JP2021162450A - Ion selective electrode, method for manufacturing ion selective electrode, and electrolyte analyzer - Google Patents

Ion selective electrode, method for manufacturing ion selective electrode, and electrolyte analyzer Download PDF

Info

Publication number
JP2021162450A
JP2021162450A JP2020063446A JP2020063446A JP2021162450A JP 2021162450 A JP2021162450 A JP 2021162450A JP 2020063446 A JP2020063446 A JP 2020063446A JP 2020063446 A JP2020063446 A JP 2020063446A JP 2021162450 A JP2021162450 A JP 2021162450A
Authority
JP
Japan
Prior art keywords
ion
support
selective electrode
sensitive film
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020063446A
Other languages
Japanese (ja)
Inventor
明典 東
Akinori Azuma
真男 山口
Masao Yamaguchi
達也 田渕
Tatsuya Tabuchi
義将 緒方
Yoshimasa Ogata
乃理 米澤
Nori Yonezawa
啓太 須永
Keita Sunaga
貴大 山中
Takahiro Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Corp
Original Assignee
A&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&T Corp filed Critical A&T Corp
Priority to JP2020063446A priority Critical patent/JP2021162450A/en
Priority to PCT/JP2021/013072 priority patent/WO2021200735A1/en
Publication of JP2021162450A publication Critical patent/JP2021162450A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes

Abstract

To stably fix an ion sensitive film based on a difficult-to-attach resin, on a support body having a flow passage for an inspection target liquid.SOLUTION: The ion selective electrode is formed by depositing an elastic member 15 with a through-hole 18 for an opening 21, on a support body 11 having the opening 21 in a flow passage for an inspection target liquid and in a partial region of the flow passage and then depositing an ion sensitive film 16 to block the through-hole 18. The angle between a surface of the ion sensitive film 16 which is in contact with the liquid and a side surface of the through-hole 18 in the elastic member 15 is at least 90 degrees. With the above configurations, an ion selective electrode with an excellent detection performance and an excellent long-term storage stability can be provided.SELECTED DRAWING: Figure 1

Description

本発明は、イオン選択性電極、イオン選択性電極の製造方法およびイオン選択性電極を備えた電解質分析装置に関する。特に、臨床検査装置に利用される分析装置のうち、水質分析、食品分析等に用いる電解質分析装置に関する。 The present invention relates to an ion-selective electrode, a method for producing an ion-selective electrode, and an electrolyte analyzer provided with the ion-selective electrode. In particular, among the analyzers used in clinical examination devices, the electrolyte analyzers used for water quality analysis, food analysis, etc. are related.

イオン選択性電極は、血液、体液や尿などの検体中の特定のイオン濃度、例えばナトリウムイオン、カリウムイオンそして塩化物イオン等を測定するものであり、参照電極(リファレンス電極とも言う。)と共に電解質分析装置を構成している。これらは単独の装置として、或いは臨床検査装置や水質分析装置等に搭載されて用いられる。 The ion-selective electrode measures a specific ion concentration in a sample such as blood, body fluid or urine, for example, sodium ion, potassium ion, chloride ion, etc., and is an electrolyte together with a reference electrode (also referred to as a reference electrode). It constitutes an analyzer. These are used as a single device or mounted on a clinical testing device, a water quality analyzer, or the like.

フロー型のイオン選択性電極については、例えば、下記特許文献1に詳しく説明されている。イオン選択性電極の構造は一般的には、電解質溶液、電解質溶液を封入する筐体、被検液の流路を有する支持体、電解質溶液と被検液の間に設けられたイオン感応膜、およびイオン感応膜に誘起された起電力を測定するための電極棒より構成される。 The flow-type ion-selective electrode is described in detail in, for example, Patent Document 1 below. The structure of the ion-selective electrode is generally an electrolyte solution, a housing for encapsulating the electrolyte solution, a support having a flow path for the test solution, and an ion-sensitive film provided between the electrolyte solution and the test solution. It is composed of an electrode rod for measuring the electromotive force induced in the ion-sensitive film.

筐体にはイオン感応膜を保持する支持体が固着され、或いは筐体と一体成型されている。支持体内部には被検液を流す流路が形成されているとともに、被検液の流路の側面の一部に開口部が形成されている。当該開口部はイオン感応膜で覆われており、流路内の被検液と筐体内の電解質溶液とは物理的に隔離されているとともに、イオン感応膜を介して電気的な導通を得る構成となっている。この際に被検液内のイオン濃度に応じてイオン感応膜に発生する起電力と参照電極との電位差を計測することにより被検液中のイオン濃度を測定している。 A support that holds the ion-sensitive film is fixed to the housing, or is integrally molded with the housing. A flow path for flowing the test liquid is formed inside the support, and an opening is formed on a part of the side surface of the flow path of the test liquid. The opening is covered with an ion-sensitive membrane, and the test solution in the flow path and the electrolyte solution in the housing are physically separated from each other, and electrical conduction is obtained through the ion-sensitive membrane. It has become. At this time, the ion concentration in the test solution is measured by measuring the potential difference between the electromotive force generated in the ion-sensitive film and the reference electrode according to the ion concentration in the test solution.

また、筐体や支持体は、塩化ナトリウムなどの水溶液である電解質溶液を長期間安定に封入しておく技術的な必要性や製造の容易性などから、ポリ塩化ビニル樹脂やアクリロニトリルブタジエンスチレン(ABS)樹脂が用いられている。 In addition, the housing and support are made of polyvinyl chloride resin or acrylonitrile butadiene styrene (ABS) because of the technical need to stably enclose an electrolyte solution, which is an aqueous solution of sodium chloride, for a long period of time and the ease of production. ) Resin is used.

従来からイオン感応膜については、ナトリウムイオンやカリウムイオン用には、ポリ塩化ビニル樹脂を基材とした膜が使われている。また塩化物イオン用のイオン感応膜には、四級アンモニウム塩を持つ高分子物質そのもの、或いはポリエチレン製多孔質膜を補強材として使用することが開示されている(例えば、下記特許文献2参照。)。 Conventionally, as an ion-sensitive membrane, a membrane based on a polyvinyl chloride resin has been used for sodium ions and potassium ions. Further, it is disclosed that a polymer substance itself having a quaternary ammonium salt or a polyethylene porous membrane is used as a reinforcing material for the ion-sensitive membrane for chloride ions (see, for example, Patent Document 2 below). ).

