JP2022049136A - Fuel nozzle, and gas turbine combustor - Google Patents

Fuel nozzle, and gas turbine combustor Download PDF

Info

Publication number
JP2022049136A
JP2022049136A JP2020155193A JP2020155193A JP2022049136A JP 2022049136 A JP2022049136 A JP 2022049136A JP 2020155193 A JP2020155193 A JP 2020155193A JP 2020155193 A JP2020155193 A JP 2020155193A JP 2022049136 A JP2022049136 A JP 2022049136A
Authority
JP
Japan
Prior art keywords
flow path
fuel
nozzle
combustion air
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020155193A
Other languages
Japanese (ja)
Inventor
裕明 長橋
Hiroaki Nagahashi
義隆 寺田
Yoshitaka Terada
祥平 沼田
Shohei Numata
祥太 五十嵐
Shota Igarashi
康弘 和田
Yasuhiro Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2020155193A priority Critical patent/JP2022049136A/en
Priority to US17/405,372 priority patent/US20220082260A1/en
Priority to CN202111081539.0A priority patent/CN114263930A/en
Priority to DE102021210300.6A priority patent/DE102021210300A1/en
Publication of JP2022049136A publication Critical patent/JP2022049136A/en
Priority to JP2023129450A priority patent/JP2023153214A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00005Preventing fatigue failures or reducing mechanical stress in gas turbine components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00017Assembling combustion chamber liners or subparts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

To provide a fuel nozzle comprising a plurality of fuel systems and generating little thermal stress resulting from a temperature difference between fuel and combustion air flowing therethrough, and a gas turbine combustor employing the same.SOLUTION: The fuel nozzle equipped with a plurality of flow channels, comprises: a first flow channel through which fuel or combustion air is conducted; and a second flow channel through which fuel or combustion air is conducted and which is different from the first flow channel, wherein among component members of the fuel nozzle, at least a portion where the first flow channel and the second flow channel are disposed, is constituted of an integral member.SELECTED DRAWING: Figure 3

Description

本発明は、ガスタービン燃焼器に用いられる燃料ノズルの構造に係り、特に、パイロットノズルに適用して有効な技術に関する。 The present invention relates to the structure of a fuel nozzle used in a gas turbine combustor, and more particularly to a technique applicable to a pilot nozzle.

ガスタービンに使用する燃料の種類には様々なものがあり、燃料カロリーと燃焼速度により使用する燃焼器を選定している。カロリーの低い燃料については、拡散燃焼器を使用し、カロリーの高い燃料については予混合燃焼器を使用する。予混合燃焼は拡散燃焼に比べ火炎温度を低減できるため、水や蒸気の噴霧なしでNOxの低減が可能であり、現在ガスタービンに広く適用されている。 There are various types of fuel used for gas turbines, and the combustor to be used is selected according to the fuel calories and combustion speed. For low-calorie fuels, use a diffusion combustor, and for high-calorie fuels, use a premixed combustor. Since premixed combustion can reduce the flame temperature as compared with diffusion combustion, it is possible to reduce NOx without spraying water or steam, and it is currently widely applied to gas turbines.

発電用に使用されているガスタービンでは主に天然ガスを燃料としているが、多くの天然ガス焚き予混合燃焼器はパイロットノズルとメインノズルを備えており、パイロットノズルで形成される火炎によりメイン予混合火炎の安定化を図っている。 Gas turbines used for power generation mainly use natural gas as fuel, but many natural gas-fired premixed combustors are equipped with a pilot nozzle and a main nozzle, and the flame formed by the pilot nozzle is used as the main premixer. We are trying to stabilize the mixed flame.

本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には「ガスタービンの燃焼器の軸心に配置されてなるガスタービンのパイロット燃焼バーナであって、軸方向に沿って、その内部に複数の予混合燃焼用の燃料流路と、複数の拡散燃焼用の燃料流路とが独立して形成されたパイロット燃焼ノズルと、このパイロット燃焼ノズルに対して同心状で、かつ、その上流側の端部が、前記パイロット燃焼ノズルの下流側の端部を囲繞する状態で配置されるパイロットバーナ筒と、前記パイロット燃焼ノズルの下流側の端部に放射状に配置されて、前記パイロット燃焼ノズルの下流側の端部と、前記バーナ筒の上流側の端部との間に形成されたリング状の空気通路を通過する圧縮空気に旋回力を付与して、この圧縮空気を旋回空気流にする複数枚の旋回翼とを備えているガスタービンのパイロット燃焼バーナ」が開示されている。 As a background technology in this technical field, for example, there is a technology such as Patent Document 1. Patent Document 1 describes, "A pilot combustion burner of a gas turbine arranged at the axis of a gas turbine combustor, and a plurality of fuel flow paths for premixed combustion inside the pilot combustion burner along the axial direction. A pilot combustion nozzle in which a plurality of fuel channels for diffusion combustion are independently formed, and an end concentric with the pilot combustion nozzle and on the upstream side thereof are on the downstream side of the pilot combustion nozzle. A pilot burner cylinder arranged so as to surround the end of the pilot combustion nozzle, and radially arranged at the downstream end of the pilot combustion nozzle, the downstream end of the pilot combustion nozzle and the upstream of the burner cylinder. A gas turbine equipped with a plurality of swivel blades that apply a swirling force to the compressed air passing through a ring-shaped air passage formed between the side ends and make the compressed air a swirling air flow. Pilot Combustion Burner "is disclosed.

