JP2021100086A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP2021100086A
JP2021100086A JP2019232286A JP2019232286A JP2021100086A JP 2021100086 A JP2021100086 A JP 2021100086A JP 2019232286 A JP2019232286 A JP 2019232286A JP 2019232286 A JP2019232286 A JP 2019232286A JP 2021100086 A JP2021100086 A JP 2021100086A
Authority
JP
Japan
Prior art keywords
main surface
substrate
heat conduction
heat
conduction path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019232286A
Other languages
Japanese (ja)
Inventor
佳久 横川
Yoshihisa Yokogawa
佳久 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2019232286A priority Critical patent/JP2021100086A/en
Publication of JP2021100086A publication Critical patent/JP2021100086A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a light source device with improved cooling efficiency of a light emitting element.SOLUTION: A light source device comprises: a substrate; a light-emitting element placed on a first main surface side of the substrate; a heat-dissipating member placed on a second main surface side of the substrate opposite the first main surface side; and a wiring pattern which is formed between the first main surface side and the light-emitting element and electrically connected to the light-emitting element, and the substrate has a heat conduction path that is filled with a plating material having higher thermal conductivity than a material that makes up the substrate so as to penetrate from the first main surface to the second main surface at a position not electrically connected to the wiring pattern.SELECTED DRAWING: Figure 2B

Description

この発明は、光源装置に関する。 The present invention relates to a light source device.

従来より使用されてきた放電ランプの代替として、LED素子や半導体レーザ等の発光素子を使用した光源装置の適用範囲が拡大している。適用範囲の拡大に伴い、発光素子の出射光の高出力化が求められている。 As an alternative to the conventionally used discharge lamps, the range of application of light source devices using light emitting elements such as LED elements and semiconductor lasers is expanding. With the expansion of the applicable range, it is required to increase the output of the emitted light of the light emitting element.

発光素子の出射光の高出力化を図るためには、発光素子に対して、より大きな電流を供給することを要する。ところが、発光素子に大きな電流を供給すると、発光素子の発熱量が増え、出力低下や短寿命化を引き起こす。そこで、従来より、発光素子の発熱対策が検討されてきた。例えば、特許文献1,2には、LED基板の裏面側に放熱部材(例えば、ヒートシンク)を配置し、LED基板を冷却する冷却手段が開示されている。 In order to increase the output of the emitted light of the light emitting element, it is necessary to supply a larger current to the light emitting element. However, when a large current is supplied to the light emitting element, the amount of heat generated by the light emitting element increases, which causes a decrease in output and a shortened life. Therefore, conventionally, measures against heat generation of light emitting elements have been studied. For example, Patent Documents 1 and 2 disclose cooling means for cooling an LED substrate by arranging a heat radiating member (for example, a heat sink) on the back surface side of the LED substrate.

特表2015−515101号公報Special Table 2015-515101 特開2017−091945号公報JP-A-2017-091945

近年、発光素子の冷却効率の向上が要望されている。冷却効率を高めるために、本発明者は、放熱部材の改善ではなく、発光素子の配置される基板から放熱部材に至る熱伝導性の改善に着眼した。このような改善には、先ず、基板に熱伝導性の優れた材料を使用することが考えられる。しかしながら、発光素子を配置する基板を選定するに際し、例えば、絶縁性が高く、基板の熱膨張によって発光素子に悪影響を及ぼしにくい等の制約を考慮する必要があるため、熱伝導性の優れた材料であることを第一優先に材料選定できない。そこで、本発明者は、基板の材料選定に留まることなく、基板から放熱部材に至る熱伝導性を改善する手法を様々な点から検討した。 In recent years, there has been a demand for improvement in cooling efficiency of light emitting elements. In order to improve the cooling efficiency, the present inventor focused not on improving the heat radiating member but on improving the thermal conductivity from the substrate on which the light emitting element is arranged to the heat radiating member. For such improvement, first, it is conceivable to use a material having excellent thermal conductivity for the substrate. However, when selecting a substrate on which the light emitting element is placed, for example, it is necessary to consider restrictions such as high insulation and less adverse effect on the light emitting element due to thermal expansion of the substrate. Therefore, a material having excellent thermal conductivity. It is not possible to select the material with the first priority. Therefore, the present inventor has examined a method for improving the thermal conductivity from the substrate to the heat radiating member from various points, not limited to the selection of the material of the substrate.