さらに、上記イオン選択性電極を用いた電解質分析装置の構成に関しては、下記特許文献1,2などに詳しく説明されている。また、下記特許文献3には、警報音を発する機能を有する医療機器において、スピーカ部への液体の侵入を防止するために、筒状の収容部内に円形のポリエチレン製フィルムの表裏をシリコーンゴム製のリング状パッキンで挟持した積層体を挿入し、スピーカを挿入した後、上部から取り付け具で固定する構造体が開示されている。 Further, the configuration of the electrolyte analyzer using the ion-selective electrode is described in detail in Patent Documents 1 and 2 below. Further, in Patent Document 3 below, in a medical device having a function of emitting an alarm sound, in order to prevent liquid from entering the speaker portion, the front and back surfaces of a circular polyethylene film are made of silicone rubber in a tubular accommodating portion. A structure is disclosed in which a laminated body sandwiched between the ring-shaped packings of the above is inserted, a speaker is inserted, and then the structure is fixed by a fixture from above.

特開2016−180630号公報Japanese Unexamined Patent Publication No. 2016-180630 特開2018−4633号公報(段落[0007])JP-A-2018-4633 (paragraph [0007]) 特開2012−196339号公報Japanese Unexamined Patent Publication No. 2012-196339

従来、支持体がポリ塩化ビニル樹脂製で、かつイオン感応膜がポリ塩化ビニル樹脂を基材とした場合には、接着剤や溶剤接着などの方法で両者を固着する方法が用いられていた。この他支持体がABS樹脂であり、かつイオン感応膜が接着性である場合も同様である。 Conventionally, when the support is made of polyvinyl chloride resin and the ion-sensitive film is made of polyvinyl chloride resin as a base material, a method of fixing the two by a method such as adhesive or solvent adhesion has been used. The same applies when the support is made of ABS resin and the ion-sensitive film is adhesive.

しかし、イオン感応膜がポリエチレン製多孔質膜を基材とした場合、本来接着性が悪いため、支持体との間を接着或いは溶着技術によって固着させることは困難であった。また、接着剤を用いた場合には、接着剤不足や硬化不足により液漏れが生じること、並びに接着剤がイオン感応膜の測定部位にはみ出して遮蔽してしまう、或いは接着剤成分が溶出することにより、イオン選択性電極の性能不良を引き起こす問題があった。 However, when the ion-sensitive film is made of a polyethylene porous film as a base material, it is difficult to bond the ion-sensitive film to the support by an adhesive or welding technique because the adhesiveness is originally poor. In addition, when an adhesive is used, liquid leakage may occur due to insufficient adhesive or insufficient curing, and the adhesive may squeeze out to the measurement site of the ion-sensitive film and shield it, or the adhesive component may elute. As a result, there is a problem of causing poor performance of the ion-selective electrode.

このような難接着性の膜を支持体上に固定する方法として、固定部材を用いた機械的方法によって実現する方法が周知である。しかし、電解質溶液に含浸された状態での機械的安定性を確保することや、被検液の液漏れを防止するなどの長期的な信頼性を確保することが課題であった。ここで、本発明者らは、イオン感応膜の測定部近傍において被検液の流れが滞る液貯まり部がある場合、イオン選択性電極の特性に大きな影響を与えることを見出した。以上の知見を踏まえて、本発明者らはイオン選択性電極の特性に悪影響がなく、かつ信頼性の高いイオン選択性電極を提供する方法を鋭意探索し検討した。 As a method of fixing such a poorly adhesive film on a support, a method realized by a mechanical method using a fixing member is well known. However, there have been problems in ensuring mechanical stability in the state of being impregnated with the electrolyte solution and ensuring long-term reliability such as prevention of leakage of the test solution. Here, the present inventors have found that when there is a liquid pool portion in the vicinity of the measurement portion of the ion-sensitive membrane in which the flow of the test liquid is stagnant, the characteristics of the ion-selective electrode are greatly affected. Based on the above findings, the present inventors have diligently searched and investigated a method for providing a highly reliable ion-selective electrode that does not adversely affect the characteristics of the ion-selective electrode.

本発明は、上記課題に鑑み、被検液の流路を有する支持体上に、難接着性樹脂を基材としたイオン感応膜を安定に固定できることを目的とする。また、難接着性樹脂を基材としたイオン選択性電極であっても検出性能および長期保存安定性などに優れたイオン選択性電極を提供することを目的とする。 In view of the above problems, an object of the present invention is to be able to stably fix an ion-sensitive film based on a poorly adhesive resin on a support having a flow path of a test solution. Another object of the present invention is to provide an ion-selective electrode having excellent detection performance and long-term storage stability even if it is an ion-selective electrode using a poorly adhesive resin as a base material.

上記目的を達成するため、本発明のイオン選択性電極は、被検液の流路と前記流路の一部領域に開口部を有する支持体と、前記開口部に対応した形状の貫通孔を有するとともに、前記開口部と前記貫通孔とが合致する位置で積層した弾性部材と、前記貫通孔の上部を閉塞するように積層したイオン感応膜と、からなる積層体と、前記イオン感応膜の上部から押さえ前記支持体上に固定することにより、前記開口部と前記貫通孔とにより形成された空間を共通の流路とする押さえ部材と、を有し、前記イオン感応膜の接液面に対する前記弾性部材の貫通孔側面との成す角度(θa)が90度以上で当接していることを特徴とする。 In order to achieve the above object, the ion-selective electrode of the present invention has a support having an opening in the flow path of the test solution and a part of the flow path, and a through hole having a shape corresponding to the opening. A laminate composed of an elastic member laminated at a position where the opening and the through hole match, and an ion-sensitive film laminated so as to close the upper part of the through hole, and the ion-sensitive film. It has a pressing member that uses the space formed by the opening and the through hole as a common flow path by being fixed on the support by pressing from the upper part, and has a pressing member with respect to the liquid contact surface of the ion-sensitive membrane. The elastic member is in contact with the side surface of the through hole at an angle (θa) of 90 degrees or more.

また、前記支持体上に連結形成された固定部材に、前記押さえ部材が係止構造により係止され、前記積層体を前記支持体に固定してもよい。 Further, the holding member may be locked to the fixing member connected and formed on the support by a locking structure, and the laminated body may be fixed to the support.

また、前記支持体上に連結形成された固定部材に、前記押さえ部材の周囲の一部又は全部を溶着または接着する方法により、前記積層体を前記支持体に固定してもよい。 Further, the laminated body may be fixed to the support by a method of welding or adhering a part or the whole of the periphery of the holding member to the fixing member connected and formed on the support.

また、前記共通の流路は、前記イオン感応膜と前記弾性部材との間に被検液の液貯まり空間がないこととしてもよい。 Further, in the common flow path, there may be no liquid storage space for the test liquid between the ion-sensitive membrane and the elastic member.

また、本発明の電解質分析装置は、上記のイオン選択性電極を搭載したことを特徴とする。 Further, the electrolyte analyzer of the present invention is characterized in that the above-mentioned ion-selective electrode is mounted.

