JP2021128140A - Water leakage monitoring system - Google Patents

Water leakage monitoring system Download PDF

Info

Publication number
JP2021128140A
JP2021128140A JP2020112312A JP2020112312A JP2021128140A JP 2021128140 A JP2021128140 A JP 2021128140A JP 2020112312 A JP2020112312 A JP 2020112312A JP 2020112312 A JP2020112312 A JP 2020112312A JP 2021128140 A JP2021128140 A JP 2021128140A
Authority
JP
Japan
Prior art keywords
water leakage
unit
flow rate
value
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020112312A
Other languages
Japanese (ja)
Inventor
将信 原田
Masanobu Harada
将信 原田
悦真 池田
Yoshimasa Ikeda
悦真 池田
洋之進 川端
Hironoshin Kawabata
洋之進 川端
忠男 新井
Tadao Arai
忠男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Co Ltd
Original Assignee
Yamato Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Co Ltd filed Critical Yamato Co Ltd
Priority to JP2020112312A priority Critical patent/JP2021128140A/en
Publication of JP2021128140A publication Critical patent/JP2021128140A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Pipeline Systems (AREA)

Abstract

To provide a water leakage monitoring system which is hardly affected by increasing/decreasing trends of daily minimum flow rate value or seasonal fluctuations, and which does not require changing an initial value.SOLUTION: A water leakage monitoring system 80 calculates, on the basis of first and third quartiles Q1, Q3 of daily minimum flow rate value data for several years, a water leakage determination value H and a water leakage alert determination value h which constitute criteria for determining the occurrence of water leakage. For this reason, extremely large and extremely small daily minimum flow rate values are excluded, and these values are not concerned with the water leakage determination value H and water leakage alert determination value h. Thus, it is possible to determine water leakage by criteria that are stable throughout a year. The water leakage monitoring system 80 equipped with an area specification unit 38 and pertaining to the present invention specifies a water leakage occurrence path and a water leakage caution path on the basis of water leakage occurrence determination and water leakage caution determination with respect to a plurality of measurement units 40 installed in a water distribution path. Thus, it is possible for a manager, etc., to immediately grasp the range of water leakage examination.SELECTED DRAWING: Figure 3

Description

本発明は、配管経路の漏水を監視する漏水監視システムに関するものである。 The present invention relates to a leak monitoring system that monitors leaks in piping routes.

日本の上水道は、直接飲用できる安全な水を各所に安定して供給する社会生活や経済活動に欠くことのできない重要な社会資本である。そして、一般的な上水は浄水施設等から幹管を通して配水池等の送配水施設に送水され、この送配水施設に接続した配水管網を介して各所に給水される。ここで、これら配水管網に漏水が生じた場合、漏水発生の初期段階では検知されないことが多い。そして、この漏水状態が継続することで徐々に影響が顕在化し、最終的に地上に水が溢れることで露見する場合もある。このような漏水の発生は、有収率(料金収入のあった水量÷浄水場で作った水量)の低下を招くことはもとより、場合によっては断水の発生や道路の陥没等、甚大な被害を及ぼす可能性がある。 Japan's water supply is an important social capital that is indispensable for social life and economic activities that stably supplies safe water that can be drunk directly to various places. Then, general clean water is sent from a water purification facility or the like to a water supply and distribution facility such as a distribution reservoir through a trunk pipe, and is supplied to various places through a water distribution pipe network connected to this water supply and distribution facility. Here, when water leaks occur in these water distribution pipe networks, they are often not detected at the initial stage of the occurrence of water leaks. Then, as this water leakage state continues, the effect gradually becomes apparent, and eventually the water overflows on the ground, which may be exposed. The occurrence of such water leakage not only causes a decrease in yield (the amount of water for which there was toll revenue ÷ the amount of water produced at the water purification plant), but in some cases it causes enormous damage such as water outages and road collapses. May affect.

この問題点に対し例えば下記[特許文献1]では、一日のうちで水道水の使用量が最も少ない夜間帯の日最低流量値に着目し、対象期間における日最低流量値の1次近似式の傾きの値、もしくは、日最低流量値の初期値との差が、ある基準を超えた場合に漏水発生と判定する漏水検出装置に関する発明が記載されている。 Regarding this problem, for example, in the following [Patent Document 1], attention is paid to the daily minimum flow rate value in the nighttime period when the amount of tap water used is the least in the day, and a linear approximation formula of the daily minimum flow rate value in the target period. An invention relating to a water leakage detection device for determining that water leakage has occurred when the difference between the value of the inclination of the water supply and the initial value of the daily minimum flow rate value exceeds a certain standard is described.

特開平7−167732号公報Japanese Unexamined Patent Publication No. 7-167732

しかしながら、[特許文献1]に記載の発明は対象期間の初期値をスタートとし、時間経過とともに日最低流量値が右肩上がりに増加する場合を前提としたものであり、対象期間の初期値の取り方によっては漏水検出の精度が低下するという問題がある。また、日最低流量値が略一定のまま長期間継続すると漏水検出の精度が下がるという問題がある。さらに、季節によって日最低流量値は変化するため、その都度初期値を変化させる必要があり実用上、作業者の負担が大きいという問題がある。 However, the invention described in [Patent Document 1] is based on the premise that the daily minimum flow rate value increases with the passage of time starting from the initial value of the target period, and is based on the initial value of the target period. There is a problem that the accuracy of leak detection is lowered depending on the method of taking. Further, if the daily minimum flow rate value is kept substantially constant and continued for a long period of time, there is a problem that the accuracy of water leakage detection is lowered. Further, since the daily minimum flow rate value changes depending on the season, it is necessary to change the initial value each time, and there is a problem that the burden on the operator is heavy in practical use.

本発明は上記事情に鑑みてなされたものであり、日最低流量値の増減傾向や季節変動の影響を受けにくく初期値の変更が不要な漏水監視システムの提供を目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a leak monitoring system that is not easily affected by the increasing / decreasing tendency of the daily minimum flow rate value and seasonal fluctuations and does not need to change the initial value.