本発明は、発光素子の冷却効率を向上させた光源装置を提供することを目的とする。 An object of the present invention is to provide a light source device having improved cooling efficiency of a light emitting element.

光源装置は、基板と、
前記基板の第一主面側に配置される発光素子と、
前記基板の前記第一主面の反対面の第二主面側に配置される放熱部材と、
前記第一主面と前記発光素子との間に形成され、前記発光素子に電気的に接続される配線パターンと、を備え、
前記基板は、前記配線パターンと電気的に接続されない位置に、前記第一主面から前記第二主面までを貫通するように、前記基板を構成する材料よりも熱伝導率の高いめっき材料が充填された熱伝導路を有する。
The light source device is a substrate and
A light emitting element arranged on the first main surface side of the substrate and
A heat radiating member arranged on the second main surface side of the opposite surface of the first main surface of the substrate, and
A wiring pattern formed between the first main surface and the light emitting element and electrically connected to the light emitting element is provided.
The substrate is provided with a plating material having a higher thermal conductivity than the material constituting the substrate so as to penetrate from the first main surface to the second main surface at a position not electrically connected to the wiring pattern. It has a filled heat conduction path.

これにより、前記熱伝導路が、第一主面側の発光素子で発生した熱を、第二主面側の放熱部材へ伝達することを促進する。 As a result, the heat conduction path promotes the transfer of the heat generated by the light emitting element on the first main surface side to the heat radiating member on the second main surface side.

前記第二主面において、少なくとも、前記第一主面側に設けられた前記配線パターンに対向する領域には、前記めっき材料からなる中間膜を備えても構わない。詳細は後述するが、中間膜が、基板の第一主面と第二主面との間での熱膨張差を緩和させ、基板の撓みを抑制し、放熱部材との密着性が高まって熱伝導性が向上する。 An interlayer film made of the plating material may be provided on the second main surface at least in a region facing the wiring pattern provided on the first main surface side. Although the details will be described later, the interlayer film reduces the difference in thermal expansion between the first main surface and the second main surface of the substrate, suppresses the deflection of the substrate, and enhances the adhesion with the heat radiating member to heat. Conductivity is improved.

前記熱伝導路に充填されためっき材料は、前記中間膜に繋がっても構わない。これにより、熱伝導路の熱を中間膜に拡散させて、放熱部材への熱伝導性が向上する。 The plating material filled in the heat conduction path may be connected to the interlayer film. As a result, the heat of the heat conduction path is diffused to the interlayer film, and the heat conductivity to the heat radiating member is improved.

前記熱伝導路の前記第一主面側の端面は、前記第一主面に対して前記第二主面側に位置する部分を含んでも構わない。 The end surface of the heat conduction path on the first main surface side may include a portion located on the second main surface side with respect to the first main surface.

前記配線パターンは、前記めっき材料と同じ材料から構成されても構わない。 The wiring pattern may be made of the same material as the plating material.

前記熱伝導路の少なくとも一つにおいて、当該少なくとも一つの熱伝導路から前記配線パターンまでの距離が、前記基板の厚みよりも小さくても構わない。詳細は後述するが、熱伝導路を経由した熱が、基板の厚みを伝播する熱よりも速く放熱部材側に伝播するため、熱伝導性が向上する。 In at least one of the heat conduction paths, the distance from the at least one heat conduction path to the wiring pattern may be smaller than the thickness of the substrate. Although the details will be described later, the heat passing through the heat conduction path propagates to the heat radiating member side faster than the heat propagating through the thickness of the substrate, so that the heat conductivity is improved.