また、本発明のイオン選択性電極の製造方法は、被検液の流路と前記流路の一部領域に開口部を有する支持体にイオン感応膜を固定するイオン選択性電極の製造方法において、前記開口部に対応した形状の貫通孔を有する弾性部材であって、前記弾性部材の上面に対する前記貫通孔の側面の角度(θb)が90度以下である前記弾性部材を準備する工程と、前記支持体の内部に、前記支持体の前記開口部と前記弾性部材の前記貫通孔とが合致する位置で積層する工程と、前記支持体の内部に、前記貫通孔の上部を前記イオン感応膜で閉塞するように積層する工程と、前記イオン感応膜の上部から押さえ部材で前記イオン感応膜を押圧し、前記支持体上に固定する工程と、を含み、前記開口部と前記貫通孔とにより形成された空間を共通の流路とすることを特徴とする。 Further, the method for producing an ion-selective electrode of the present invention is a method for producing an ion-selective electrode in which an ion-sensitive membrane is fixed to a support having an opening in a flow path of a test solution and a part of the flow path. A step of preparing the elastic member having a through hole having a shape corresponding to the opening and having an angle (θb) of a side surface of the through hole with respect to the upper surface of the elastic member of 90 degrees or less. A step of laminating the inside of the support at a position where the opening of the support and the through hole of the elastic member coincide with each other, and inside the support, the upper part of the through hole is formed by the ion-sensitive film. A step of laminating the ion-sensitive film so as to be closed with the above, and a step of pressing the ion-sensitive film from the upper part of the ion-sensitive film with a pressing member and fixing the ion-sensitive film on the support. It is characterized in that the formed space is used as a common flow path.

また、前記支持体上に設けられた固定部材と、前記押さえ部材と、にそれぞれ設けた係止部を互いに係止することにより、前記支持体の内部に、前記弾性部材と前記イオン感応膜の積層体を固定してもよい。 Further, by locking the fixing members provided on the support and the locking portions provided on the holding members with each other, the elastic member and the ion-sensitive film can be placed inside the support. The laminate may be fixed.

また、前記支持体上に設けられた固定部材と、前記押さえ部材の周囲の一部又は全部を溶着または接着することにより、前記支持体の内部に、前記弾性部材と前記イオン感応膜の積層体を固定してもよい。 Further, by welding or adhering a part or all of the periphery of the holding member to the fixing member provided on the support, the elastic member and the ion-sensitive film are laminated inside the support. May be fixed.

本発明によれば、被検液の流路を有する支持体上に、難接着性樹脂を基材としたイオン感応膜を安定に固定できるようになる。また、難接着性樹脂を基材としたイオン選択性電極であっても検出性能および長期保存安定性などに優れたイオン選択性電極を提供することができるようになる。 According to the present invention, an ion-sensitive film based on a poorly adhesive resin can be stably fixed on a support having a flow path of a test solution. Further, even an ion-selective electrode based on a poorly adhesive resin can be provided with an ion-selective electrode having excellent detection performance and long-term storage stability.

図1は、本発明の実施形態にかかる支持体へのイオン感応膜の取り付け方法を説明する分解図である。FIG. 1 is an exploded view illustrating a method of attaching an ion-sensitive film to a support according to an embodiment of the present invention. 図2は、支持体内部の流路と開口部形状の説明図である。FIG. 2 is an explanatory view of the flow path and the shape of the opening inside the support. 図3は、流路の開口部と弾性部材の貫通孔の配置関係を示す説明図である。FIG. 3 is an explanatory view showing the arrangement relationship between the opening of the flow path and the through hole of the elastic member. 図4は、支持体内部のイオン感応膜の係止構造の関係を詳細に説明する断面図である。FIG. 4 is a cross-sectional view for explaining in detail the relationship of the locking structure of the ion-sensitive film inside the support. 図5は、実施の形態にかかる電解質分析装置の主要構成部を説明する図である。FIG. 5 is a diagram illustrating a main component of the electrolyte analyzer according to the embodiment. 図6は、実施例1〜3それぞれで用いる支持体、弾性部材、イオン感応膜により形成される流路の断面図である。FIG. 6 is a cross-sectional view of a flow path formed by the support, the elastic member, and the ion-sensitive film used in each of Examples 1 to 3. 図7は、比較例1,2それぞれで用いる支持体、弾性部材、イオン感応膜により形成される流路の断面図である。FIG. 7 is a cross-sectional view of a flow path formed by the support, the elastic member, and the ion-sensitive film used in Comparative Examples 1 and 2, respectively. 図8は、実施例および比較例でイオン感応膜を固定したイオン選択性電極を用い被検液を投入後の電位変化の測定結果の一例を示す図表である。FIG. 8 is a chart showing an example of the measurement result of the potential change after the test solution is added using the ion-selective electrode to which the ion-sensitive membrane is fixed in Examples and Comparative Examples. 図9は、イオン選択性電極に用いる弾性部材の各種形状を説明する図である。FIG. 9 is a diagram illustrating various shapes of elastic members used for ion-selective electrodes. 図10は、固定部材と押さえ部材の固定構造を説明する断面図である。FIG. 10 is a cross-sectional view illustrating the fixing structure of the fixing member and the pressing member.

以下、本発明のイオン選択性電極について詳細に説明する。説明上同じ部材には同じ符号を用いる。また以下の説明で用いる被検液とは、血液、体液や尿などの被分析物を希釈した溶液を指し、ナトリウムイオン、カリウムイオンおよび塩化物イオンなどの電解質を含む水溶液を指す。 Hereinafter, the ion-selective electrode of the present invention will be described in detail. For the sake of explanation, the same reference numerals are used for the same members. Further, the test solution used in the following description refers to a solution obtained by diluting an object to be analyzed such as blood, body fluid and urine, and refers to an aqueous solution containing an electrolyte such as sodium ion, potassium ion and chloride ion.

(イオン選択性電極の構成概要)
図1は、本発明の実施形態にかかる支持体へのイオン感応膜の取り付け方法を説明する分解図である。支持体11は、ABS樹脂やポリ塩化ビニル樹脂等で形成される。支持体11は、筐体を兼ねる側板12と一体に形成されても良いし、側板12と支持体11を別々の材料で作成し接着等の方法で合体しても良い。支持体11の内部には、側板12を貫通するように被検液の流路13が形成されている。図1の例では、支持体11上には別途形成した枠型の固定部材14を連結形成したものであるが、これら支持体11と固定部材14は射出成型等の方法で一体成型することも可能である。
(Outline of configuration of ion-selective electrode)
FIG. 1 is an exploded view illustrating a method of attaching an ion-sensitive film to a support according to an embodiment of the present invention. The support 11 is made of ABS resin, polyvinyl chloride resin, or the like. The support 11 may be integrally formed with the side plate 12 that also serves as a housing, or the side plate 12 and the support 11 may be made of different materials and combined by a method such as adhesion. Inside the support 11, a flow path 13 for the test liquid is formed so as to penetrate the side plate 12. In the example of FIG. 1, a frame-shaped fixing member 14 separately formed is connected and formed on the support 11, but these supports 11 and the fixing member 14 may be integrally molded by a method such as injection molding. It is possible.