本発明は、
(1)配水経路の漏水を検知する漏水監視システムであって、
配水経路上に設置される計測部40と、漏水発生の判定を行う判定部42と、を有し、
前記計測部40は、設置個所の水の流量を取得する流量計30を備え、
前記判定部42は、前記流量をモニタして1日の内で一番少ない流量の値を日最低流量値とする監視部32と、前記日最低流量値から漏水判定値Hを算出するデータ処理部34と、日最低流量値が前記漏水判定値Hを超えた場合に漏水発生の判定を行う漏水判定部36と、を備え、
前記データ処理部34は、所定の期間内の日最低流量値を小さい順に配列したときの第1四分位Q1と第3四分位Q3とに基づいて前記漏水判定値Hを算出することを特徴とする漏水監視システム80を提供することにより、上記課題を解決する。
(2)データ処理部34が、漏水判定値Hの算出を予め設定された係数Kと第1四分位Q1と第3四分位Q3とから、
H=Q3+K(Q3−Q1)
の式で行うことを特徴とする上記(1)記載の漏水監視システム80を提供することにより、上記課題を解決する。
(3)データ処理部34が、前記係数Kよりも小さな第2の係数kをさらに有し、前記第2の係数kと第1四分位Q1と第3四分位Q3とから、
h=Q3+k(Q3−Q1)
の式により漏水警戒判定値hを算出し、
漏水判定部36が、日最低流量値が所定の期間内に所定の回数、前記漏水警戒判定値hを超えた場合に下流での漏水注意の判定をさらに行うことを特徴とする上記(2)に記載の漏水監視システム80を提供することにより、上記課題を解決する。
(4)漏水警戒判定値hを超え且つ漏水判定値H以下の日最低流量値のデータと、漏水判定値Hを超えた日最低流量値のデータと、前記漏水警戒判定値h以下の日最低流量値のデータとを判別可能にグラフ表示させることを特徴とする上記(3)に記載の漏水監視システム80を提供することにより、上記課題を解決する。
(5)計測部40が配水経路上に複数設置されるとともに、エリア特定部38を備えた中央管理部90をさらに有し、
漏水判定部36は計測部40ごとに漏水発生の判定を行い、
前記エリア特定部38は、
漏水発生と判定された最下流の計測部40を特定し、特定した計測部40よりも下流に計測部40がない場合には特定した前記計測部40よりも下流の配管経路を漏水発生経路として特定し、特定した前記計測部40よりも下流に漏水発生と判定されていない計測部40がある場合には、漏水発生と判定されていない計測部40の下流の配管経路を除く配管経路を漏水発生経路として特定することを特徴とする上記(1)乃至上記(4)のいずれかに記載の漏水監視システム80を提供することにより、上記課題を解決する。
(6)中央管理部90が、判定部42を有し、
監視部32は前記流量の情報を計測部40ごとにモニタして計測部40ごとの日最低流量値を出力し、データ処理部34は計測部40ごとの前記日最低流量値から各計測部40の漏水判定値Hを算出し、漏水判定部36は計測部40ごとに漏水発生の判定を行い前記エリア特定部38に出力することを特徴とする上記(5)記載の漏水監視システム80を提供することにより、上記課題を解決する。
(7)漏水発生の判定を広域通信網を介して出力手段48に出力させることを特徴とする上記(1)乃至上記(6)のいずれかに記載の漏水監視システム80を提供することにより、上記課題を解決する。
The present invention
(1) A leak monitoring system that detects leaks in the distribution route.
It has a measurement unit 40 installed on the water distribution path and a determination unit 42 for determining the occurrence of water leakage.
The measuring unit 40 includes a flow meter 30 that acquires the flow rate of water at the installation location.
The determination unit 42 monitors the flow rate and sets the value of the smallest flow rate in a day as the daily minimum flow rate value, and data processing for calculating the water leakage determination value H from the daily minimum flow rate value. A unit 34 and a water leakage determination unit 36 that determines the occurrence of water leakage when the daily minimum flow rate value exceeds the water leakage determination value H.
The data processing unit 34 calculates the water leakage determination value H based on the first quartile Q1 and the third quartile Q3 when the daily minimum flow rate values within a predetermined period are arranged in ascending order. The above problem is solved by providing the characteristic leak monitoring system 80.
(2) The data processing unit 34 calculates the water leakage determination value H from the preset coefficient K, the first quartile Q1, and the third quartile Q3.
H = Q3 + K (Q3-Q1)
The above problem is solved by providing the leak monitoring system 80 according to the above (1), which is characterized by the above-mentioned formula.
(3) The data processing unit 34 further has a second coefficient k smaller than the coefficient K, and from the second coefficient k, the first quartile Q1, and the third quartile Q3,
h = Q3 + k (Q3-Q1)
Calculate the leak warning judgment value h by the formula of
The leak determination unit 36 further determines the downstream leak caution when the daily minimum flow rate value exceeds the leak warning determination value h a predetermined number of times within a predetermined period (2). The above problem is solved by providing the leak monitoring system 80 according to the above.
(4) Data of the daily minimum flow rate value exceeding the water leakage warning judgment value h and not less than the water leakage judgment value H, data of the daily minimum flow rate value exceeding the water leakage judgment value H, and the daily minimum of the water leakage warning judgment value h or less. The above problem is solved by providing the water leakage monitoring system 80 according to the above (3), which is characterized in that the data of the flow rate value is displayed in a graph that can be discriminated from the data.
(5) A plurality of measurement units 40 are installed on the water distribution route, and a central management unit 90 having an area identification unit 38 is further provided.
The water leakage determination unit 36 determines the occurrence of water leakage for each measurement unit 40, and determines the occurrence of water leakage.
The area identification unit 38 is
The most downstream measuring unit 40 determined to have leaked water is specified, and if there is no measuring unit 40 downstream of the specified measuring unit 40, the piping route downstream of the specified measuring unit 40 is used as the water leakage occurrence route. If there is a measurement unit 40 that has not been determined to have leaked water downstream of the specified measurement unit 40, the piping route excluding the piping route downstream of the measurement unit 40 that has not been determined to have leaked water has leaked. The above problem is solved by providing the water leakage monitoring system 80 according to any one of the above (1) to (4), which is specified as a generation route.
(6) The central management unit 90 has a determination unit 42.
The monitoring unit 32 monitors the flow rate information for each measurement unit 40 and outputs the daily minimum flow rate value for each measurement unit 40, and the data processing unit 34 starts each measurement unit 40 from the daily minimum flow rate value for each measurement unit 40. The leak monitoring system 80 according to (5) above is provided, wherein the leak determination value H is calculated, the leak determination unit 36 determines the occurrence of water leakage for each measurement unit 40, and outputs the data to the area identification unit 38. By doing so, the above problem is solved.
(7) By providing the water leakage monitoring system 80 according to any one of the above (1) to (6), wherein the determination of the occurrence of water leakage is output to the output means 48 via the wide area communication network. Solve the above problems.

本発明に係る漏水監視システムは、数年間分の日最低流量値の第1四分位数Q1と第3四分位数Q3とに基づいて漏水発生の判定基準となる漏水判定値H、及び漏水警戒判定値hを算出する。このため、極端に大きな日最低流量値及び極端に小さな日最低流量値は除外され、これらの値は漏水判定値H、漏水警戒判定値hには関与しない。これにより、年間を通じて安定的な基準値による漏水判定を行うことができる。また、エリア特定部を備えた構成では、配水経路上に設置された複数の計測部に対する判定結果に基づいて漏水発生経路、漏水注意経路を特定する。これにより、管理者等は漏水調査の範囲を即座に把握することができる。 The leak monitoring system according to the present invention has a leak determination value H which is a criterion for determining the occurrence of water leakage based on the first quartile Q1 and the third quartile Q3 of the daily minimum flow rate values for several years, and a leak determination value H. The leak warning determination value h is calculated. Therefore, the extremely large daily minimum flow rate value and the extremely small daily minimum flow rate value are excluded, and these values are not related to the water leakage determination value H and the water leakage warning determination value h. As a result, it is possible to determine water leakage based on a stable reference value throughout the year. Further, in the configuration provided with the area identification unit, the water leakage occurrence route and the water leakage caution route are specified based on the determination results for a plurality of measurement units installed on the water distribution route. As a result, the manager or the like can immediately grasp the scope of the leak investigation.

本発明に係る漏水監視システムを示す図である。It is a figure which shows the leak monitoring system which concerns on this invention. 本発明に係る漏水監視システムの他の例を示す図である。It is a figure which shows another example of the leak monitoring system which concerns on this invention. エリア特定部を備えた本発明に係る漏水監視システムを示す図である。It is a figure which shows the leak monitoring system which concerns on this invention which provided the area identification part. 本発明に係る漏水監視システムのデータ処理を説明するためのグラフである。It is a graph for demonstrating the data processing of the leak monitoring system which concerns on this invention.