特開2010-249449号公報Japanese Unexamined Patent Publication No. 2010-2449449

上述したように、多くの天然ガス焚き予混合燃焼器は1本のパイロットノズルと8本のメインノズルを備えており、燃料系統はメイン系統とパイロット系統の2系統から構成される。パイロット比率(パイロット燃料流量/全体燃料流量)は着火時に最も多く、負荷上昇と共に低下させ、定格負荷ではパイロット比率を最も低くしNOxの排出量を抑えている。 As mentioned above, many natural gas-fired premixed combustors are equipped with one pilot nozzle and eight main nozzles, and the fuel system consists of two systems, a main system and a pilot system. The pilot ratio (pilot fuel flow rate / total fuel flow rate) is the highest at the time of ignition and decreases as the load increases, and the pilot ratio is the lowest at the rated load to suppress NOx emissions.

また、燃料中のメタン濃度が変化した場合、燃焼性が変化するため、空気バイパス弁の調節により燃焼領域の燃空比を調整したり、パイロット比率を変化させて、安定な燃焼状態に調整することが必要となる。 In addition, when the methane concentration in the fuel changes, the combustibility changes, so the fuel-air ratio in the combustion region can be adjusted by adjusting the air bypass valve, or the pilot ratio can be changed to adjust to a stable combustion state. Is required.

ところで、ガスタービン燃焼器の燃料ノズルでは燃焼空気と燃料との温度差に起因した熱応力の発生がしばしば問題となる。過大な熱応力が発生すると低サイクル疲労寿命が不足し、運用上の制限が発生する。特に、上述した天然ガス焚き予混合燃焼器のように複数の燃料系統を備えた燃料ノズルにおいては、運転状態に応じて燃料及び燃焼空気(パージ空気)などの温度が異なる流体が導通し、これに起因して熱応力が増大する場合がある。燃料ノズルに発生する熱応力は、燃料ノズルの信頼性及び耐久性の低下に繋がる。 By the way, in the fuel nozzle of a gas turbine combustor, the generation of thermal stress due to the temperature difference between the combustion air and the fuel is often a problem. If excessive thermal stress is generated, the low cycle fatigue life will be insufficient and operational restrictions will occur. In particular, in a fuel nozzle equipped with a plurality of fuel systems such as the above-mentioned natural gas-fired premixed combustor, fluids having different temperatures such as fuel and combustion air (purge air) are conducted depending on the operating state. The thermal stress may increase due to the above. The thermal stress generated in the fuel nozzle leads to a decrease in the reliability and durability of the fuel nozzle.

上記特許文献1によれば、圧縮空気が流動することによって生じる振動を低減させることができ、かつ、起動時における吹き消えを防止することができるが、上記のような燃料及び燃焼空気(パージ空気)などの温度が異なる流体の導通に起因して発生する燃料ノズルの熱応力については何ら考慮されていない。 According to the above Patent Document 1, it is possible to reduce the vibration caused by the flow of the compressed air and to prevent the blowout at the time of starting, but the fuel and the combustion air (purge air) as described above can be prevented. ), Etc., no consideration is given to the thermal stress of the fuel nozzle generated due to the conduction of fluids having different temperatures.

そこで、本発明の目的は、複数の燃料系統を備える燃料ノズルにおいて、導通する燃料及び燃焼空気の温度差に起因する熱応力の少ない燃料ノズル及びそれを用いたガスタービン燃焼器を提供することにある。 Therefore, an object of the present invention is to provide a fuel nozzle having a small thermal stress due to a temperature difference between conducting fuel and combustion air in a fuel nozzle provided with a plurality of fuel systems, and a gas turbine combustor using the fuel nozzle. be.

上記課題を解決するために、本発明は、複数の流路を備える燃料ノズルであって、燃料または燃焼空気が導通する第1の流路と、燃料または燃焼空気が導通し、前記第1の流路とは異なる第2の流路と、を有し、前記燃料ノズルの構成部材の内、少なくとも前記第1の流路と前記第2の流路が配置される部位は一体の部材で構成されていることを特徴とする。 In order to solve the above problems, the present invention is a fuel nozzle provided with a plurality of flow paths, wherein the fuel or combustion air conducts with the first flow path through which the fuel or combustion air conducts, and the first said. It has a second flow path different from the flow path, and among the constituent members of the fuel nozzle, at least the portion where the first flow path and the second flow path are arranged is composed of an integral member. It is characterized by being done.