固定部材14の内部には、固定部材14の内側形状に合わせて成形されたシート状の弾性部材15が積層配置される。弾性部材15の材質は、フッ化ビニリデン系(FKM)、テトラフルオロエチレン−プロピレン系(FEPM)、テトラフルオロエチレン−パープルオロビニルエーテル系(FFKM)等の市販のフッ素ゴム系樹脂の他、シリコーンゴム系樹脂などが、耐水性や耐薬品性の観点から好適に用いられる。この弾性部材15の中央には、支持体11の底部に設けられた開口部21の端部とほぼ同じ形状の貫通孔18が形成されている。 Inside the fixing member 14, sheet-shaped elastic members 15 formed according to the inner shape of the fixing member 14 are laminated and arranged. The material of the elastic member 15 is a silicone rubber-based resin in addition to commercially available fluororubber-based resins such as vinylidene fluoride-based (FKM), tetrafluoroethylene-propylene-based (FEPM), and tetrafluoroethylene-purple orovinyl ether-based (FFKM). Resin or the like is preferably used from the viewpoint of water resistance and chemical resistance. At the center of the elastic member 15, a through hole 18 having substantially the same shape as the end of the opening 21 provided at the bottom of the support 11 is formed.

弾性部材15の上には、イオン感応膜16が配置される。イオン感応膜16は、ポリオレフィン系樹脂膜を基材として既存の方法で作成されている。イオン感応膜16を弾性部材15の貫通孔18上に積層することで、開口部21が塞がれて閉空間の流路が形成される。 The ion-sensitive film 16 is arranged on the elastic member 15. The ion-sensitive film 16 is made by an existing method using a polyolefin-based resin film as a base material. By laminating the ion-sensitive film 16 on the through hole 18 of the elastic member 15, the opening 21 is closed and a flow path in a closed space is formed.

固定部材14の開口部には、上下に貫通する貫通枠構造を有する押さえ部材17が挿入される。詳細は後述するが、固定部材14に押さえ部材17の挿入時、押さえ部材17に形成された係止凸部19aが、固定部材14の内壁に形成された係止凹部19bに係合し、固定部材14に対する押さえ部材17の挿入状態を固定保持できる。 A pressing member 17 having a through frame structure penetrating vertically is inserted into the opening of the fixing member 14. Although the details will be described later, when the pressing member 17 is inserted into the fixing member 14, the locking convex portion 19a formed on the pressing member 17 engages with the locking recess 19b formed on the inner wall of the fixing member 14 to fix the pressing member 17. The inserted state of the pressing member 17 with respect to the member 14 can be fixedly held.

図2は、支持体内部の流路と開口部形状の説明図である。図2(a)は上面図、図2(b)は図2(a)のA−A’ラインの断面図、図2(c)は開口部の拡大説明図である。流路13は、図2(b)に示すように、側板12を貫通して支持体11内部に進行し、開口部21に向かって上昇する構造を有している。開口部21は、図2(c)に示すように、流路13入り口から支持体11上に形成された溝を通じて流路出口に向う構造を有している。 FIG. 2 is an explanatory view of the flow path and the shape of the opening inside the support. 2 (a) is a top view, FIG. 2 (b) is a cross-sectional view of the AA'line of FIG. 2 (a), and FIG. 2 (c) is an enlarged explanatory view of the opening. As shown in FIG. 2B, the flow path 13 has a structure that penetrates the side plate 12, travels inside the support 11, and rises toward the opening 21. As shown in FIG. 2C, the opening 21 has a structure from the entrance of the flow path 13 to the exit of the flow path through a groove formed on the support 11.

図3は、流路の開口部と弾性部材の貫通孔の配置関係を示す説明図である。図2(c)および図3に示すように、支持体11上の開口部21の端部22は、流路13の入り口と出口を跨ぐ形をしており、長円型の形状を有している。この開口部21上に弾性部材15の貫通孔18が配置される。 FIG. 3 is an explanatory view showing the arrangement relationship between the opening of the flow path and the through hole of the elastic member. As shown in FIGS. 2C and 3, the end 22 of the opening 21 on the support 11 has a shape straddling the inlet and outlet of the flow path 13 and has an oval shape. ing. A through hole 18 of the elastic member 15 is arranged on the opening 21.

図4は、支持体内部のイオン感応膜の係止構造の関係を詳細に説明する断面図である。この図4は、図2および図3のB−B’ライン断面であり、支持体11内部での各部の積層構造とイオン感応膜16の係止構造が示されている。 FIG. 4 is a cross-sectional view for explaining in detail the relationship of the locking structure of the ion-sensitive film inside the support. FIG. 4 is a cross section of the BB'line of FIGS. 2 and 3, showing a laminated structure of each part inside the support 11 and a locking structure of the ion-sensitive film 16.

支持体11の中央部には、被検液の流路13となる長円形の開口部21が形成されており、また支持体11の上部には、枠状の固定部材14が固着されている。固定部材14の枠内に、上下に貫通する貫通枠構造(連絡部17a)を有する押さえ部材17を挿入することにより、弾性部材15とイオン感応膜16を積層した積層体は、押さえ部材17の下枠部17bにより、イオン感応膜16の上部から支持体11に向かって押し付けられる構成となっている。 An oval opening 21 serving as a flow path 13 for the test liquid is formed in the central portion of the support 11, and a frame-shaped fixing member 14 is fixed to the upper portion of the support 11. .. By inserting a pressing member 17 having a through frame structure (communication portion 17a) penetrating vertically into the frame of the fixing member 14, the laminated body in which the elastic member 15 and the ion-sensitive film 16 are laminated is formed by the pressing member 17. The lower frame portion 17b is configured to be pressed from the upper portion of the ion-sensitive film 16 toward the support 11.

図4に示すように、固定部材14の枠内に合わせてシート状の弾性部材15が挿入された状態で、支持体11の開口部21と弾性部材15の貫通孔18が同じ位置(合致する位置)に位置するため、イオン感応膜16により覆われた空間が共通の流路13として形成される。これらの弾性部材15とイオン感応膜16からなる積層構造体は、押さえ部材17に形成された係止凸部19aが、固定部材14の内壁に形成された係止凹部19bに係合することで作用するばね力、および弾性部材15の弾性力により、支持体11上に押圧固定される。 As shown in FIG. 4, in a state where the sheet-shaped elastic member 15 is inserted into the frame of the fixing member 14, the opening 21 of the support 11 and the through hole 18 of the elastic member 15 are at the same position (match). Since it is located at the position), the space covered by the ion-sensitive film 16 is formed as a common flow path 13. In the laminated structure composed of these elastic members 15 and the ion-sensitive film 16, the locking convex portion 19a formed on the pressing member 17 engages with the locking concave portion 19b formed on the inner wall of the fixing member 14. It is pressed and fixed on the support 11 by the acting spring force and the elastic force of the elastic member 15.