本発明に係る漏水監視システムについて図面に基づいて説明する。ここで、図1、図2は本発明に係る漏水監視システム80を単体で用いる例を示す図であり、図3はエリア特定部を備え広域で用いる際の本発明に係る漏水監視システム80を示す図である。尚、ここでは主に上水道の配水管網を例に本発明の説明を行うが、本発明は上水道に限定されるものではなく、工業用水や温泉水、温水配管、その他の配管にも適用が可能である。また、本願発明の漏水監視システム80は、あくまで漏水の可能性を検知して報知するものであり、管理者等はこれら漏水監視システム80の判定内容を受けて漏水調査の実施の必要性や具体的な調査範囲を判断するものである。 The leak monitoring system according to the present invention will be described with reference to the drawings. Here, FIGS. 1 and 2 are diagrams showing an example in which the leak monitoring system 80 according to the present invention is used alone, and FIG. 3 is a diagram showing an example of using the leak monitoring system 80 according to the present invention when the area specifying portion is provided and used in a wide area. It is a figure which shows. Although the present invention will be described here mainly by taking the water distribution pipe network of the water supply as an example, the present invention is not limited to the water supply, and can be applied to industrial water, hot spring water, hot water pipes, and other pipes. It is possible. Further, the leak monitoring system 80 of the present invention only detects and notifies the possibility of water leakage, and the administrator or the like receives the determination contents of these leak monitoring systems 80 and conducts a leak investigation. The scope of the survey is judged.

先ず、本発明に係る漏水監視システム80は、例えば図3に示す浄水場等の配水起点10から配水管網A〜Fに至る配水経路上に設置されるものであり、図1、図2に示すように、配水経路上に設置される計測部40と、漏水発生の判定を行う判定部42と、を有している。尚、図1は計測部40の設置場所に判定部42を設け、設置場所において漏水発生の判定を行う構成を示すものであり、図2は計測部40のみが配水経路上に設置され、判定部42は別の場所に設置される構成を示している。尚、判定部42を別の場所に設置する場合、計測部40と判定部42とは無線もしくは有線で接続し広域通信網(インターネット)または構内通信網(イントラネット)を介して情報の伝達が行われる。 First, the leak monitoring system 80 according to the present invention is installed on a water distribution path from a water distribution starting point 10 such as a water purification plant shown in FIG. 3 to a water distribution pipe network A to F, and is shown in FIGS. 1 and 2. As shown, it has a measurement unit 40 installed on the water distribution path and a determination unit 42 for determining the occurrence of water leakage. Note that FIG. 1 shows a configuration in which a determination unit 42 is provided at the installation location of the measurement unit 40 to determine the occurrence of water leakage at the installation location, and FIG. 2 shows a configuration in which only the measurement unit 40 is installed on the water distribution path for determination. Section 42 shows a configuration in which it is installed at another location. When the determination unit 42 is installed in another location, the measurement unit 40 and the determination unit 42 are connected wirelessly or by wire, and information is transmitted via a wide area communication network (Internet) or a premises communication network (intranet). Will be.

そして、計測部40は設置個所の配管を流下する水の流量を取得する流量計30を少なくとも有し、また計測部40と判定部42とを無線で接続する構成では、流量計30の取得した設置個所の水の流量の情報を判定部42側に送信する送信部44aを備えている。尚、計測部40を設置する個所に特に限定は無いが、上水道においては配水設備12に設けることが好ましく、特に配水池の配水管に設けることが好ましい。このとき、配水設備12が流量計を備えている場合には、この流量計を計測部40の流量計30として兼用しても良い。また、設置する配水経路が他の漏水監視システムや流量監視装置等を備えている場合には、これらに本発明に係る漏水監視システム80の機能を付与しても良い。例えば、これらのシステムや装置が流量のデータを処理する情報処理部を備えている場合には、この情報処理部にデータ処理部34、漏水判定部36等の処理プログラムを独自に作成しインストールするなどして付与し、本発明に係る漏水監視システム80を構築しても良い。これらのことは、後述の広域で用いる漏水監視システム80に関しても同様である。 Then, the measuring unit 40 has at least a flow meter 30 that acquires the flow rate of water flowing down the pipe at the installation location, and in a configuration in which the measuring unit 40 and the determination unit 42 are wirelessly connected, the flow meter 30 is acquired. It is provided with a transmission unit 44a that transmits information on the flow rate of water at the installation location to the determination unit 42 side. The place where the measuring unit 40 is installed is not particularly limited, but in the water supply, it is preferably provided in the water distribution facility 12, and particularly preferably in the water pipe of the distribution reservoir. At this time, if the water distribution facility 12 is provided with a flow meter, this flow meter may also be used as the flow meter 30 of the measuring unit 40. Further, when the water distribution route to be installed is provided with another water leakage monitoring system, a flow rate monitoring device, or the like, the function of the water leakage monitoring system 80 according to the present invention may be added to these. For example, when these systems and devices are provided with an information processing unit that processes flow rate data, processing programs such as a data processing unit 34 and a water leakage determination unit 36 are independently created and installed in this information processing unit. The leak monitoring system 80 according to the present invention may be constructed. The same applies to the leak monitoring system 80 used in a wide area, which will be described later.

また、判定部42は流量計30の流量をモニタして日最低流量値を取得する監視部32と、この監視部32が取得した日最低流量値から漏水判定値を算出するデータ処理部34と、このデータ処理部34が算出した漏水判定値と監視部32が取得した日最低流量値とに基づいて漏水発生の判定を行う漏水判定部36と、を少なくとも有している。尚、計測部40と判定部42とを無線で接続する構成では、判定部42の前段に受信部44bが接続し、計測部40(送信部44a)から送信される流量の情報を受信して監視部32に出力する。 Further, the determination unit 42 includes a monitoring unit 32 that monitors the flow rate of the flow meter 30 and acquires a daily minimum flow rate value, and a data processing unit 34 that calculates a water leakage determination value from the daily minimum flow rate value acquired by the monitoring unit 32. The data processing unit 34 has at least a water leakage determination unit 36 that determines the occurrence of water leakage based on the water leakage determination value calculated by the data processing unit 34 and the daily minimum flow rate value acquired by the monitoring unit 32. In the configuration in which the measurement unit 40 and the determination unit 42 are wirelessly connected, the reception unit 44b is connected to the front stage of the determination unit 42 to receive the flow rate information transmitted from the measurement unit 40 (transmission unit 44a). Output to the monitoring unit 32.

次に、漏水監視システム80の計測部40及び判定部42の動作を説明する。先ず、計測部40の流量計30は一般的な周知の流量計であり、設置個所の配管を流下する水の流量を常時取得する。そして、取得した水の流量の情報を直接もしくは送信部44aを介して判定部42に出力する。 Next, the operations of the measurement unit 40 and the determination unit 42 of the water leakage monitoring system 80 will be described. First, the flow meter 30 of the measuring unit 40 is a general well-known flow meter, and constantly acquires the flow rate of water flowing down the piping at the installation location. Then, the acquired water flow rate information is output to the determination unit 42 directly or via the transmission unit 44a.

また、判定部42を構成する監視部32は計時部を備え、流量計30が取得した流量をモニタして1日の内で一番少ない流量をその日の日最低流量値とし、データ処理部34及び漏水判定部36に出力する。また、データ処理部34は監視部32から日最低流量値を取得して記憶する。そして、所定の期間、例えば直近1年〜5年、好ましくは直近4年分の日最低流量値を蓄積する。ここで、蓄積された日最低流量値を時系列で配列したグラフを図4(a)に示す。尚、後述の漏水判定値H、漏水警戒判定値hを算出するために必要なデータ(日最低流量値)の母数は、データの分布特性によって異なるため、安定状態(例えば、25日間連続で漏水警戒判定値hを超えない等)の発現後に運用開始とすることが好ましい。尚、所定の期間の日最低流量値が蓄積された場合、最古の日最低流量値は新たな日最低流量値によって上書きされ後述の日最低流量データ列は日々更新される。 Further, the monitoring unit 32 constituting the determination unit 42 includes a time measuring unit, monitors the flow rate acquired by the flow meter 30, and sets the smallest flow rate in the day as the daily minimum flow rate value, and sets the data processing unit 34. And output to the water leakage determination unit 36. Further, the data processing unit 34 acquires and stores the daily minimum flow rate value from the monitoring unit 32. Then, the daily minimum flow rate value for a predetermined period, for example, the latest 1 to 5 years, preferably the latest 4 years, is accumulated. Here, FIG. 4A shows a graph in which the accumulated daily minimum flow rate values are arranged in chronological order. Since the population parameter of the data (daily minimum flow rate value) required to calculate the water leakage judgment value H and the water leakage warning judgment value h, which will be described later, differs depending on the distribution characteristics of the data, it is in a stable state (for example, for 25 consecutive days). It is preferable to start the operation after the occurrence of the water leakage warning judgment value h). When the daily minimum flow rate value for a predetermined period is accumulated, the oldest daily minimum flow rate value is overwritten by the new daily minimum flow rate value, and the daily minimum flow rate data string described later is updated daily.