また、本発明は、燃料と燃焼空気の混合気を燃焼させる燃焼室を構成する燃焼器ライナと、前記燃焼室からタービンに燃焼ガスを導く尾筒と、前記燃焼室に燃料と燃焼空気を供給するパイロットノズルと、前記パイロットノズルの周囲に複数配置され、前記燃焼室に燃料と燃焼空気を供給するメインノズルと、を備え、前記パイロットノズルは、燃料または燃焼空気が導通する第1の流路と、燃料または燃焼空気が導通し、前記第1の流路とは異なる第2の流路と、を有し、前記パイロットノズルの構成部材の内、少なくとも前記第1の流路と前記第2の流路が配置される部位は一体の部材で構成されていることを特徴とする。 Further, the present invention supplies fuel and combustion air to a combustor liner constituting a combustion chamber for burning a mixture of fuel and combustion air, a tail tube for guiding combustion gas from the combustion chamber to a turbine, and the combustion chamber. The pilot nozzle is provided with a plurality of pilot nozzles arranged around the pilot nozzle and a main nozzle for supplying fuel and combustion air to the combustion chamber, and the pilot nozzle is a first flow path through which the fuel or the combustion air is conducted. And a second flow path in which fuel or combustion air is conducted and is different from the first flow path, and at least the first flow path and the second flow path among the constituent members of the pilot nozzle are provided. The portion where the flow path is arranged is characterized in that it is composed of an integral member.

本発明によれば、複数の燃料系統を備える燃料ノズルにおいて、導通する燃料及び燃焼空気の温度差に起因する熱応力の少ない燃料ノズル及びそれを用いたガスタービン燃焼器を実現することができる。 According to the present invention, in a fuel nozzle provided with a plurality of fuel systems, it is possible to realize a fuel nozzle having less thermal stress due to a temperature difference between conducting fuel and combustion air, and a gas turbine combustor using the fuel nozzle.

これにより、信頼性及び耐久性に優れた高性能なガスタービン燃焼器を提供することができる。 This makes it possible to provide a high-performance gas turbine combustor having excellent reliability and durability.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.

一般的なガスタービンの構成例を示す図である。It is a figure which shows the structural example of a general gas turbine. 一般的な燃焼器の構成例を示す図である。It is a figure which shows the structural example of a general combustor. 本発明の実施例1に係る燃料ノズルの構造を示す断面図である。It is sectional drawing which shows the structure of the fuel nozzle which concerns on Example 1 of this invention. 図3のA-A’断面図である。FIG. 3 is a cross-sectional view taken along the line AA'in FIG. 図3のB-B’断面図である。FIG. 3 is a cross-sectional view taken along the line BB'in FIG. 従来の燃料ノズルの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional fuel nozzle. 図5のC-C’断面図である。FIG. 5 is a cross-sectional view taken along the line CC'of FIG. 図5のD-D’断面図である。FIG. 5 is a cross-sectional view taken along the line DD'in FIG.

以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same components are designated by the same reference numerals, and the detailed description of the overlapping portions will be omitted.

先ず、図1,図2及び図5から図6Bを参照して、本発明の対象となるガスタービン燃焼器と従来の問題点について説明する。図1は、一般的なガスタービンの構成例を示す図である。図2は、一般的な燃焼器の構成例を示す図であり、燃焼室15を構成する燃焼器ライナ4及び尾筒(トランジションピース)5を含む燃焼器として示している。図5は、従来のパイロットノズル7の構造を示す断面図であり、図6A,図6Bは、それぞれ図5のC-C’断面、D-D’断面を示している。 First, a gas turbine combustor, which is a subject of the present invention, and conventional problems will be described with reference to FIGS. 1, 2, and 5 to 6B. FIG. 1 is a diagram showing a configuration example of a general gas turbine. FIG. 2 is a diagram showing a configuration example of a general combustor, and is shown as a combustor including a combustor liner 4 and a tail tube (transition piece) 5 constituting a combustion chamber 15. 5 is a cross-sectional view showing the structure of the conventional pilot nozzle 7, and FIGS. 6A and 6B show a CC'cross section and a DD' cross section of FIG. 5, respectively.

図1に示すように、ガスタービンは大きく分けて圧縮機1、燃焼器2及びタービン3から構成されている。圧縮機1は大気から吸い込んだ空気を作動流体として断熱圧縮し、燃焼器2は圧縮機1から供給された圧縮空気に燃料を混合し燃焼させることで高温高圧の燃焼ガスを生成し、タービン3では燃焼器2から導入された燃焼ガスが膨張する際に回転動力を発生する。タービン3からの排気は大気中に放出される。 As shown in FIG. 1, the gas turbine is roughly divided into a compressor 1, a combustor 2, and a turbine 3. The compressor 1 adiabatically compresses the air sucked from the atmosphere as a working fluid, and the combustor 2 produces high-temperature and high-pressure combustion gas by mixing fuel with the compressed air supplied from the compressor 1 and burning it, and the turbine 3 Then, when the combustion gas introduced from the compressor 2 expands, rotational power is generated. The exhaust gas from the turbine 3 is released into the atmosphere.

図2に示すように、燃焼器2は、燃料と燃焼空気の混合気を燃焼させる燃焼室15を構成する燃焼器ライ4と、燃焼室15からタービン3に燃焼ガスを導く(燃焼ガスの流れ方向8)尾筒(トランジションピース)5と、燃焼室15に燃料と燃焼空気を供給するメインノズル6及びパイロットノズル7を備えている。メインノズル6は、上述したように、1本のパイロットノズル7の周囲に複数(例えば8本)配置されている。 As shown in FIG. 2, the combustor 2 guides combustion gas from the combustion chamber 15 to the turbine 3 and the combustor lie 4 constituting the combustion chamber 15 that burns the mixture of fuel and combustion air (combustion gas flow). Direction 8) A tail tube (transition piece) 5 and a main nozzle 6 and a pilot nozzle 7 for supplying fuel and combustion air to the combustion chamber 15 are provided. As described above, a plurality of (for example, eight) main nozzles 6 are arranged around one pilot nozzle 7.

