 Next, the control unit 18 executes the charge / discharge plan by controlling the charge / discharge of the V2X device 5 according to the created charge / discharge plan (S5). At this point, the processing of this flowchart ends.

なお、本実施形態では、EV4の充放電を行うV2X装置5が太陽光発電装置6や蓄電池7とパワーコンディショナーを共有するハイブリッド蓄電池24を用いるものとしたが、本発明はこのようなハイブリッド蓄電池に限定されるものではなく、各々のパワーコンディショナーが別々に設置、あるいは一部が共有されていてもよい。またV2X装置5は、充電のみを行う充電装置であってもよい。 In the present embodiment, the V2X device 5 that charges and discharges the EV 4 uses a hybrid storage battery 24 that shares a power conditioner with the solar power generation device 6 and the storage battery 7, but the present invention uses such a hybrid storage battery. Not limited to this, each power conditioner may be installed separately or partially shared. Further, the V2X device 5 may be a charging device that only charges.

また、EV4の充放電計画を作成するタイミングは、EV利用終了時に限定されず、決められた時刻や、負荷予測誤差、PV発電予測誤差を監視し、誤差が決められた閾値を超えた場合等の他のタイミングであってもよい。 In addition, the timing for creating the EV4 charge / discharge plan is not limited to the end of EV use, and the fixed time, load prediction error, PV power generation prediction error are monitored, and when the error exceeds the fixed threshold value, etc. It may be another timing.

さらに、本実施形態の計画作成部20が作成するEV蓄電池の充放電計画において、最適化問題の目的関数を式(1)で示す電力コストとし、その内訳を、基本料金と従量料金からなる小売り電気料金とした。しかし、電力コストは、このような小売り電気料金に限られるものではなく、小売り電気事業者の電力調達コストとして、卸電力取引所からの電力購入コストとしてもよい。また、小売り電気料金として、基本料金単価や従量料金単価を任意に設定してもよい。さらに、小売り電気事業者の電力調達コストとして、任意の単価の電力調達コストとしてもよい。また、小売り電気料金と小売り電気事業者の電力調達コストの組み合わせとしてもよい。 Further, in the charge / discharge plan of the EV storage battery created by the plan creation unit 20 of the present embodiment, the objective function of the optimization problem is the electric power cost shown by the equation (1), and the breakdown thereof is a retail charge consisting of a basic charge and a metered charge. It was an electricity charge. However, the electric power cost is not limited to such retail electricity charges, and may be the electric power procurement cost of the retail electric power company or the electric power purchase cost from the wholesale electric power exchange. Further, as the retail electricity charge, the basic charge unit price or the metered charge unit price may be arbitrarily set. Further, as the electric power procurement cost of the retail electric power company, the electric power procurement cost of an arbitrary unit price may be used. It may also be a combination of the retail electricity rate and the electricity procurement cost of the retail electricity company.

(効果)
このようにして、本実施形態のDER管理装置12によれば、EV4を有する需要家の時間単位ごとに予測した負荷電力量と供給電力量と、車両の利用時間帯の情報を含む利用情報と、に基づいて、EV4の充放電計画を作成することができる。したがって、EV側からのEV4をDERとして活用するための情報入力操作なしに、EV4の運用状況に応じて、EV蓄電池をDERとして活用することができる。
(effect)
In this way, according to the DER management device 12 of the present embodiment, the load power amount and the power supply amount predicted for each time unit of the consumer having the EV4, and the usage information including the information of the vehicle usage time zone , A charge / discharge plan for EV4 can be created. Therefore, the EV storage battery can be used as a DER according to the operation status of the EV4 without the information input operation for using the EV4 as a DER from the EV side.

また、上述の式(2)~(16)に示される制約条件下で、式(1)の目的関数を最小化する最適化モデルの最適解を算出する手法によって、最適な充放電計画を確実かつ容易に作成することができる。 Further, under the constraint conditions shown in the above equations (2) to (16), the optimum charge / discharge plan is ensured by the method of calculating the optimum solution of the optimization model that minimizes the objective function of the equation (1). And it can be easily created.

また、従来技術においては、EV蓄電池の電力を負荷側に供給する際のメリットが明確でなかった。これに対して、本実施形態のDER管理装置12によれば、EV蓄電池の電力を負荷側に供給することにより、需要家3の電気料金の低減や、小売り電気事業者の電力調達コストの削減や、それらを通じた電力系統の負荷平準化などが可能となり、EV蓄電池の電力を負荷側に供給する際のメリットが明確である。 Further, in the prior art, the merit in supplying the electric power of the EV storage battery to the load side has not been clarified. On the other hand, according to the DER management device 12 of the present embodiment, by supplying the electric power of the EV storage battery to the load side, the electric power charge of the consumer 3 is reduced and the electric power procurement cost of the retail electric power company is reduced. In addition, it is possible to level the load of the electric power system through them, and the merit of supplying the electric power of the EV storage battery to the load side is clear.