次に、データ処理部34は蓄積された所定の期間の日最低流量値を小さい順に配列して日最低流量データ列を作成する。ここで、図4(a)のデータを小さい順に配列した日最低流量データ列を図4(b)に示す。次に、データ処理部34は作成した日最低流量データ列の第1四分位数Q1と第3四分位数Q3とを取得する。尚、第1四分位数とはデータを小さい順に並べて4等分したときの1/4番目に位置する値であり、また第3四分位数とは3/4番目に位置する値である。ここで、図4(b)の例における第1四分位数Q1は215Lであり、第3四分位数Q3は487Lであった。次に、データ処理部34は取得した第1四分位数Q1と第3四分位数Q3と予め設定された係数Kとから、例えば下記式に基づいて漏水判定値Hを算出する。
H=Q3+K(Q3−Q1)
尚、係数Kは設置された配水経路に応じて適切な値に設定されるが概ね1以上2未満が好ましく、1.5前後が最も好ましい。そして例えば、係数Kを1.5としたときの図4(b)の例では、漏水判定値Hは
H=487+1.5×(487−215)=895 となる。
Next, the data processing unit 34 creates a daily minimum flow rate data string by arranging the accumulated daily minimum flow rate values for a predetermined period in ascending order. Here, the daily minimum flow rate data sequence in which the data of FIG. 4 (a) is arranged in ascending order is shown in FIG. 4 (b). Next, the data processing unit 34 acquires the first quartile Q1 and the third quartile Q3 of the created daily minimum flow rate data string. The first quartile is the value located at the 1 / 4th position when the data is arranged in ascending order and divided into 4 equal parts, and the 3rd quartile is the value located at the 3/4th position. be. Here, the first quartile Q1 in the example of FIG. 4B was 215 L, and the third quartile Q3 was 487 L. Next, the data processing unit 34 calculates the water leakage determination value H from the acquired first quartile Q1 and third quartile Q3 and the preset coefficient K, for example, based on the following formula.
H = Q3 + K (Q3-Q1)
The coefficient K is set to an appropriate value according to the installed water distribution route, but is preferably about 1 or more and less than 2, and most preferably around 1.5. Then, for example, in the example of FIG. 4B when the coefficient K is 1.5, the water leakage determination value H is H = 487 + 1.5 × (487-215) = 895.

このようにして、漏水判定値Hが決定すると、漏水判定部36は最新の日最低流量値と漏水判定値Hとを比較する。そして、最新の日最低流量値が漏水判定値Hを超えた場合には漏水発生と判定する。そして、この漏水発生の判定を出力手段48に表示させるなどして報知を行う。尚、ここでの出力手段48とはモニタやパーソナルコンピュータ、プリンタ等が挙げられる。また、無線もしくは有線で接続し広域通信網または構内通信網を介して出力手段48としての遠隔地のパーソナルコンピュータや管理者が所持するスマートフォンやタブレット等の携帯端末に出力させるようにしても良い。特にスマートフォンやタブレット等の携帯端末に判定内容を出力させる場合には、広域通信網(インターネット)を介して情報の伝達を行うことが好ましい。そして、管理者等はこの漏水発生の判定を受けて、例えば下流域で1日中水を使用するイベントや事案、夜間工事、気象条件等が無いかを確認する。そして、漏水調査を行うか否かを判断する。 When the water leakage determination value H is determined in this way, the water leakage determination unit 36 compares the latest daily minimum flow rate value with the water leakage determination value H. Then, when the latest daily minimum flow rate value exceeds the water leakage determination value H, it is determined that water leakage has occurred. Then, the output means 48 displays the determination of the occurrence of water leakage to notify the user. The output means 48 here includes a monitor, a personal computer, a printer, and the like. Further, it may be connected wirelessly or by wire and output to a remote personal computer as an output means 48 or a mobile terminal such as a smartphone or tablet owned by an administrator via a wide area communication network or a premises communication network. In particular, when the judgment content is output to a mobile terminal such as a smartphone or tablet, it is preferable to transmit the information via a wide area communication network (Internet). Then, the manager or the like receives the determination of the occurrence of this leak and confirms whether there is an event or case where water is used all day in the downstream area, night construction, weather conditions, or the like. Then, it is determined whether or not to carry out a leak investigation.

さらにデータ処理部34は、係数Kよりも小さな第2の係数kをさらに有し、この第2の係数kと第1四分位数Q1と第3四分位数Q3とから、
h=Q3+k(Q3−Q1) の式に基づいて、
漏水判定値Hよりも閾値の低い漏水警戒判定値hを算出するようにしても良い。この第2の係数kも設置された配水経路に応じて適切な値に設定されるが概ね1前後の値とすることが好ましい。ここで、係数kを1.0としたときの図4(b)の例では、漏水警戒判定値hは、
h=487+1.0×(487−215)=759 となる。
Further, the data processing unit 34 further has a second coefficient k smaller than the coefficient K, and from the second coefficient k, the first quartile Q1, and the third quartile Q3,
Based on the equation h = Q3 + k (Q3-Q1)
A leak warning determination value h having a threshold value lower than the water leakage determination value H may be calculated. This second coefficient k is also set to an appropriate value according to the installed water distribution route, but it is preferably a value of about 1. Here, in the example of FIG. 4B when the coefficient k is 1.0, the water leakage warning determination value h is
h = 487 + 1.0 × (487-215) = 759.

そして、漏水警戒判定値hを有する構成では、漏水判定部36は前述の漏水判定値Hに基づく判定に加え、日最低流量値が漏水警戒判定値hを超え漏水判定値H以下の日が所定の期間内に所定の回数、例えば3日間で2回等、発生した場合に漏水注意の判定を行う。そして、例えば前述の出力手段48に出力させるなどして報知する。管理者等はこの漏水注意の判定を受けて、例えば下流域で1日中水を使用する継続的なイベントや事案、夜間工事、気象条件等が無いかを確認する。そして、漏水調査を行うか否かを判断する。 Then, in the configuration having the water leakage warning judgment value h, in addition to the above-mentioned judgment based on the water leakage judgment value H, the water leakage judgment unit 36 determines a day when the daily minimum flow rate value exceeds the water leakage warning judgment value h and is equal to or less than the water leakage judgment value H. When a predetermined number of times, for example, twice in 3 days, etc. occur within the period of, the water leakage caution is determined. Then, for example, the output means 48 described above is used to output the notification. Upon receiving this judgment of water leakage caution, the manager, etc. confirms whether there are any continuous events or incidents that use water all day in the downstream area, night construction, weather conditions, etc. Then, it is determined whether or not to carry out a leak investigation.