基板の第一主面から放熱部材に至る熱伝導性が向上すると、発光素子の冷却効率が向上する。斯くして、冷却効率を向上させた光源装置を提供できる。 When the thermal conductivity from the first main surface of the substrate to the heat radiating member is improved, the cooling efficiency of the light emitting element is improved. Thus, it is possible to provide a light source device having improved cooling efficiency.

光源装置の一実施形態の斜視図である。It is a perspective view of one Embodiment of a light source device. 図1のA1部拡大図である。It is an enlarged view of A1 part of FIG. 図2AのB1−B1線における断面図である。FIG. 2 is a cross-sectional view taken along the line B1-B1 of FIG. 2A. 図2Bに示した基板断面の要部拡大図である。FIG. 2B is an enlarged view of a main part of the cross section of the substrate shown in FIG. 2B. 熱伝導路と基板の厚みとの関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the heat conduction path and the thickness of a substrate. 光源装置の他の実施形態の要部断面図である。It is sectional drawing of the main part of another embodiment of a light source device.

本発明に係る光源装置につき、図面を参照しながら説明する。なお、本明細書に開示された各図面は、あくまで模式的に図示されたものである。すなわち、図面上の寸法比と実際の寸法比とは必ずしも一致しておらず、また、各図面間においても寸法比は必ずしも一致していない。 The light source device according to the present invention will be described with reference to the drawings. It should be noted that the drawings disclosed in the present specification are merely schematically illustrated. That is, the dimensional ratio on the drawing and the actual dimensional ratio do not always match, and the dimensional ratio does not always match between the drawings.

以下において、XYZ座標系を適宜参照して説明される。また、本明細書において、方向を表現する際に、正負の向きを区別する場合には、「+X方向」、「−X方向」のように、正負の符号を付して記載される。また、正負の向きを区別せずに方向を表現する場合には、単に「X方向」と記載される。すなわち、本明細書において、単に「X方向」と記載されている場合には、「+X方向」と「−X方向」の双方が含まれる。Y方向及びZ方向についても同様である。 Hereinafter, the description will be given with reference to the XYZ coordinate system as appropriate. Further, in the present specification, when the positive and negative directions are distinguished when expressing the directions, they are described with positive and negative signs such as "+ X direction" and "-X direction". Further, when expressing a direction without distinguishing between positive and negative directions, it is simply described as "X direction". That is, in the present specification, when simply described as "X direction", both "+ X direction" and "-X direction" are included. The same applies to the Y direction and the Z direction.

図1は、光源装置の一実施形態の概略斜視図である。本実施形態の光源装置100は、発光素子であるLED1と、放熱部材2と、基板3と、配線パターン4とを含む。 FIG. 1 is a schematic perspective view of an embodiment of a light source device. The light source device 100 of the present embodiment includes an LED 1 which is a light emitting element, a heat radiating member 2, a substrate 3, and a wiring pattern 4.

基板3は、二つの主面(3a,3b)と、二つの主面(3a,3b)に挟まれた側面と、を有する板状部材である。二つの主面(3a,3b)とは、側面よりもはるかに面積の大きい面である。基板3は、LED1を第一主面3a側に配置し、放熱部材2を第一主面3aの反対面の第二主面3b側に配置する。基板3とLED1とは、後述する配線パターンや他層等を介して互いに接触する。基板3と放熱部材2とは、互いに直接接触するか、又は、後述する他層等を介して互いに接触する。基板3は、上述した種々の制約を適宜考慮して選定され、例えば、窒化アルミニウムや窒化ケイ素を主成分とする材料で形成される。基板3の主面(3a,3b)の形状は、特に限定されない。 The substrate 3 is a plate-like member having two main surfaces (3a, 3b) and a side surface sandwiched between the two main surfaces (3a, 3b). The two main surfaces (3a, 3b) are surfaces having a much larger area than the side surfaces. In the substrate 3, the LED 1 is arranged on the first main surface 3a side, and the heat radiating member 2 is arranged on the second main surface 3b side opposite to the first main surface 3a. The substrate 3 and the LED 1 come into contact with each other via a wiring pattern, another layer, or the like, which will be described later. The substrate 3 and the heat radiating member 2 are in direct contact with each other, or are in contact with each other via another layer or the like described later. The substrate 3 is selected in consideration of the various restrictions described above, and is formed of, for example, a material containing aluminum nitride or silicon nitride as a main component. The shape of the main surface (3a, 3b) of the substrate 3 is not particularly limited.