本実施形態のDER管理装置12で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。また、当該プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、当該プログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。また、当該プログラムを、ROM等に予め組み込んで提供するように構成してもよい。 The program executed by the DER management device 12 of the present embodiment is a file in an installable format or an executable format, and is a computer such as a CD-ROM, a flexible disk (FD), a CD-R, or a DVD (Digital Versatile Disk). It is recorded and provided on a readable recording medium. Further, the program may be stored on a computer connected to a network such as the Internet and provided by downloading via the network. Further, the program may be configured to be provided or distributed via a network such as the Internet. Further, the program may be configured to be provided by incorporating it into a ROM or the like in advance.

当該プログラムは、上述した各部(入力部13、取得部15、表示制御部16、予測部19、計画作成部20、制御部18)を含むモジュール構成となっており、実際のハードウェアとしてはCPU(プロセッサ)が上記記憶媒体から当該プログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、各部が主記憶装置上に生成されるようになっている。 The program has a module configuration including each of the above-mentioned units (input unit 13, acquisition unit 15, display control unit 16, prediction unit 19, plan creation unit 20, control unit 18), and the actual hardware is a CPU. When the (processor) reads the program from the storage medium and executes the program, each part is loaded on the main storage device, and each part is generated on the main storage device.

本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. This novel embodiment can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

2…DRアグリゲータ、3…需要家、4…EV、5…V2X装置、6…太陽光発電装置(PV)、7…蓄電池、8…需要家、9…系統運用者、10…電力系統、11…発電機、12…DER管理装置、13…入力部、14…記憶部、15…取得部、16…表示制御部、17…演算部、18…制御部、19…予測部、20…計画作成部、21…電力量計、22…構内系統、23…負荷、24…ハイブリッド蓄電池 2 ... DR aggregator, 3 ... consumer, 4 ... EV, 5 ... V2X device, 6 ... solar power generation device (PV), 7 ... storage battery, 8 ... consumer, 9 ... system operator, 10 ... power system, 11 ... Generator, 12 ... DER management device, 13 ... Input unit, 14 ... Storage unit, 15 ... Acquisition unit, 16 ... Display control unit, 17 ... Calculation unit, 18 ... Control unit, 19 ... Prediction unit, 20 ... Plan creation Department, 21 ... Electric energy meter, 22 ... On-site system, 23 ... Load, 24 ... Hybrid storage battery

Claims (8)

分散型エネルギーリソースとしての車両の蓄電池を有する需要家の時間単位ごとの需要電力量と供給電力量を予測する予測部と、
前記車両の利用時間帯の情報を含む利用情報を入力する入力部と、
前記需要電力量、前記供給電力量、前記利用情報に基づいて、前記蓄電池の充放電計画を作成する計画作成部と、を備える分散型エネルギーリソース管理装置。
A predictor that predicts the amount of power demand and power supply for each hour of a consumer who has a storage battery of a vehicle as a distributed energy resource,
An input unit for inputting usage information including information on the usage time zone of the vehicle, and
A distributed energy resource management device including a plan creation unit for creating a charge / discharge plan for the storage battery based on the required electric energy, the supplied electric energy, and the usage information.
前記利用情報は、前記車両の利用開始時刻と利用終了時刻と、前記利用開始時刻における前記蓄電池の充電目標値と、前記利用終了時刻における前記蓄電池の残量想定値と、の少なくともいずれかを含む、請求項1に記載の分散型エネルギーリソース管理装置。 The usage information includes at least one of a usage start time and a usage end time of the vehicle, a charging target value of the storage battery at the usage start time, and a remaining amount estimated value of the storage battery at the usage end time. , The distributed energy resource management device according to claim 1. 前記充放電計画は、前記蓄電池の充電のみの計画である、請求項1または請求項2に記載の分散型エネルギーリソース管理装置。 The distributed energy resource management device according to claim 1 or 2, wherein the charge / discharge plan is a plan only for charging the storage battery. 前記車両と前記車両が充放電を行う対象である充放電設備との接続状態に関する情報である接続情報を取得する取得部を、さらに備え、
前記計画作成部は、前記需要電力量、前記供給電力量、前記利用情報、前記接続情報に基づいて、前記蓄電池の充放電計画を作成する、請求項1から請求項3のいずれか1項に記載の分散型エネルギーリソース管理装置。
Further provided with an acquisition unit for acquiring connection information, which is information on the connection state between the vehicle and the charging / discharging equipment to which the vehicle charges / discharges.
The plan creating unit creates a charge / discharge plan for the storage battery based on the demand power amount, the supply power amount, the usage information, and the connection information, according to any one of claims 1 to 3. Described distributed energy resource management device.
前記計画作成部は、所定の評価式を最小化する最適化モデルの最適解を算出することによって、前記蓄電池の充放電計画を作成する、請求項1から請求項4のいずれか1項に記載の分散型エネルギーリソース管理装置。 The item according to any one of claims 1 to 4, wherein the planning unit creates a charge / discharge plan for the storage battery by calculating an optimum solution of an optimization model that minimizes a predetermined evaluation formula. Distributed energy resource management device. 前記評価式は、前記需要家に関する電力の基本料金と従量料金の組み合わせである、請求項5に記載の分散型エネルギーリソース管理装置。 The distributed energy resource management device according to claim 5, wherein the evaluation formula is a combination of a basic charge and a metered charge of electric power for the consumer. 分散型エネルギーリソースとしての車両の蓄電池を有する需要家の時間単位ごとの需要電力量と供給電力量を予測する予測ステップと、
前記車両の利用時間帯の情報を含む利用情報を入力する入力ステップと、
前記需要電力量、前記供給電力量、前記利用情報に基づいて、前記蓄電池の充放電計画を作成する計画作成ステップと、を含む分散型エネルギーリソース管理方法。
A prediction step for predicting the amount of power demand and power supply for each hour of a consumer who has a storage battery of a vehicle as a distributed energy resource, and
An input step for inputting usage information including information on the usage time zone of the vehicle, and
A distributed energy resource management method including a plan creation step of creating a charge / discharge plan of the storage battery based on the required electric energy, the supplied electric energy, and the usage information.
分散型エネルギーリソースとしての車両の蓄電池を有する需要家の時間単位ごとの需要電力量と供給電力量を予測する予測ステップと、
前記車両の利用時間帯の情報を含む利用情報を入力する入力ステップと、
前記需要電力量、前記供給電力量、前記利用情報に基づいて、前記蓄電池の充放電計画を作成する計画作成ステップと、をコンピュータに実行させるための分散型エネルギーリソース管理プログラム。
A prediction step for predicting the amount of power demand and power supply for each hour of a consumer who has a storage battery of a vehicle as a distributed energy resource, and
An input step for inputting usage information including information on the usage time zone of the vehicle, and
A distributed energy resource management program for causing a computer to execute a plan creation step of creating a charge / discharge plan of the storage battery based on the required electric energy, the supplied electric energy, and the usage information.
JP2020156544A 2020-09-17 2020-09-17 Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program Pending JP2022050126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020156544A JP2022050126A (en) 2020-09-17 2020-09-17 Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020156544A JP2022050126A (en) 2020-09-17 2020-09-17 Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program