このように本発明に係る漏水監視システム80は、所定の期間の第1四分位数Q1と第3四分位数Q3に基づいて漏水判定値H、漏水警戒判定値hを算出する。このため、所謂、外れ値と言われる中心値よりも極端に大きな値及び極端に小さな値の影響を除外することができる。また、第1四分位数Q1と第3四分位数Q3の算出期間を数年とすることで季節変動等の影響を低減することができる。 As described above, the leak monitoring system 80 according to the present invention calculates the leak determination value H and the leak warning determination value h based on the first quartile Q1 and the third quartile Q3 in a predetermined period. Therefore, it is possible to exclude the influence of a value extremely larger than the so-called outlier value and an extremely small value. Further, by setting the calculation period of the first quartile Q1 and the third quartile Q3 to several years, the influence of seasonal fluctuations and the like can be reduced.

尚、漏水監視システム80は前述の出力手段48に対し日々取得される日最低流量値を図4(a)に示すように時系列的にグラフ表示し、さらに漏水判定値Hを超えた日最低流量値のデータと、漏水警戒判定値hを超え且つ漏水判定値H以下の日最低流量値のデータと、漏水警戒判定値h以下の日最低流量値のデータとを判別可能に表示することが好ましい。この表示としては色分けによる判別表示が最も好ましく、例えば、漏水判定値Hを超えた日最低流量値のデータを赤色等で表示し、漏水警戒判定値hを超え且つ漏水判定値H以下の日最低流量値のデータを橙色等で表示し、漏水警戒判定値h以下の日最低流量値のデータを黒色や青色等で表示することが好ましい。尚、図4(a)では、漏水判定値Hを超えた日最低流量値のデータを白丸で示し、漏水警戒判定値hを超え且つ漏水判定値H以下の日最低流量値のデータを灰丸で表示し、漏水警戒判定値h以下の日最低流量値のデータを黒色で表示している。これにより、管理者等は日々の日最低流量値を時系列的に確認できることに加え、漏水発生判定、漏水注意判定の発生日前の日最低流量値の推移を視覚的に把握することができる。これにより、漏水調査を行うか否かの判断をより一層的確に行うことができる。 The leak monitoring system 80 displays the daily minimum flow rate value acquired daily for the above-mentioned output means 48 in a time-series graph as shown in FIG. 4A, and further, the daily minimum flow value exceeding the leak determination value H is displayed. It is possible to discriminately display the data of the flow rate value, the data of the daily minimum flow rate value exceeding the water leakage warning judgment value h and equal to or less than the water leakage judgment value H, and the data of the daily minimum flow rate value of the water leakage warning judgment value h or less. preferable. As this display, the discrimination display by color coding is most preferable. For example, the data of the daily minimum flow rate value exceeding the water leakage judgment value H is displayed in red or the like, and the daily minimum daily minimum flow rate value exceeding the water leakage warning judgment value h and equal to or less than the water leakage judgment value H. It is preferable that the flow rate data is displayed in orange or the like, and the daily minimum flow rate data of the leak warning judgment value h or less is displayed in black or blue. In FIG. 4A, the data of the daily minimum flow rate value exceeding the water leakage determination value H is indicated by a white circle, and the data of the daily minimum flow rate value exceeding the water leakage warning determination value h and equal to or less than the water leakage determination value H is indicated by an gray circle. The data of the daily minimum flow rate value of the leak warning judgment value h or less is displayed in black. As a result, the manager or the like can visually check the daily minimum flow rate value in chronological order and visually grasp the transition of the daily minimum flow rate value before the day when the water leakage occurrence judgment and the water leakage caution judgment occur. As a result, it is possible to more accurately determine whether or not to conduct a leak investigation.

次に、エリア特定部38を備え広域で用いる本発明に係る漏水監視システム80に関して図3を用いて説明を行う。尚、ここでは、エリア特定部38を備えた漏水監視システム80の動作を漏水発生判定の出力を例に説明を行うが、漏水注意判定の出力による漏水注意経路の特定においても基本的な動作は全く同様である。先ず、図3に示すエリア特定部38を備えた本発明に係る漏水監視システム80は、複数の計測部40a〜40d、40fが配水経路上に設置され、またエリア特定部38を備えた中央管理部90をさらに有している。尚、図3では配水起点10(浄水場)から2つの配水設備12a、12bに分岐し、これら2つの配水設備12a、12bはそれぞれ2つの配水設備12c、12d、及び配水設備12e、12fに分岐している例を示している。そして、各配水設備12a〜12fにはそれぞれ配水管網A〜Fが接続し、また配水設備12eを除く配水設備12a〜12d、12fには計測部40a〜40d、40fがそれぞれ設けられている。 Next, the water leakage monitoring system 80 according to the present invention provided with the area specifying unit 38 and used in a wide area will be described with reference to FIG. Here, the operation of the leak monitoring system 80 provided with the area identification unit 38 will be described by taking the output of the leak occurrence determination as an example, but the basic operation is also in specifying the leak caution route by the output of the leak caution determination. Exactly the same. First, in the leak monitoring system 80 according to the present invention provided with the area identification unit 38 shown in FIG. 3, a plurality of measurement units 40a to 40d and 40f are installed on the water distribution path, and the central management system including the area identification unit 38 is provided. It further has a part 90. In FIG. 3, the water distribution starting point 10 (water purification plant) is branched into two water distribution facilities 12a and 12b, and these two water distribution facilities 12a and 12b are branched into two water distribution facilities 12c and 12d and water distribution facilities 12e and 12f, respectively. An example of doing this is shown. Water distribution pipe networks A to F are connected to the water distribution facilities 12a to 12f, respectively, and measurement units 40a to 40d and 40f are provided to the water distribution facilities 12a to 12d and 12f excluding the water distribution facilities 12e, respectively.

尚、判定部42は計測部40a〜40d、40fにそれぞれ設けても良いが、図3に示すように中央管理部90に設けることが最も好ましい。ここで、判定部42を計測部40a〜40d、40f側のそれぞれに設ける構成では、中央管理部90には計測部40a〜40d、40f側から漏水発生の判定結果が送信され、エリア特定部38は各計測部40a〜40d、40f側からの漏水発生の判定の有無に基づいて後述する漏水発生経路の特定を行う。さらに、エリア特定部38を備える漏水監視システム80では、例えば判定部42のうち監視部32を各計測部40に設け、データ処理部34と漏水判定部36とを中央管理部90に設けても良い。これらの構成では、伝達される情報は日最低流量値もしくは漏水発生の判定結果のみとなるため、各計測部40と中央管理部90との間の通信頻度を低減することができる。 The determination unit 42 may be provided in the measurement units 40a to 40d and 40f, respectively, but it is most preferable to provide the determination unit 42 in the central management unit 90 as shown in FIG. Here, in a configuration in which the determination units 42 are provided on the measurement units 40a to 40d and 40f, respectively, the determination result of water leakage is transmitted from the measurement units 40a to 40d and 40f to the central management unit 90, and the area identification unit 38 Will specify the water leakage generation route, which will be described later, based on the presence or absence of determination of water leakage generation from the measurement units 40a to 40d and 40f side. Further, in the water leakage monitoring system 80 including the area identification unit 38, for example, the monitoring unit 32 of the determination unit 42 may be provided in each measurement unit 40, and the data processing unit 34 and the water leakage determination unit 36 may be provided in the central management unit 90. good. In these configurations, since the transmitted information is only the daily minimum flow rate value or the determination result of the occurrence of water leakage, the communication frequency between each measurement unit 40 and the central management unit 90 can be reduced.