上述したイオン選択性電極の製造は、支持体11の内部に、弾性部材15とイオン感応膜16との積層体を積層して設ける。この際、支持体11の開口部21と、弾性部材15の貫通孔18とが合致する位置で積層することで、弾性部材15の貫通孔18の上部がイオン感応膜16で閉塞され、開口部21と貫通孔18とにより形成された空間を被検液の流路として形成することができる。この後、支持体11に連絡部17aを有する押さえ部材17を固定することで、支持体11の内部に、弾性部材15とイオン感応膜16の積層体を固定することができる。支持体11に対する押さえ部材17の固定は、係止構造、あるいは溶着又は接着で行うことができる。 In the production of the ion-selective electrode described above, a laminate of the elastic member 15 and the ion-sensitive film 16 is laminated inside the support 11. At this time, by laminating at a position where the opening 21 of the support 11 and the through hole 18 of the elastic member 15 match, the upper portion of the through hole 18 of the elastic member 15 is closed by the ion-sensitive film 16 and the opening is opened. The space formed by the 21 and the through hole 18 can be formed as a flow path of the test solution. After that, by fixing the pressing member 17 having the connecting portion 17a to the support 11, the laminated body of the elastic member 15 and the ion-sensitive film 16 can be fixed inside the support 11. The pressing member 17 can be fixed to the support 11 by a locking structure, welding or adhesion.

上記構成からなるイオン感応膜16を備えた支持体11に対して、周知の方法により電極棒や筐体部材を組み合わせて、最後に内部電解液を封入することでイオン選択性電極を形成することができる。 An ion-selective electrode is formed by combining an electrode rod and a housing member with a support 11 provided with an ion-sensitive film 16 having the above configuration by a well-known method, and finally encapsulating an internal electrolytic solution. Can be done.

(電解質分析装置の構成)
図5は、実施の形態にかかる電解質分析装置の主要構成部を説明する図である。それぞれのイオン感応膜(例えば、上記イオン感応膜16)を備えた複数のイオン選択性電極53(ナトリウムイオン選択性電極53−1、カリウムイオン選択性電極53−2、塩化物イオン選択性電極53−3)と、参照電極54(図5ではRefと表示)と、温度センサ55は、被検液52の流路に沿って配置されている。ポット51に入った被検液52は、各電極の流路を経由して電磁ポンプ56によって吸引される。
(Configuration of electrolyte analyzer)
FIG. 5 is a diagram illustrating a main component of the electrolyte analyzer according to the embodiment. A plurality of ion-selective electrodes 53 (sodium ion-selective electrode 53-1, potassium ion-selective electrode 53-2, chloride ion-selective electrode 53) provided with each ion-sensitive film (for example, the ion-sensitive film 16). -3), the reference electrode 54 (indicated as Ref in FIG. 5), and the temperature sensor 55 are arranged along the flow path of the test solution 52. The test liquid 52 that has entered the pot 51 is sucked by the electromagnetic pump 56 via the flow path of each electrode.

イオン感応膜に誘起された起電力は、筐体部材に固定された電極棒(図示略)により計測され、参照電極54の電位および温度センサ55の情報と共に温度補償回路57に入力される。 The electromotive force induced in the ion-sensitive film is measured by an electrode rod (not shown) fixed to the housing member, and is input to the temperature compensation circuit 57 together with the potential of the reference electrode 54 and the information of the temperature sensor 55.

ナトリウムイオン、カリウムイオンおよび塩化物イオンの各イオン選択性電極53の起電力は、参照電極54の電位をシステムグラウンドとした電位差が外部の演算回路58で計測され、表示器59に表示される。 As for the electromotive force of each ion-selective electrode 53 of sodium ion, potassium ion and chloride ion, the potential difference with the potential of the reference electrode 54 as the system ground is measured by the external arithmetic circuit 58 and displayed on the display 59.

これらの電解質分析装置として、商業的には全自動電解質分析装置EA07(本出願人、株式会社エイアンドティー製)などが利用できる。本発明のイオン選択性電極53として用いるイオン感応膜としては、種々のイオン選択性電極において使用されている公知のものが特に制限なく使用できる。 As these electrolyte analyzers, a fully automatic electrolyte analyzer EA07 (applicant, manufactured by A & T Corporation) or the like can be commercially used. As the ion-sensitive membrane used as the ion-selective electrode 53 of the present invention, known ones used in various ion-selective electrodes can be used without particular limitation.

以下、実施例を挙げて本発明を具体的に示すが、本発明はこれら実施例によって何ら制限されるものではない。 Hereinafter, the present invention will be specifically shown with reference to examples, but the present invention is not limited to these examples.

本実施例では、塩化物イオン用のイオン感応膜を本製造方法により固定したイオン選択性電極53を図5に示す電解質分析装置に接続して、被検液の投入からの電位差変動の応答速度を計測した。このとき、イオン選択性電極53に関して、支持体11の開口部21と弾性部材15の貫通孔18とが形成する共通の流路13の形状を変化させて、それぞれの電位差変化の挙動を計測した。 In this embodiment, the ion-selective electrode 53 in which the ion-sensitive membrane for chloride ions is fixed by the present production method is connected to the electrolyte analyzer shown in FIG. 5, and the response speed of the potential difference fluctuation from the injection of the test solution Was measured. At this time, with respect to the ion-selective electrode 53, the shape of the common flow path 13 formed by the opening 21 of the support 11 and the through hole 18 of the elastic member 15 was changed, and the behavior of each potential difference change was measured. ..

(実施例1〜3)
図6は、実施例1〜3それぞれで用いる支持体、弾性部材、イオン感応膜により形成される流路の断面図である。支持体11にはABS樹脂を用い、弾性部材15には市販のフッ素ゴム系シートを用いた。弾性部材15の貫通孔18の形状は、一般的なコンプレッション成型技術を用い、金型形状を変えることにより作成した。このときの弾性部材15のゴム硬度は、40から80程度が好ましく、さらに70程度が押圧時に変形する程度が小さく、かつ液体の漏れが少ないため好適である。
(Examples 1 to 3)
FIG. 6 is a cross-sectional view of a flow path formed by the support, the elastic member, and the ion-sensitive film used in each of Examples 1 to 3. ABS resin was used for the support 11, and a commercially available fluororubber sheet was used for the elastic member 15. The shape of the through hole 18 of the elastic member 15 was created by changing the mold shape using a general compression molding technique. The rubber hardness of the elastic member 15 at this time is preferably about 40 to 80, more preferably about 70 because the degree of deformation at the time of pressing is small and the liquid leakage is small.