図5に示すように、従来のパイロットノズル7は、ドリル等による穴加工により流路A13や流路B14が予め形成されたノズル構成部材9,10,11を接合部12で互いに接合することで構成されている。ノズル構成部材9,10,11の接合には、例えば、ロウ付けによる溶接が用いられる。 As shown in FIG. 5, in the conventional pilot nozzle 7, the nozzle constituent members 9, 10 and 11 having the flow paths A13 and the flow path B14 formed in advance by drilling holes or the like are joined to each other at the joint portion 12. It is configured. For joining the nozzle components 9, 10 and 11, for example, welding by brazing is used.

一般的に、ガスタービンの定格負荷時には、流路A13に相対的に温度の高いスイープ空気(燃焼空気)が導通し、流路B14に相対的に温度の低い天然ガス等の燃料が導通する。このため、パイロットノズル7の主として径方向の温度差、及びそれに起因する径方向、軸方向の熱伸び差により、熱応力が発生する。一般に溶接部においては、未溶着部等による形状の不連続性に起因して熱応力が助長されやすく、また溶接部では母材に比べて疲労強度が低下する。 Generally, at the rated load of the gas turbine, sweep air (combustion air) having a relatively high temperature conducts to the flow path A13, and fuel such as natural gas having a relatively low temperature conducts to the flow path B14. Therefore, thermal stress is generated mainly due to the temperature difference mainly in the radial direction of the pilot nozzle 7 and the thermal expansion difference in the radial direction and the axial direction caused by the temperature difference. Generally, in the welded portion, thermal stress is likely to be promoted due to the discontinuity of the shape due to the unwelded portion or the like, and the fatigue strength of the welded portion is lower than that of the base metal.

以上より、従来のパイロットノズル7では、特に流路A13と流路B14の両方が配置される部位の接合部12が、流路A13と流路B14のそれぞれを導通する燃料または燃焼空気の温度差に起因して強度のボトルネックとなり、低サイクル疲労により運用が制限される。 From the above, in the conventional pilot nozzle 7, in particular, the temperature difference between the fuel or the combustion air in which the joint portion 12 at the portion where both the flow path A13 and the flow path B14 are arranged conducts each of the flow path A13 and the flow path B14. This causes a strong bottleneck, and low cycle fatigue limits operation.

また、図6Aに示すように、従来のパイロットノズル7の根元部においては、流路A13と流路B14の両方がパイロットノズル7の周方向に環状(アニュラ状:Annular)に配置されているため、パイロットノズル7は径方向において流路A13及び流路B14により熱的に分断された構造となる。このため、流路A13と流路B14のそれぞれを導通する燃料または燃焼空気の温度差によるパイロットノズル7への熱応力がさらに助長される。 Further, as shown in FIG. 6A, in the root portion of the conventional pilot nozzle 7, both the flow path A13 and the flow path B14 are arranged in an annular shape in the circumferential direction of the pilot nozzle 7. The pilot nozzle 7 has a structure that is thermally separated by the flow path A13 and the flow path B14 in the radial direction. Therefore, the thermal stress on the pilot nozzle 7 due to the temperature difference between the fuel or the combustion air conducting each of the flow paths A13 and the flow path B14 is further promoted.

また、図6Bに示すように、従来のパイロットノズル7の先端近傍においては、流路B14はパイロットノズル7の周方向に複数に分割して配置されているが、流路A13は根元部と同様に、パイロットノズル7の周方向に環状(アニュラ状)に配置されており、パイロットノズル7は径方向において流路A13により熱的に分断された構造となる。 Further, as shown in FIG. 6B, in the vicinity of the tip of the conventional pilot nozzle 7, the flow path B14 is divided into a plurality of parts in the circumferential direction of the pilot nozzle 7, but the flow path A13 is the same as the root portion. In addition, the pilot nozzle 7 is arranged in an annular shape (annular shape) in the circumferential direction, and the pilot nozzle 7 has a structure that is thermally divided by the flow path A13 in the radial direction.

次に、図3から図4Bを参照して、本発明の実施例1に係る燃料ノズルについて説明する。図3は、本実施例のパイロットノズル7の構造を示す断面図であり、図4A,図4Bは、それぞれ図3のA-A’断面、B-B’断面を示している。 Next, the fuel nozzle according to the first embodiment of the present invention will be described with reference to FIGS. 3 to 4B. FIG. 3 is a cross-sectional view showing the structure of the pilot nozzle 7 of this embodiment, and FIGS. 4A and 4B show a cross section taken along the line AA'and a cross section taken along the line BB'of FIG. 3, respectively.