また、計測部40a〜40d、40fと中央管理部90(判定部42)との情報伝達は有線で行っても良いが、計測部40a〜40d、40f側に送信部44aをそれぞれ設け、中央管理部90側に受信部44bを設けて無線で行うことが好ましい。そして、判定部42を中央管理部90に有する構成では各計測部40a〜40d、40fの流量計30が設置個所の水の流量をそれぞれ取得し、送信部44aに出力する。送信部44aは流量計30からの水の流量の情報を例えば10秒、1分、5分等の予め設定された時間間隔で定期的に受信部44bに送信する。中央管理部90の受信部44bは各計測部40a〜40d、40fの受信部44bから送信された流量の情報を受信して判定部42の監視部32に出力する。尚、受信部44bが送信する信号には識別情報が含まれており、どの計測部40a〜40d、40fから出力された信号であるかの判別が可能である。そして、中央管理部90の監視部32はこれら計測部40a〜40d、40fからの流量の情報を計測部40a〜40d、40fごとにモニタして計測部40a〜40d、40fごとの日最低流量値を出力する。また、中央管理部90のデータ処理部34は監視部32が出力した計測部40a〜40d、40fごとの日最低流量値を計測部40a〜40d、40fごとに小さい順に配列して計測部40a〜40d、40fごとに日最低流量データ列を作成する。そして、データ処理部34は作成した計測部40a〜40d、40fごとの日最低流量データ列の第1四分位数Q1と第3四分位数Q3とをそれぞれ取得する。そして、前述した式に基づいて各計測部40a〜40d、40fの漏水判定値H(及び漏水警戒判定値h)を算出する。このようにして、各計測部40a〜40d、40fの漏水判定値Hが決定すると、中央管理部90の漏水判定部36は計測部40a〜40d、40fごとに最新の日最低流量値と漏水判定値Hとをそれぞれ比較する。そして、最新の日最低流量値が漏水判定値Hを超えた場合にはその計測部40a〜40d、40fを漏水発生と判定する。エリア特定部38はこの漏水判定部36の判定結果を受けて、例えば以下のようにして漏水発生経路の特定を行う。 Further, although information transmission between the measurement units 40a to 40d and 40f and the central management unit 90 (determination unit 42) may be performed by wire, transmission units 44a are provided on the measurement units 40a to 40d and 40f, respectively, and central management is performed. It is preferable to provide the receiving unit 44b on the unit 90 side and perform the operation wirelessly. Then, in the configuration in which the determination unit 42 is provided in the central management unit 90, the flow meters 30 of the measurement units 40a to 40d and 40f acquire the flow rate of the water at the installation location, respectively, and output the flow rate to the transmission unit 44a. The transmission unit 44a periodically transmits information on the flow rate of water from the flow meter 30 to the reception unit 44b at preset time intervals such as 10 seconds, 1 minute, and 5 minutes. The receiving unit 44b of the central management unit 90 receives the flow rate information transmitted from the receiving units 44b of the measuring units 40a to 40d and 40f, and outputs the information to the monitoring unit 32 of the determination unit 42. The signal transmitted by the receiving unit 44b includes identification information, and it is possible to determine which measuring units 40a to 40d and 40f output the signal. Then, the monitoring unit 32 of the central management unit 90 monitors the flow rate information from these measurement units 40a to 40d and 40f for each measurement unit 40a to 40d and 40f, and the daily minimum flow rate value for each measurement unit 40a to 40d and 40f. Is output. Further, the data processing unit 34 of the central management unit 90 arranges the daily minimum flow rate values for each of the measurement units 40a to 40d and 40f output by the monitoring unit 32 in ascending order for each of the measurement units 40a to 40d and 40f, and arranges the measurement units 40a to 40f. A daily minimum flow rate data string is created every 40d and 40f. Then, the data processing unit 34 acquires the first quartile Q1 and the third quartile Q3 of the daily minimum flow rate data string for each of the created measurement units 40a to 40d and 40f, respectively. Then, the water leakage determination value H (and the water leakage warning determination value h) of each of the measuring units 40a to 40d and 40f is calculated based on the above-mentioned formula. In this way, when the water leakage determination value H of each of the measurement units 40a to 40d and 40f is determined, the water leakage determination unit 36 of the central management unit 90 determines the latest daily minimum flow rate value and water leakage for each of the measurement units 40a to 40d and 40f. Compare with the value H respectively. Then, when the latest daily minimum flow rate value exceeds the leak determination value H, the measurement units 40a to 40d and 40f are determined to have leaked. Upon receiving the determination result of the leak determination unit 36, the area identification unit 38 identifies the leak occurrence route as follows, for example.

ここで仮に配水管網Cで漏水が発生したとする。この場合、漏水判定部36は配水設備12cの計測部40cと、その上流に位置する配水設備12aの計測部40aで漏水発生と判定する。ただし、配水管網Dでは漏水は発生していないため、配水設備12dの計測部40dでは漏水発生と判定しない。この場合、エリア特定部38は漏水発生と判定された最下流の計測部40cを特定し、この特定した計測部40cよりも下流に計測部40が存在しない場合にはこの特定した計測部40cよりも下流の配管経路である配水管網Cを漏水発生経路として特定する。そして、例えば前述の出力手段48に出力させるなどして報知する。 Here, it is assumed that water leakage occurs in the water distribution pipe network C. In this case, the water leakage determination unit 36 determines that water leakage has occurred at the measurement unit 40c of the water distribution equipment 12c and the measurement unit 40a of the water distribution equipment 12a located upstream of the measurement unit 40c. However, since no water leakage has occurred in the water distribution pipe network D, the measurement unit 40d of the water distribution equipment 12d does not determine that a water leakage has occurred. In this case, the area specifying unit 38 identifies the most downstream measuring unit 40c determined to have leaked water, and if the measuring unit 40 does not exist downstream of the specified measuring unit 40c, the specified measuring unit 40c The water distribution pipe network C, which is a downstream piping route, is specified as a water leakage occurrence route. Then, for example, the output means 48 described above is used to output the notification.

また、仮に配水管網Aで漏水が発生したとする。この場合、漏水判定部36は配水設備12aの計測部40aで漏水発生と判定する。しかしながら、配水設備12aの下流に位置する配水設備12c、12dの計測部40c、40dでは漏水発生と判定しない。この場合、エリア特定部38は先ず漏水発生と判定した最下流の計測部40(ここでは計測部40a)を特定する。そして、特定した計測部40aよりも下流に漏水発生と判定されていない計測部40が存在するか否かを確認する。ここで、計測部40aの下流には漏水発生とは判定されていない計測部40c、40dが存在する。この場合、エリア特定部38は漏水発生と判定されていない計測部40c、40dの下流の配管経路である配水管網C、Dを除く配管経路(配水管網A及び配水設備12a、12c、12d間の配管経路)を漏水発生経路として特定する。そして、例えば前述の出力手段48に出力させるなどして報知する。 Further, it is assumed that water leakage occurs in the water distribution pipe network A. In this case, the water leakage determination unit 36 determines that water leakage has occurred at the measurement unit 40a of the water distribution facility 12a. However, the measurement units 40c and 40d of the water distribution equipments 12c and 12d located downstream of the water distribution equipment 12a do not determine that water leakage has occurred. In this case, the area specifying unit 38 first identifies the most downstream measuring unit 40 (here, the measuring unit 40a) that is determined to have leaked water. Then, it is confirmed whether or not there is a measuring unit 40 that has not been determined to have leaked water downstream of the specified measuring unit 40a. Here, there are measuring units 40c and 40d downstream of the measuring unit 40a, which have not been determined to have leaked water. In this case, the area identification unit 38 is a piping route (water distribution pipe network A and water distribution equipment 12a, 12c, 12d) excluding the water distribution pipe networks C and D, which are the pipe routes downstream of the measurement units 40c and 40d that are not determined to have leaked. (Piping route between) is specified as a leak occurrence route. Then, for example, the output means 48 described above is used to output the notification.