図6(a)は、イオン感応膜16の接液面61に対して、弾性部材15の貫通孔18の側面62の成す角度(θa)が90度の例を示している。図6(b)は、図6(a)に対して、弾性部材15の前記角度(θa)は同じであるが、貫通孔18の側面62のうち支持体11と接する側の形状が湾曲している(湾曲部62a)点が異なる。図6(c)では、貫通孔18の側面62の形状を傾斜させることで、前記角度(θa)が90度以上である例を示している。 FIG. 6A shows an example in which the angle (θa) formed by the side surface 62 of the through hole 18 of the elastic member 15 with respect to the liquid contact surface 61 of the ion-sensitive film 16 is 90 degrees. 6 (b) shows that the angle (θa) of the elastic member 15 is the same as that of FIG. 6 (a), but the shape of the side surface 62 of the through hole 18 on the side in contact with the support 11 is curved. (Curved portion 62a) is different. FIG. 6C shows an example in which the angle (θa) is 90 degrees or more by inclining the shape of the side surface 62 of the through hole 18.

(比較例1〜2)
図7は、比較例1,2それぞれで用いる支持体、弾性部材、イオン感応膜により形成される流路の断面図である。実施例1〜3に対し、弾性部材15の貫通孔18の側面62の構造が異なる比較例を示している。図7(a)および図7(b)は共にイオン感応膜16の接液面61に対して貫通孔18の側面62の成す角度(θa)が90度以下の例である。図7(a)では、さらに、貫通孔18の側面62のうち支持体11と接する側の形状が湾曲した湾曲部62aを有している。
(Comparative Examples 1-2)
FIG. 7 is a cross-sectional view of a flow path formed by the support, the elastic member, and the ion-sensitive film used in Comparative Examples 1 and 2, respectively. A comparative example in which the structure of the side surface 62 of the through hole 18 of the elastic member 15 is different from that of Examples 1 to 3 is shown. Both FIGS. 7 (a) and 7 (b) are examples in which the angle (θa) formed by the side surface 62 of the through hole 18 with respect to the wetted surface 61 of the ion-sensitive film 16 is 90 degrees or less. FIG. 7A further has a curved portion 62a whose shape on the side surface 62 of the through hole 18 in contact with the support 11 is curved.

図8は、実施例および比較例でイオン感応膜を固定したイオン選択性電極を用い被検液を投入後の電位変化の測定結果の一例を示す図表である。図中横軸は時間、縦軸はイオン選択性電極の電位を示す。被検液を投入後、初期安定電位状態から急激に電位低下を起こし、イオン濃度に応じた所定電位に変化していく様子が示されている。 FIG. 8 is a chart showing an example of the measurement result of the potential change after the test solution is added using the ion-selective electrode to which the ion-sensitive membrane is fixed in Examples and Comparative Examples. In the figure, the horizontal axis represents time and the vertical axis represents the potential of the ion-selective electrode. It is shown that after the test solution is added, the potential drops sharply from the initial stable potential state and changes to a predetermined potential according to the ion concentration.

図8(a)は、実施例1(図6(a))に示した断面形状を有する弾性部材15を用い、角度θaが90度の場合の測定結果である。図8(b)は比較例1(図7(a))に示す断面形状を有する弾性部材15を用いた場合の測定結果である。図8(a)の結果から、実施例1では、所定電位に到達するまでの時間(応答時間)が約0.5秒であり、その後の電位も安定していることがわかる。一方、図8(b)に示す比較例1の結果では、約2秒程度を要している。ここで、貫通孔18の側面62が支持体11と当接する側の形状に関しては、応答時間には影響しないことも判明している。 FIG. 8A is a measurement result when the elastic member 15 having the cross-sectional shape shown in Example 1 (FIG. 6A) is used and the angle θa is 90 degrees. FIG. 8B is a measurement result when the elastic member 15 having the cross-sectional shape shown in Comparative Example 1 (FIG. 7A) is used. From the result of FIG. 8A, it can be seen that in Example 1, the time (response time) until reaching the predetermined potential is about 0.5 seconds, and the potential after that is also stable. On the other hand, in the result of Comparative Example 1 shown in FIG. 8B, it takes about 2 seconds. Here, it has also been found that the shape of the side surface 62 of the through hole 18 on the side where the side surface 62 comes into contact with the support 11 does not affect the response time.

下記の表1には、各実施例1〜3、比較例1,2の測定結果を示す。表1の結果から本発明者らは、θaが90度以上のときは、イオン感応膜の接液面と貫通孔18の側面62とが形成する空間に被検液の液貯まりが生じることにより、液置換に要する時間が長くなるものと推察している。 Table 1 below shows the measurement results of Examples 1 to 3 and Comparative Examples 1 and 2. From the results in Table 1, the present inventors have found that when θa is 90 degrees or more, the liquid of the test liquid is accumulated in the space formed by the liquid contact surface of the ion-sensitive membrane and the side surface 62 of the through hole 18. It is estimated that the time required for liquid replacement will be longer.

Figure 2021162450
Figure 2021162450

(実施例4〜5、比較例3)
図9は、イオン選択性電極に用いる弾性部材の各種形状を説明する図である。それぞれの弾性部材には、実施例1と同様なゴム硬度70程度のフッ素系樹脂からなるシートを用いて、金型を使ってコンプレッション成型で所望の形状に形成した。
(Examples 4 to 5, Comparative Example 3)
FIG. 9 is a diagram illustrating various shapes of elastic members used for ion-selective electrodes. For each elastic member, a sheet made of a fluororesin having a rubber hardness of about 70 similar to that in Example 1 was used, and a desired shape was formed by compression molding using a mold.

図9(a),図9(b)は実施例4,5であり、図9(c)は比較例3である。図9(a)に示す実施例4と、図9(b)に示す実施例5は、それぞれ弾性部材15の上面に対する貫通孔18の側面62の角度(θb)が90度と60度の場合を示す。図9(c)の比較例3では、前記角度θbが約140度のときを示している。これらの弾性部材15を用いて、上記同様の方法でイオン選択性電極を作成し、電解質分析装置に接続して、同様に被検液投入後の電位変化を計測した結果を下記の表2に示す。 9 (a) and 9 (b) are Examples 4 and 5, and FIG. 9 (c) is Comparative Example 3. In Example 4 shown in FIG. 9A and Example 5 shown in FIG. 9B, the angles (θb) of the side surface 62 of the through hole 18 with respect to the upper surface of the elastic member 15 are 90 degrees and 60 degrees, respectively. Is shown. In Comparative Example 3 of FIG. 9C, the angle θb is about 140 degrees. Using these elastic members 15, an ion-selective electrode was prepared by the same method as described above, connected to an electrolyte analyzer, and the potential change after the test solution was added was measured in the same manner as shown in Table 2 below. show.