図3に示すように、本実施例のパイロットノズル7は、燃料または燃焼空気が導通する流路A13(第1の流路)と、燃料または燃焼空気が導通し、流路A13(第1の流路)とは異なる流路B14(第2の流路)を有しており、パイロットノズル7のノズル構成部材9,10の内、少なくとも流路A13(第1の流路)と流路B14(第2の流路)の両方が配置されている部位は、接合部12の無い一体のノズル構成部材10で構成されている。 As shown in FIG. 3, the pilot nozzle 7 of this embodiment has a flow path A13 (first flow path) through which fuel or combustion air conducts, and a flow path A13 (first flow path) through which fuel or combustion air conducts. It has a flow path B14 (second flow path) different from the flow path), and among the nozzle constituent members 9 and 10 of the pilot nozzle 7, at least the flow path A13 (first flow path) and the flow path B14. The portion where both (second flow paths) are arranged is composed of an integral nozzle component 10 without a joint portion 12.

図3のように、流路A13(第1の流路)と流路B14(第2の流路)の両方が配置される部位を接合部12の無い一体のノズル構成部材10で構成することにより、上述したような、流路A13と流路B14のそれぞれを導通する燃料または燃焼空気の温度差に起因して接合部12が強度のボトルネックとなるのを防ぐことができ、パイロットノズル7の信頼性及び耐久性を向上することができる。 As shown in FIG. 3, the portion where both the flow path A13 (first flow path) and the flow path B14 (second flow path) are arranged is configured by the integrated nozzle constituent member 10 without the joint portion 12. Thereby, as described above, it is possible to prevent the joint portion 12 from becoming a strength bottleneck due to the temperature difference between the fuel or the combustion air conducting each of the flow paths A13 and the flow path B14, and the pilot nozzle 7 It is possible to improve the reliability and durability of the.

また、図4A及び図4Bに示すように、本実施例のパイロットノズル7は、流路A13(第1の流路)及び流路B14(第2の流路)が、パイロットノズル7の周方向において、いずれも複数に分割して配置されている。 Further, as shown in FIGS. 4A and 4B, in the pilot nozzle 7 of this embodiment, the flow path A13 (first flow path) and the flow path B14 (second flow path) are in the circumferential direction of the pilot nozzle 7. In, all of them are divided into a plurality of arrangements.

図4A及び図4Bのように、流路A13(第1の流路)と流路B14(第2の流路)の両方を、パイロットノズル7の周方向において、複数に分割して配置することで、パイロットノズル7が径方向において、流路A13(第1の流路)及び流路B14(第2の流路)により熱的に完全に分断されるのを防いでいる。これにより、流路A13と流路B14のそれぞれを導通する燃料または燃焼空気の温度差によるパイロットノズル7への熱応力を緩和することができる。 As shown in FIGS. 4A and 4B, both the flow path A13 (first flow path) and the flow path B14 (second flow path) are divided into a plurality of parts in the circumferential direction of the pilot nozzle 7 and arranged. This prevents the pilot nozzle 7 from being completely thermally separated by the flow path A13 (first flow path) and the flow path B14 (second flow path) in the radial direction. This makes it possible to relieve the thermal stress on the pilot nozzle 7 due to the temperature difference between the fuel or the combustion air conducting each of the flow paths A13 and the flow path B14.

例えば、流路A13(第1の流路)に燃焼空気を導通させ、流路B14(第2の流路)に燃焼空気より温度の低い燃料を導通させるような場合であっても、燃料及び燃焼空気の温度差によるパイロットノズル7への熱応力が緩和されるため、接合部12の無い一体のノズル構成部材10で構成することによる効果に加えて、パイロットノズル7の信頼性及び耐久性をさらに向上することができる。 For example, even in the case where the combustion air is conducted through the flow path A13 (first flow path) and the fuel having a temperature lower than that of the combustion air is conducted through the flow path B14 (second flow path), the fuel and the fuel and the flow path B14 (second flow path) are conducted. Since the thermal stress on the pilot nozzle 7 due to the temperature difference of the combustion air is relaxed, in addition to the effect of being composed of the integrated nozzle constituent member 10 without the joint portion 12, the reliability and durability of the pilot nozzle 7 are improved. It can be further improved.

また、図3に示すように、パイロットノズル7の先端近傍のノズル構成部材9は、流路A13(第1の流路)及び流路B14(第2の流路)の内、流路A13(第1の流路)のみが配置されており、流路A13(第1の流路)のみが配置されているノズル構成部材9は、流路A13(第1の流路)と流路B14(第2の流路)の両方が配置されているノズル構成部材10と、例えば、ロウ付けによる溶接または熱間等方圧加圧(HIP:Hot Isostatic Pressing)法により接合されている。 Further, as shown in FIG. 3, the nozzle constituent member 9 in the vicinity of the tip of the pilot nozzle 7 is the flow path A13 (the flow path A13 (second flow path) in the flow path A13 (first flow path) and the flow path B14 (second flow path). The nozzle component member 9 in which only the flow path (first flow path) is arranged and only the flow path A13 (first flow path) is arranged includes the flow path A13 (first flow path) and the flow path B14 (the first flow path). It is joined to the nozzle component 10 in which both of the second flow paths) are arranged, for example, by welding by brazing or by a hot isostatic pressing (HIP) method.