また、仮に配水管網Bもしくは配水管網Eで漏水が発生したとする。この場合、漏水判定部36は配水設備12bの計測部40bで漏水発生と判定する。ただし、配水管網Fでは漏水は発生していないため、配水設備12fの計測部40fは漏水発生と判定されない。尚、配水設備12eは計測部40が設置されていないため漏水発生判定はできない。この場合、エリア特定部38は先ず漏水発生と判定された最下流の計測部40(ここでは計測部40b)を特定する。そして、特定した計測部40bよりも下流に漏水発生と判定されていない計測部40fの存在を認識する。この場合、エリア特定部38は漏水発生と判定されていない計測部40fの下流の配管経路である配水管網Fを除く配管経路(配水管網B、E及び配水設備12b、12e、12f間の配管経路)を漏水発生経路として特定する。そして、例えば前述の出力手段48に出力させるなどして報知する。 Further, it is assumed that water leakage occurs in the water pipe network B or the water pipe network E. In this case, the water leakage determination unit 36 determines that water leakage has occurred at the measurement unit 40b of the water distribution equipment 12b. However, since no water leakage has occurred in the water distribution pipe network F, the measurement unit 40f of the water distribution equipment 12f is not determined to have a water leakage. Since the measuring unit 40 is not installed in the water distribution equipment 12e, it is not possible to determine the occurrence of water leakage. In this case, the area specifying unit 38 first identifies the most downstream measuring unit 40 (here, measuring unit 40b) determined to have leaked water. Then, it recognizes the existence of the measurement unit 40f that has not been determined to have leaked water downstream from the specified measurement unit 40b. In this case, the area identification unit 38 is between the water distribution pipe networks B and E and the water distribution equipments 12b, 12e and 12f, excluding the water distribution pipe network F which is the downstream piping route of the measurement unit 40f which is not determined to have leaked water. (Piping route) is specified as a water leakage occurrence route. Then, for example, the output means 48 described above is used to output the notification.

以上のように、本発明に係る漏水監視システム80は、数年間分の日最低流量値のデータの第1四分位数Q1と第3四分位数Q3とに基づいて漏水発生の判定基準となる漏水判定値H、及び漏水警戒判定値hを算出する。このため、極端に大きな日最低流量値及び極端に小さな日最低流量値は除外され、これらの値は漏水判定値H、漏水警戒判定値hには関与しない。これにより、年間を通じて安定的な基準値による漏水判定を行うことができる。 As described above, the leak monitoring system 80 according to the present invention is a criterion for determining the occurrence of leaks based on the first quartile Q1 and the third quartile Q3 of the daily minimum flow value data for several years. The water leakage determination value H and the water leakage warning determination value h are calculated. Therefore, the extremely large daily minimum flow rate value and the extremely small daily minimum flow rate value are excluded, and these values are not related to the water leakage determination value H and the water leakage warning determination value h. As a result, it is possible to determine water leakage based on a stable reference value throughout the year.

また、エリア特定部38を備えた本発明に係る漏水監視システム80は、配水経路上に設置された複数の計測部40に対する漏水発生判定、漏水注意判定に基づいて漏水発生経路、漏水注意経路を特定する。これにより、管理者等は漏水調査の範囲を即座に把握することができる。 Further, the water leakage monitoring system 80 according to the present invention provided with the area specifying unit 38 determines the water leakage occurrence route and the water leakage caution route based on the water leakage occurrence determination and the water leakage caution determination for a plurality of measurement units 40 installed on the water distribution route. Identify. As a result, the manager or the like can immediately grasp the scope of the leak investigation.

尚、本例で示した漏水監視システム80の各部の構成、動作、機構、配管経路等は一例であるから、特に本例に限定される訳ではなく、本発明は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。 Since the configuration, operation, mechanism, piping route, etc. of each part of the leak monitoring system 80 shown in this example are examples, the present invention is not particularly limited to this example, and the present invention does not deviate from the gist of the present invention. It is possible to change and implement within the range.

30 流量計
32 監視部
34 データ処理部
36 漏水判定部
38 エリア特定部
40 計測部
42 判定部
48 出力手段
80 漏水監視システム
90 中央管理部
Q1 第1四分位
Q3 第3四分位
30 flow meter
32 Monitoring unit
34 Data processing unit
36 Leakage judgment unit
38 Area Specific Department
40 Measuring unit
42 Judgment unit
48 Output means
80 Leakage monitoring system
90 Central Administration Department
Q1 1st quartile
Q3 3rd quartile

Claims (7)

配水経路の漏水を検知する漏水監視システムであって、
配水経路上に設置される計測部と、漏水発生の判定を行う判定部と、を有し、
前記計測部は、設置個所の水の流量を取得する流量計を備え、
前記判定部は、前記流量をモニタして1日の内で一番少ない流量の値を日最低流量値とする監視部と、前記日最低流量値から漏水判定値を算出するデータ処理部と、日最低流量値が前記漏水判定値を超えた場合に漏水発生の判定を行う漏水判定部と、を備え、
前記データ処理部は、所定の期間内の日最低流量値を小さい順に配列したときの第1四分位数と第3四分位数とに基づいて前記漏水判定値を算出することを特徴とする漏水監視システム。
A leak monitoring system that detects leaks in the distribution route.
It has a measurement unit installed on the water distribution route and a determination unit that determines the occurrence of water leakage.
The measuring unit is provided with a flow meter that acquires the flow rate of water at the installation location.
The determination unit includes a monitoring unit that monitors the flow rate and sets the value of the smallest flow rate in a day as the daily minimum flow rate value, and a data processing unit that calculates a water leakage determination value from the daily minimum flow rate value. It is provided with a water leakage determination unit that determines the occurrence of water leakage when the daily minimum flow rate value exceeds the water leakage determination value.
The data processing unit is characterized in that the leak determination value is calculated based on the first quartile and the third quartile when the daily minimum flow values within a predetermined period are arranged in ascending order. Leakage monitoring system.
データ処理部が、漏水判定値Hの算出を予め設定された係数Kと第1四分位数Q1と第3四分位数Q3とから、
H=Q3+K(Q3−Q1)
の式で行うことを特徴とする請求項1記載の漏水監視システム。
The data processing unit calculates the water leakage determination value H from the preset coefficient K, the first quartile Q1, and the third quartile Q3.
H = Q3 + K (Q3-Q1)
The leak monitoring system according to claim 1, wherein the leak monitoring system is performed according to the above formula.
データ処理部が、前記係数Kよりも小さな第2の係数kをさらに有し、前記第2の係数kと第1四分位数Q1と第3四分位数Q3とから、
h=Q3+k(Q3−Q1)
の式により漏水警戒判定値hを算出し、
漏水判定部が、日最低流量値が所定の期間内に所定の回数、前記漏水警戒判定値hを超えた場合に下流での漏水注意の判定をさらに行うことを特徴とする請求項2に記載の漏水監視システム。
The data processing unit further has a second coefficient k smaller than the coefficient K, and from the second coefficient k, the first quartile Q1, and the third quartile Q3,
h = Q3 + k (Q3-Q1)
Calculate the leak warning judgment value h by the formula of
The second aspect of claim 2, wherein the leak determination unit further determines the downstream leak caution when the daily minimum flow rate value exceeds the leak warning determination value h a predetermined number of times within a predetermined period. Leakage monitoring system.
漏水警戒判定値hを超え且つ漏水判定値H以下の日最低流量値のデータと、漏水判定値Hを超えた日最低流量値のデータと、前記漏水警戒判定値h以下の日最低流量値のデータとを判別可能にグラフ表示させることを特徴とする請求項3に記載の漏水監視システム。 The data of the daily minimum flow rate value exceeding the water leakage warning judgment value h and equal to or less than the water leakage judgment value H, the data of the daily minimum flow rate value exceeding the water leakage judgment value H, and the daily minimum flow rate value exceeding the water leakage warning judgment value h The leak monitoring system according to claim 3, wherein the data is displayed in a graph that can be discriminated from the data. 計測部が配水経路上に複数設置されるとともに、エリア特定部を備えた中央管理部をさらに有し、
漏水判定部は計測部ごとに漏水発生の判定を行い、
前記エリア特定部は、
漏水発生と判定された最下流の計測部を特定し、特定した計測部よりも下流に計測部がない場合には特定した前記計測部よりも下流の配管経路を漏水発生経路として特定し、
特定した前記計測部よりも下流に漏水発生と判定されていない計測部がある場合には、漏水発生と判定されていない計測部の下流の配管経路を除く配管経路を漏水発生経路として特定することを特徴とする請求項1乃至請求項4のいずれかに記載の漏水監視システム。
Multiple measurement units are installed on the water distribution route, and there is also a central management unit with an area identification unit.
The leak judgment unit determines the occurrence of water leakage for each measurement unit.
The area identification part is
The most downstream measuring unit determined to have leaked water is specified, and if there is no measuring unit downstream of the specified measuring unit, the piping route downstream of the specified measuring unit is specified as the water leakage occurrence route.
If there is a measurement unit that has not been determined to have leaked water downstream from the specified measurement unit, specify the piping route excluding the piping route downstream of the measurement unit that has not been determined to have leaked water as the water leakage occurrence route. The leak monitoring system according to any one of claims 1 to 4, wherein the leak monitoring system is characterized.
中央管理部が、判定部を有し、
監視部は前記流量の情報を計測部ごとにモニタして計測部ごとの日最低流量値を出力し、
データ処理部は計測部ごとの前記日最低流量値から各計測部の漏水判定値を算出し、
漏水判定部は計測部ごとに漏水発生の判定を行い前記エリア特定部に出力することを特徴とする請求項5記載の漏水監視システム。
The central management department has a judgment unit
The monitoring unit monitors the flow rate information for each measurement unit and outputs the daily minimum flow rate value for each measurement unit.
The data processing unit calculates the water leakage judgment value of each measurement unit from the daily minimum flow rate value of each measurement unit.
The water leakage monitoring system according to claim 5, wherein the water leakage determination unit determines the occurrence of water leakage for each measurement unit and outputs the data to the area identification unit.
漏水発生の判定を広域通信網を介して出力手段に出力させることを特徴とする請求項1乃至請求項6のいずれかに記載の漏水監視システム。 The water leakage monitoring system according to any one of claims 1 to 6, wherein the determination of the occurrence of water leakage is output to the output means via a wide area communication network.
JP2020112312A 2020-06-30 2020-06-30 Water leakage monitoring system Pending JP2021128140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020112312A JP2021128140A (en) 2020-06-30 2020-06-30 Water leakage monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020112312A JP2021128140A (en) 2020-06-30 2020-06-30 Water leakage monitoring system