Publications (1)

Publication Number Publication Date
JP2022050126A true JP2022050126A (en) 2022-03-30

Family

ID=80854261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020156544A Pending JP2022050126A (en) 2020-09-17 2020-09-17 Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program

Country Status (1)

Country Link
JP (1) JP2022050126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102556982B1 (en) * 2022-04-19 2023-07-19 한국전기차인프라기술(주) System and method for automatic charging schedule generation
EP4344938A1 (en) 2022-09-28 2024-04-03 Honda Motor Co., Ltd. System, method, and program
EP4344937A1 (en) 2022-09-28 2024-04-03 Honda Motor Co., Ltd. System, method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102556982B1 (en) * 2022-04-19 2023-07-19 한국전기차인프라기술(주) System and method for automatic charging schedule generation
EP4344938A1 (en) 2022-09-28 2024-04-03 Honda Motor Co., Ltd. System, method, and program
EP4344937A1 (en) 2022-09-28 2024-04-03 Honda Motor Co., Ltd. System, method, and program

Similar Documents

Publication Publication Date Title
JP7179500B2 (en) Storage battery management device, storage battery management method, and storage battery management program
US9772643B2 (en) Methods, apparatus and systems for managing energy assets
Schram et al. On the trade-off between environmental and economic objectives in community energy storage operational optimization
Beer et al. An economic analysis of used electric vehicle batteries integrated into commercial building microgrids
JP5101675B2 (en) Supply-demand balance control device
JP6145670B2 (en) Power flow control system, management device, program
JP5537478B2 (en) Composite battery energy management system and method
JP2022050126A (en) Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program
KR20180046174A (en) Operating System and Method for Optimal Operation of a Renewable Energy based Islanded Micro-grid
WO2012145563A1 (en) Methods, apparatus and systems for managing energy assets
KR102574580B1 (en) Battery charging and discharging power control in power grid
JP7131920B2 (en) Storage battery management device, storage battery management method, and storage battery management program
KR101712944B1 (en) Apparatus and method for charge and discharge scheduling in energy storage device
KR20190105173A (en) Virtual power plant using energy storage system
JP7443161B2 (en) Storage battery management device, storage battery management method, and storage battery management program
Pelzer et al. Energy arbitrage through smart scheduling of battery energy storage considering battery degradation and electricity price forecasts
JP2012130106A (en) Power storage device managing device, power storage device managing method, and power supply system
JP2003244841A (en) Method and system for providing information of hybrid system using secondary battery for power storage
JP2021013231A (en) Information processing device, information processing method, and program
JP2014236541A (en) Control device, program
JP2020061800A (en) Charging method and control device
CN114365370A (en) Regional energy management device and regional energy management method
JP2017046507A (en) System stabilization system
JP6942295B1 (en) Charge / discharge plan creation device, command device, power system management system, terminal device, power storage system, charge / discharge system, storage battery, electric vehicle, charge / discharge plan creation method and charge / discharge plan creation program
KR102136195B1 (en) Prediction system and method for efficiently supplying power to a plurality of customers and selling the remaining power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240311