図3のように、流路A13(第1の流路)及び流路B14(第2の流路)の内、一方の流路A13(第1の流路)のみが形成されている領域に限定して接合部12が配置されるような構造とすることで、流路を導通する燃料または燃焼空気の温度差によるパイロットノズル7への熱応力の発生を防止することができ、接合部12の接合信頼性を担保することができる。 As shown in FIG. 3, in the region where only one of the flow paths A13 (first flow path) and the flow path B14 (second flow path) is formed, as shown in FIG. By making the structure such that the joint portion 12 is arranged in a limited manner, it is possible to prevent the generation of thermal stress on the pilot nozzle 7 due to the temperature difference of the fuel or the combustion air conducting through the flow path, and the joint portion 12 can be prevented. Bonding reliability can be guaranteed.

なお、ノズル構成部材9とノズル構成部材10との接合部12での接合には、上述した熱間等方圧加圧(HIP:Hot Isostatic Pressing)法を用いるのが望ましい。熱間等方圧加圧(HIP)法を用いることにより、未溶着部を極力無くすことができるため、接合部12における形状の不連続性に起因する熱応力を抑制することができる。 It is desirable to use the above-mentioned hot isostatic pressing (HIP) method for joining the nozzle constituent member 9 and the nozzle constituent member 10 at the joint portion 12. By using the hot isotropic pressure pressurization (HIP) method, the unwelded portion can be eliminated as much as possible, so that the thermal stress caused by the discontinuity of the shape at the joint portion 12 can be suppressed.

以上説明したように、本発明によれば、導通する燃料及び燃焼空気の温度差に起因する熱応力の少ない燃料ノズル及びそれを用いたガスタービン燃焼器を実現することができ、ガスタービン燃焼器の信頼性及び耐久性を向上することができる。 As described above, according to the present invention, it is possible to realize a fuel nozzle having less thermal stress due to the temperature difference between the conductive fuel and the combustion air and a gas turbine combustor using the fuel nozzle, and the gas turbine combustor. The reliability and durability of the fuel can be improved.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

1…圧縮機
2…燃焼器
3…タービン
4…燃焼器ライナ
5…尾筒(トランジションピース)
6…メインノズル
7…パイロットノズル
8…燃焼ガスの流れ方向
9,10,11…ノズル構成部材
12…接合部
13…流路A
14…流路B
15…燃焼室
1 ... Compressor 2 ... Combustor 3 ... Turbine 4 ... Combustor liner 5 ... Tail tube (transition piece)
6 ... Main nozzle 7 ... Pilot nozzle 8 ... Combustion gas flow direction 9, 10, 11 ... Nozzle component 12 ... Joint 13 ... Flow path A
14 ... Flow path B
15 ... Combustion chamber

Claims (10)