Figure 2021162450
Figure 2021162450

表2の結果より、弾性部材15の上面に対する貫通孔18の側面62の角度(θb)が90度以下のときは応答時間が短いことがわかる。この場合も同様にイオン感応膜16の接液面61と貫通孔18の側面62部分が当接する流路側の部分が90度以上の角度となり、液貯まりが生じないことにより、所定電位に到達する時間が短いものと推察できる。 From the results in Table 2, it can be seen that the response time is short when the angle (θb) of the side surface 62 of the through hole 18 with respect to the upper surface of the elastic member 15 is 90 degrees or less. In this case as well, the liquid contact surface 61 of the ion-sensitive membrane 16 and the side surface 62 portion of the through hole 18 have an angle of 90 degrees or more on the flow path side, and the liquid does not accumulate, so that the predetermined potential is reached. It can be inferred that the time is short.

(他の実施例)
上記実施の形態では、主に図1を用いて、固定部材14と押さえ部材17を係止構造により機械的に固定する方法を説明した。他の応用例として、固定部材14と押さえ部材17を溶着又は接着により固定することも有用である。この場合、固定部材14と押さえ部材17を係止構造により機械的に固定し、さらに、固定部材14と押さえ部材17を溶着又は接着により固定してもよい。
(Other Examples)
In the above embodiment, a method of mechanically fixing the fixing member 14 and the pressing member 17 by a locking structure has been described mainly with reference to FIG. As another application example, it is also useful to fix the fixing member 14 and the pressing member 17 by welding or adhesion. In this case, the fixing member 14 and the pressing member 17 may be mechanically fixed by a locking structure, and the fixing member 14 and the pressing member 17 may be further fixed by welding or adhesion.

図10は、固定部材と押さえ部材の固定構造を説明する断面図である。図10に示す固定部材14と押さえ部材17の当接面は、超音波溶着器などで溶着固定することができる。この構造においても、押さえ部材17の中央部には、イオン選択性電極53の電解質溶液とイオン感応膜16が接することができるよう、連絡部17aを設けておく。 FIG. 10 is a cross-sectional view illustrating the fixing structure of the fixing member and the pressing member. The contact surface between the fixing member 14 and the pressing member 17 shown in FIG. 10 can be welded and fixed by an ultrasonic welder or the like. Also in this structure, a connecting portion 17a is provided at the center of the pressing member 17 so that the electrolyte solution of the ion-selective electrode 53 and the ion-sensitive membrane 16 can come into contact with each other.

図10に示す固定方法の利点としては、上述した係止構造(図4参照)のような複雑な構造体を使わずに、シンプルな形状となるため、生産性を向上できる利点がある。ここで、溶着固定以外に接着剤を用いて接着することも可能であるが、接着の場合、硬化反応が長くなる分、イオン感応膜16表面の汚染を考慮する必要がある。 The advantage of the fixing method shown in FIG. 10 is that the productivity can be improved because the shape is simple without using a complicated structure such as the locking structure (see FIG. 4) described above. Here, it is possible to bond using an adhesive other than welding and fixing, but in the case of bonding, it is necessary to consider contamination of the surface of the ion-sensitive film 16 due to the lengthening of the curing reaction.

本発明のイオン選択電極、イオン選択性電極の製造方法および電解質分析装置は、難接着性のイオン感応膜を安定に固定できるものであり、被検液の各種電解質濃度を測定する電解質分析装置等に適用できる。 The ion-selective electrode, the method for producing an ion-selective electrode, and the electrolyte analyzer of the present invention can stably fix a poorly adhesive ion-sensitive film, and are an electrolyte analyzer and the like that measure various electrolyte concentrations of a test solution. Can be applied to.

11 支持体
12 側板
13 流路
14 固定部材
15 弾性部材
16 イオン感応膜
17 押さえ部材
17a 連絡部
18 貫通孔
19a 係止凸部
19b 係止凹部
21 開口部
22 開口部の端部
51 ポット
52 被検液
53 イオン選択性電極
54 参照電極
55 温度センサ
56 電磁ポンプ
57 温度補償回路
58 演算回路
59 表示器
61 接液面
62 貫通孔18の側面
62a 湾曲部
11 Support 12 Side plate 13 Flow path 14 Fixing member 15 Elastic member 16 Ion-sensitive film 17 Holding member 17a Connecting part 18 Through hole 19a Locking convex part 19b Locking recess 21 Opening 22 Opening end 51 Pot 52 Inspected Liquid 53 Ion-selective electrode 54 Reference electrode 55 Temperature sensor 56 Electromagnetic pump 57 Temperature compensation circuit 58 Calculation circuit 59 Display 61 Liquid contact surface 62 Side surface of through hole 18 62a Curved part

Claims (8)