Publications (1)

Publication Number Publication Date
JP2021128140A true JP2021128140A (en) 2021-09-02

Family

ID=77488836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020112312A Pending JP2021128140A (en) 2020-06-30 2020-06-30 Water leakage monitoring system

Country Status (1)

Country Link
JP (1) JP2021128140A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167732A (en) * 1993-12-16 1995-07-04 Toshiba Corp Leaked water detector
JP2001281089A (en) * 2000-03-31 2001-10-10 Tokyo Gas Co Ltd Gas meter and method for detecting gas leakage
JP2001296199A (en) * 2000-04-13 2001-10-26 Yazaki Corp Gas leak detector
JP2001330532A (en) * 2000-05-25 2001-11-30 Matsushita Electric Ind Co Ltd Gas shut-off device
JP2003006770A (en) * 2001-06-25 2003-01-10 Sorekkusu Kk Remote confirmation device and system for living activity
JP2009192328A (en) * 2008-02-13 2009-08-27 Toshiba Corp Water distribution information analyzer and analysis method
JP2013514074A (en) * 2009-12-17 2013-04-25 ユーシーエル ビジネス ピーエルシー Cancer diagnosis and treatment
JP2013242275A (en) * 2012-05-22 2013-12-05 Horiba Ltd Exhaust gas analysis system
JP2015137866A (en) * 2014-01-20 2015-07-30 株式会社日立製作所 Water leakage amount estimation device, method, and system
WO2016181593A1 (en) * 2015-05-13 2016-11-17 日本電気株式会社 Water-leak state estimation system, method, and recording medium
JP2019510080A (en) * 2016-03-01 2019-04-11 セルミド リミティッド Method for treating bone disease, disorder and / or injury and reagent therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167732A (en) * 1993-12-16 1995-07-04 Toshiba Corp Leaked water detector
JP2001281089A (en) * 2000-03-31 2001-10-10 Tokyo Gas Co Ltd Gas meter and method for detecting gas leakage
JP2001296199A (en) * 2000-04-13 2001-10-26 Yazaki Corp Gas leak detector
JP2001330532A (en) * 2000-05-25 2001-11-30 Matsushita Electric Ind Co Ltd Gas shut-off device
JP2003006770A (en) * 2001-06-25 2003-01-10 Sorekkusu Kk Remote confirmation device and system for living activity
JP2009192328A (en) * 2008-02-13 2009-08-27 Toshiba Corp Water distribution information analyzer and analysis method
JP2013514074A (en) * 2009-12-17 2013-04-25 ユーシーエル ビジネス ピーエルシー Cancer diagnosis and treatment
JP2013242275A (en) * 2012-05-22 2013-12-05 Horiba Ltd Exhaust gas analysis system
JP2015137866A (en) * 2014-01-20 2015-07-30 株式会社日立製作所 Water leakage amount estimation device, method, and system
WO2016181593A1 (en) * 2015-05-13 2016-11-17 日本電気株式会社 Water-leak state estimation system, method, and recording medium
JP2019510080A (en) * 2016-03-01 2019-04-11 セルミド リミティッド Method for treating bone disease, disorder and / or injury and reagent therefor

Similar Documents

Publication Publication Date Title
US10262518B2 (en) Method of disseminating monitoring information relating to contamination and corrosion within an infrastructure
CA2889284C (en) Detecting leaks in a fluid distribution system
EP2433440B1 (en) Infrastructure monitoring devices, systems, and methods
AU2015277149B2 (en) Cathodic protection management system
EP3719473A2 (en) Multi-utility integrity monitoring and display system
EA032736B1 (en) System and method for supervising, managing and monitoring the structural integrity of a pipeline network for fluid transportation, locating the leaking point and evaluating the extent of the failure
JP6289352B2 (en) Agricultural waterway monitoring server and agricultural waterway monitoring system
AU2014259545B2 (en) Infrastructure monitoring system and method
KR100954605B1 (en) Real-time detection system for pipeline based on ubiquitous-information technology
CN116006908A (en) Intelligent gas pipe network reliability monitoring method and Internet of things system
WO2020049310A1 (en) Smart sewer system
JP4679628B2 (en) Integrated infrastructure risk management support system
CN106383373B (en) Isopleth, Isosurface construction, method for early warning based on actual measurement with forecast rainfall
JP2010048632A (en) System for decision and support of disaster prevention system
JP2021128140A (en) Water leakage monitoring system
JP6671249B2 (en) Irrigation monitoring system
JP5158728B2 (en) Communication infrastructure risk management support system
KR20110086527A (en) Management system for water distribution network employing fuzzy technology
JP5283481B2 (en) Water infrastructure risk management support system, water infrastructure risk management support program, and storage medium
KR20040002615A (en) Optimal management system and method for blocked waterworks
JP2006268360A (en) Integrated disaster prevention system using gis
KR102493362B1 (en) Real-time accident detection system for waterworks using AI and method thereof
JP7266242B2 (en) Gas minute leak detector and gas minute leak detection system
JP2024015745A (en) Report creation support system and report creation support method
Ahmed Reducing Non-Revenue Water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220105