複数の流路を備える燃料ノズルであって、
燃料または燃焼空気が導通する第1の流路と、
燃料または燃焼空気が導通し、前記第1の流路とは異なる第2の流路と、を有し、
前記燃料ノズルの構成部材の内、少なくとも前記第1の流路と前記第2の流路が配置される部位は一体の部材で構成されていることを特徴とする燃料ノズル。
A fuel nozzle with multiple channels
A first flow path through which fuel or combustion air conducts,
The fuel or combustion air conducts and has a second flow path different from the first flow path.
The fuel nozzle is characterized in that at least a portion of the constituent members of the fuel nozzle in which the first flow path and the second flow path are arranged is composed of an integral member.
請求項1に記載の燃料ノズルであって、
前記第1の流路および前記第2の流路は、前記燃料ノズルの周方向において、いずれも複数に分割して配置されていることを特徴とする燃料ノズル。
The fuel nozzle according to claim 1.
The fuel nozzle is characterized in that the first flow path and the second flow path are each divided into a plurality of parts in the circumferential direction of the fuel nozzle.
請求項1または2に記載の燃料ノズルであって、
前記第1の流路を燃焼空気が導通し、
前記第2の流路を前記燃焼空気より温度の低い燃料が導通することを特徴とする燃料ノズル。
The fuel nozzle according to claim 1 or 2.
Combustion air conducts through the first flow path,
A fuel nozzle characterized in that a fuel having a temperature lower than that of the combustion air conducts through the second flow path.
請求項1から3のいずれか1項に記載の燃料ノズルであって、
前記燃料ノズルの先端近傍は、前記第1の流路および前記第2の流路の内、前記第1の流路のみが配置されており、
前記第1の流路のみが配置されている部位は、前記第1の流路と前記第2の流路が配置されている部位と接合されていることを特徴とする燃料ノズル。
The fuel nozzle according to any one of claims 1 to 3.
In the vicinity of the tip of the fuel nozzle, only the first flow path of the first flow path and the second flow path is arranged.
A fuel nozzle characterized in that the portion where only the first flow path is arranged is joined to the portion where the first flow path and the second flow path are arranged.
請求項4に記載の燃料ノズルであって、
前記第1の流路のみが配置されている部位は、前記第1の流路と前記第2の流路が配置されている部位と、溶接または熱間等方圧加圧(HIP)法により接合されていることを特徴とする燃料ノズル。
The fuel nozzle according to claim 4.
The portion where only the first flow path is arranged is formed by welding or hot isotropic pressure pressurization (HIP) method with the portion where the first flow path and the second flow path are arranged. A fuel nozzle characterized by being joined.
燃料と燃焼空気の混合気を燃焼させる燃焼室を構成する燃焼器ライナと、
前記燃焼室からタービンに燃焼ガスを導く尾筒と、
前記燃焼室に燃料と燃焼空気を供給するパイロットノズルと、
前記パイロットノズルの周囲に複数配置され、前記燃焼室に燃料と燃焼空気を供給するメインノズルと、を備え、
前記パイロットノズルは、燃料または燃焼空気が導通する第1の流路と、
燃料または燃焼空気が導通し、前記第1の流路とは異なる第2の流路と、を有し、
前記パイロットノズルの構成部材の内、少なくとも前記第1の流路と前記第2の流路が配置される部位は一体の部材で構成されていることを特徴とするガスタービン燃焼器。
A combustor liner that constitutes a combustion chamber that burns a mixture of fuel and combustion air,
The tail tube that guides the combustion gas from the combustion chamber to the turbine,
A pilot nozzle that supplies fuel and combustion air to the combustion chamber,
A plurality of main nozzles arranged around the pilot nozzle and supplying fuel and combustion air to the combustion chamber are provided.
The pilot nozzle has a first flow path through which fuel or combustion air conducts, and
The fuel or combustion air conducts and has a second flow path different from the first flow path.
A gas turbine combustor, characterized in that at least a portion of the components of the pilot nozzle in which the first flow path and the second flow path are arranged is composed of an integral member.
請求項6に記載のガスタービン燃焼器であって、
前記第1の流路および前記第2の流路は、前記パイロットノズルの周方向において、いずれも複数に分割して配置されていることを特徴とするガスタービン燃焼器。
The gas turbine combustor according to claim 6.
A gas turbine combustor, wherein the first flow path and the second flow path are each divided into a plurality of parts in the circumferential direction of the pilot nozzle.
請求項6または7に記載のガスタービン燃焼器であって、
前記第1の流路を燃焼空気が導通し、
前記第2の流路を前記燃焼空気より温度の低い燃料が導通することを特徴とするガスタービン燃焼器。
The gas turbine combustor according to claim 6 or 7.
Combustion air conducts through the first flow path,
A gas turbine combustor characterized in that a fuel having a temperature lower than that of the combustion air conducts through the second flow path.
請求項6から8のいずれか1項に記載のガスタービン燃焼器であって、
前記パイロットノズルの先端近傍は、前記第1の流路および前記第2の流路の内、前記第1の流路のみが配置されており、
前記第1の流路のみが配置されている部位は、前記第1の流路と前記第2の流路が配置されている部位と接合されていることを特徴とするガスタービン燃焼器。
The gas turbine combustor according to any one of claims 6 to 8.
In the vicinity of the tip of the pilot nozzle, only the first flow path is arranged among the first flow path and the second flow path.
A gas turbine combustor, wherein the portion where only the first flow path is arranged is joined to the portion where the first flow path and the second flow path are arranged.
請求項9に記載のガスタービン燃焼器であって、
前記第1の流路のみが配置されている部位は、前記第1の流路と前記第2の流路が配置されている部位と、溶接または熱間等方圧加圧(HIP)法により接合されていることを特徴とするガスタービン燃焼器。
The gas turbine combustor according to claim 9.
The portion where only the first flow path is arranged is formed by welding or hot isotropic pressure pressurization (HIP) method with the portion where the first flow path and the second flow path are arranged. A gas turbine combustor characterized by being joined.
JP2020155193A 2020-09-16 2020-09-16 Fuel nozzle, and gas turbine combustor Pending JP2022049136A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020155193A JP2022049136A (en) 2020-09-16 2020-09-16 Fuel nozzle, and gas turbine combustor
US17/405,372 US20220082260A1 (en) 2020-09-16 2021-08-18 Combustor Fuel Nozzle Structure
CN202111081539.0A CN114263930A (en) 2020-09-16 2021-09-15 Fuel nozzle and gas turbine combustor
DE102021210300.6A DE102021210300A1 (en) 2020-09-16 2021-09-16 Fuel nozzle and gas turbine combustor
JP2023129450A JP2023153214A (en) 2020-09-16 2023-08-08 Fuel nozzle and gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020155193A JP2022049136A (en) 2020-09-16 2020-09-16 Fuel nozzle, and gas turbine combustor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023129450A Division JP2023153214A (en) 2020-09-16 2023-08-08 Fuel nozzle and gas turbine combustor

Publications (1)

Publication Number Publication Date
JP2022049136A true JP2022049136A (en) 2022-03-29

Family

ID=80351630

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020155193A Pending JP2022049136A (en) 2020-09-16 2020-09-16 Fuel nozzle, and gas turbine combustor
JP2023129450A Pending JP2023153214A (en) 2020-09-16 2023-08-08 Fuel nozzle and gas turbine combustor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023129450A Pending JP2023153214A (en) 2020-09-16 2023-08-08 Fuel nozzle and gas turbine combustor

Country Status (4)