被検液の流路と前記流路の一部領域に開口部を有する支持体と、
前記開口部に対応した形状の貫通孔を有するとともに、前記開口部と前記貫通孔とが合致する位置で積層した弾性部材と、
前記貫通孔の上部を閉塞するように積層したイオン感応膜と、からなる積層体と、
前記イオン感応膜の上部から押さえ前記支持体上に固定することにより、前記開口部と前記貫通孔とにより形成された空間を共通の流路とする押さえ部材と、を有し、
前記イオン感応膜の接液面に対する前記弾性部材の貫通孔側面との成す角度(θa)が90度以上で当接していることを特徴とするイオン選択性電極。
A flow path of the test solution, a support having an opening in a part of the flow path, and a support
An elastic member having a through hole having a shape corresponding to the opening and being laminated at a position where the opening and the through hole match.
A laminated body composed of an ion-sensitive film laminated so as to close the upper part of the through hole, and
It has a pressing member that holds the space formed by the opening and the through hole as a common flow path by pressing from the upper part of the ion-sensitive film and fixing it on the support.
An ion-selective electrode characterized in that the angle (θa) formed by the side surface of the through hole of the elastic member with respect to the liquid contact surface of the ion-sensitive film is 90 degrees or more.
前記支持体上に連結形成された固定部材に、前記押さえ部材が係止構造により係止され、前記積層体を前記支持体に固定することを特徴とする請求項1に記載のイオン選択性電極。 The ion-selective electrode according to claim 1, wherein the holding member is locked to the fixing member connected and formed on the support by a locking structure, and the laminated body is fixed to the support. .. 前記支持体上に連結形成された固定部材に、前記押さえ部材の周囲の一部又は全部を溶着または接着する方法により、前記積層体を前記支持体に固定することを特徴とする請求項1に記載のイオン選択性電極。 The first aspect of the present invention is characterized in that the laminated body is fixed to the support by a method of welding or adhering a part or the whole of the periphery of the pressing member to the fixing member connected and formed on the support. The ion-selective electrode according to the description. 前記共通の流路は、前記イオン感応膜と前記弾性部材との間に被検液の液貯まり空間がないことを特徴とする請求項1〜3のいずれか一つに記載のイオン選択性電極。 The ion-selective electrode according to any one of claims 1 to 3, wherein the common flow path has no liquid storage space for the test liquid between the ion-sensitive membrane and the elastic member. .. 請求項1〜4のいずれか一つに記載のイオン選択性電極を搭載したことを特徴とする電解質分析装置。 An electrolyte analyzer comprising the ion-selective electrode according to any one of claims 1 to 4. 被検液の流路と前記流路の一部領域に開口部を有する支持体にイオン感応膜を固定するイオン選択性電極の製造方法において、
前記開口部に対応した形状の貫通孔を有する弾性部材であって、前記弾性部材の上面に対する前記貫通孔の側面の角度(θb)が90度以下である前記弾性部材を準備する工程と、
前記支持体の内部に、前記支持体の前記開口部と前記弾性部材の前記貫通孔とが合致する位置で積層する工程と、
前記支持体の内部に、前記貫通孔の上部を前記イオン感応膜で閉塞するように積層する工程と、
前記イオン感応膜の上部から押さえ部材で前記イオン感応膜を押圧し、前記支持体上に固定する工程と、を含み、
前記開口部と前記貫通孔とにより形成された空間を共通の流路とすることを特徴とするイオン選択性電極の製造方法。
In a method for manufacturing an ion-selective electrode for fixing an ion-sensitive membrane to a support having an opening in a flow path of a test solution and a part of the flow path.
A step of preparing an elastic member having a through hole having a shape corresponding to the opening and having an angle (θb) of a side surface of the through hole with respect to the upper surface of the elastic member of 90 degrees or less.
A step of laminating the inside of the support at a position where the opening of the support and the through hole of the elastic member match.
A step of laminating the upper part of the through hole so as to be closed by the ion-sensitive film inside the support.
A step of pressing the ion-sensitive film from the upper part of the ion-sensitive film with a pressing member and fixing the ion-sensitive film on the support is included.
A method for producing an ion-selective electrode, which comprises using a space formed by the opening and the through hole as a common flow path.
前記支持体上に設けられた固定部材と、前記押さえ部材と、にそれぞれ設けた係止部を互いに係止することにより、前記支持体の内部に、前記弾性部材と前記イオン感応膜の積層体を固定することを特徴とする請求項6に記載のイオン選択性電極の製造方法。 By locking the fixing member provided on the support and the locking portion provided on each of the pressing member to each other, the elastic member and the ion-sensitive film are laminated inside the support. The method for producing an ion-selective electrode according to claim 6, wherein the ion-selective electrode is fixed. 前記支持体上に設けられた固定部材と、前記押さえ部材の周囲の一部又は全部を溶着または接着することにより、前記支持体の内部に、前記弾性部材と前記イオン感応膜の積層体を固定することを特徴とする請求項6に記載のイオン選択性電極の製造方法。 By welding or adhering a part or all of the periphery of the holding member to the fixing member provided on the support, the laminated body of the elastic member and the ion-sensitive film is fixed inside the support. The method for producing an ion-selective electrode according to claim 6, wherein the ion-selective electrode is made.
JP2020063446A 2020-03-31 2020-03-31 Ion selective electrode, method for manufacturing ion selective electrode, and electrolyte analyzer Pending JP2021162450A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020063446A JP2021162450A (en) 2020-03-31 2020-03-31 Ion selective electrode, method for manufacturing ion selective electrode, and electrolyte analyzer
PCT/JP2021/013072 WO2021200735A1 (en) 2020-03-31 2021-03-26 Ion-selective electrode, method for manufacturing ion-selective electrode, and electrolyte analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063446A JP2021162450A (en) 2020-03-31 2020-03-31 Ion selective electrode, method for manufacturing ion selective electrode, and electrolyte analyzer

Publications (1)

Publication Number Publication Date
JP2021162450A true JP2021162450A (en) 2021-10-11

Family

ID=77930036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063446A Pending JP2021162450A (en) 2020-03-31 2020-03-31 Ion selective electrode, method for manufacturing ion selective electrode, and electrolyte analyzer

Country Status (2)

Country Link
JP (1) JP2021162450A (en)
WO (1) WO2021200735A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910610Y2 (en) * 1977-10-20 1984-04-03 オリンパス光学工業株式会社 Liquid film ion selective electrode
JPS5643047U (en) * 1979-09-12 1981-04-20
JPS58124942A (en) * 1982-01-22 1983-07-25 Hitachi Ltd Electrode apparatus
JPS59119254A (en) * 1982-12-25 1984-07-10 Terumo Corp Ion selective protective separating membrane and ion electrode using said membrane
JPH0679009B2 (en) * 1985-11-22 1994-10-05 株式会社東芝 Chemical sensor
JPH11132991A (en) * 1997-10-29 1999-05-21 Hitachi Ltd Ion selective electrode and its manufacturing
JP6975561B2 (en) * 2016-06-23 2021-12-01 株式会社エイアンドティー Chlorine ion sensitive membrane, chlorine ion selective electrode and ion analyzer

Also Published As

Publication number Publication date
WO2021200735A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US8128801B2 (en) Automated system for continuously and automatically calibrating electrochemical sensors
JP5255052B2 (en) Mass sensing chemical sensor
JP4814945B2 (en) Sample analysis method by capillary electrophoresis
JPH02232554A (en) Sensor construction
JPWO2007049611A1 (en) Measuring device, measuring apparatus and measuring method
US8925374B2 (en) Electrochemical detection cell for liquid chromatography system
JP2008145123A (en) Ion selective electrode, ion selective electrode module and manufacturing method of ion selective electrode
US6719888B1 (en) Reference electrode assembly
WO2021200735A1 (en) Ion-selective electrode, method for manufacturing ion-selective electrode, and electrolyte analysis device
NL8105083A (en) DEVICE FOR MONITORING THE PARTIAL PRESSURE OF GASES.
US10317359B2 (en) Differential carbon dioxide sensor
JP6404049B2 (en) Flow path integrated sensor
JP3625448B2 (en) Ion sensor and biochemical automatic analyzer using the same
Schuler Evaluation and design of rapid polarographic in vivo oxygen catheter electrodes
WO2022091947A1 (en) Diaphragm-type sensor and measurement system using same
JP5975744B2 (en) Ion selective electrode and analyzer
JP5389892B2 (en) ION SELECTIVE ELECTRODE, ION SELECTIVE ELECTRODE MODULE, AND METHOD FOR PRODUCING ION SELECTIVE ELECTRODE
US8205480B2 (en) Measuring device
JPH06148124A (en) Disposable ion sensor unit
JP2023023693A (en) Electrolyte measuring structure, flow type ion selective electrode using the same, and electrolyte measuring device
CN117129546A (en) Ion-selective electrode assembly, manufacturing method, microfluidic chip and detection module
Khumpuang et al. Portable blood extraction device integrated with biomedical monitoring system
JPS58124942A (en) Electrode apparatus
CN109298037A (en) A kind of micro-volume device and its application method for Copper diethlydithiocarbamate measurement
JP2007225483A (en) Cell electrophysiological sensor, its using method, and its manufacturing method