Country Link
US (1) US20220082260A1 (en)
JP (2) JP2022049136A (en)
CN (1) CN114263930A (en)
DE (1) DE102021210300A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286730A (en) * 1994-04-18 1995-10-31 Hitachi Ltd Flame stabilizer for gas turbine burner
JP2015017715A (en) * 2013-07-08 2015-01-29 三菱重工業株式会社 Tip holder, combustor nozzle mounted with the same, combustor mounted with the combustor nozzle and manufacturing method for the combustor nozzle
JP2015183960A (en) * 2014-03-25 2015-10-22 三菱日立パワーシステムズ株式会社 Injection nozzle, gas turbine combustor and gas turbine
JP2015209842A (en) * 2014-04-30 2015-11-24 三菱日立パワーシステムズ株式会社 Gas turbine combustion device, gas turbine, control device and control method
WO2017006690A1 (en) * 2015-07-03 2017-01-12 三菱日立パワーシステムズ株式会社 Combustor nozzle, gas turbine combustor, gas turbine, cover ring, and method for manufacturing combustor nozzle
JP2018151124A (en) * 2017-03-13 2018-09-27 三菱日立パワーシステムズ株式会社 Nozzle for combustor, combustor, and gas turbine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236932A1 (en) * 2009-03-17 2010-10-06 Siemens Aktiengesellschaft Burner and method for operating a burner, in particular for a gas turbine
JP2011099654A (en) * 2009-11-09 2011-05-19 Mitsubishi Heavy Ind Ltd Combustion burner for gas turbine
JP5631223B2 (en) * 2011-01-14 2014-11-26 三菱重工業株式会社 Fuel nozzle, gas turbine combustor including the same, and gas turbine including the same
TWI657195B (en) * 2014-07-08 2019-04-21 美商八河資本有限公司 A method for heating a recirculating gas stream,a method of generating power and a power generating system
JP6430756B2 (en) * 2014-09-19 2018-11-28 三菱日立パワーシステムズ株式会社 Combustion burner and combustor, and gas turbine
US9835333B2 (en) * 2014-12-23 2017-12-05 General Electric Company System and method for utilizing cooling air within a combustor
JP6484546B2 (en) * 2015-11-13 2019-03-13 三菱日立パワーシステムズ株式会社 Gas turbine combustor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286730A (en) * 1994-04-18 1995-10-31 Hitachi Ltd Flame stabilizer for gas turbine burner
JP2015017715A (en) * 2013-07-08 2015-01-29 三菱重工業株式会社 Tip holder, combustor nozzle mounted with the same, combustor mounted with the combustor nozzle and manufacturing method for the combustor nozzle
JP2015183960A (en) * 2014-03-25 2015-10-22 三菱日立パワーシステムズ株式会社 Injection nozzle, gas turbine combustor and gas turbine
JP2015209842A (en) * 2014-04-30 2015-11-24 三菱日立パワーシステムズ株式会社 Gas turbine combustion device, gas turbine, control device and control method
WO2017006690A1 (en) * 2015-07-03 2017-01-12 三菱日立パワーシステムズ株式会社 Combustor nozzle, gas turbine combustor, gas turbine, cover ring, and method for manufacturing combustor nozzle
JP2018151124A (en) * 2017-03-13 2018-09-27 三菱日立パワーシステムズ株式会社 Nozzle for combustor, combustor, and gas turbine

Also Published As

Publication number Publication date
CN114263930A (en) 2022-04-01
US20220082260A1 (en) 2022-03-17
JP2023153214A (en) 2023-10-17
DE102021210300A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
EP1143201B1 (en) Cooling system for gas turbine combustor
US9982892B2 (en) Fuel nozzle assembly including a pilot nozzle
US9714767B2 (en) Premix fuel nozzle assembly
KR101864501B1 (en) Gas turbine combustor
JP6266290B2 (en) Fuel nozzle for gas turbine engine combustor
US9803867B2 (en) Premix pilot nozzle
US20100300116A1 (en) Expansion Hula Seals
JP2012017971A (en) Injection nozzle for turbomachine
JP5399178B2 (en) Fuel nozzle tip assembly
JP2011141113A (en) Fuel nozzle with integrated passages and method of operation
KR20170107382A (en) Gas turbine flow sleeve mounting
US10030869B2 (en) Premix fuel nozzle assembly
US9500370B2 (en) Apparatus for mixing fuel in a gas turbine nozzle
US10228140B2 (en) Gas-only cartridge for a premix fuel nozzle
JP2010096487A (en) Vanelet of combustor burner
US7926279B2 (en) Extended life fuel nozzle
US11629641B2 (en) Fuel distribution manifold
KR20190007953A (en) Combustion apparatus and gas turbine including the same
JP2014178107A (en) Diffusion combustor fuel nozzle for limiting NOx emissions
JP2022049136A (en) Fuel nozzle, and gas turbine combustor
RU2774929C1 (en) Fuel injector and gas turbine combustion chamber
RU2774929C9 (en) Fuel nozzle and gas turbine combustor
US11041623B2 (en) Gas turbine combustor with heat exchanger between rich combustion zone and secondary combustion zone
WO2023140180A1 (en) Combustor and gas turbine
US10934940B2 (en) Fuel nozzle flow-device pathways

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230509