配線パターン4は、基板3の第一主面3aとLED1との間に位置し、LED1に電気的に接続される。配線パターン4は、一方の面において第一主面3aに接触し、他方の面においてLED1に接触している(図2B参照)。配線パターン4は、ワイヤ6と共に電気回路を構成し、電極5から給電された電力をLED1に伝える。配線パターン4には、導電性に優れた材料が使用される。また、配線パターン4は、熱伝導性に優れた材料が使用されるとよい。配線パターン4には、例えば、銅を主成分とする材料が使用される。 The wiring pattern 4 is located between the first main surface 3a of the substrate 3 and the LED 1, and is electrically connected to the LED 1. The wiring pattern 4 is in contact with the first main surface 3a on one surface and in contact with the LED 1 on the other surface (see FIG. 2B). The wiring pattern 4 constitutes an electric circuit together with the wire 6, and transmits the electric power supplied from the electrode 5 to the LED 1. A material having excellent conductivity is used for the wiring pattern 4. Further, for the wiring pattern 4, it is preferable that a material having excellent thermal conductivity is used. For the wiring pattern 4, for example, a material containing copper as a main component is used.

放熱部材2は、LED1の発光に伴い発生した熱を放散するために使用される。放熱部材2は、熱伝導性に優れた材料(例えば、銅やアルミニウムを主成分とする材料)で形成される。本実施形態では、放熱部材2は、図1に示されるように冷却流体の流れる流路2cを有している。放熱部材2の仕様は特に限定されるものでない。例えば、放熱部材2は、放熱フィンを有してもよい。 The heat radiating member 2 is used to dissipate the heat generated by the light emission of the LED 1. The heat radiating member 2 is formed of a material having excellent thermal conductivity (for example, a material containing copper or aluminum as a main component). In the present embodiment, the heat radiating member 2 has a flow path 2c through which the cooling fluid flows, as shown in FIG. The specifications of the heat radiating member 2 are not particularly limited. For example, the heat radiating member 2 may have heat radiating fins.

図示していないが、基板3と放熱部材2との間に、熱伝導性を向上させる層を配置しても構わない。熱伝導性を向上させる層には、例えば、フェイズチェンジシートや放熱用グリスを塗布された層が挙げられる。 Although not shown, a layer for improving thermal conductivity may be arranged between the substrate 3 and the heat radiating member 2. Examples of the layer for improving thermal conductivity include a phase change sheet and a layer coated with heat-dissipating grease.

基板3は熱伝導路7を有する。熱伝導路7について、図2A及び図2Bを参照しながら説明する。図2Aは、図1のA1部を、第一主面3a側(+Z方向側)からみた拡大図である。図2Bは、図2Aで示されたB1−B1線を通るYZ平面における断面図である。熱伝導路7は、基板3の第一主面3aから第二主面3bまでを貫通して形成されている。 The substrate 3 has a heat conduction path 7. The heat conduction path 7 will be described with reference to FIGS. 2A and 2B. FIG. 2A is an enlarged view of the A1 portion of FIG. 1 as viewed from the first main surface 3a side (+ Z direction side). FIG. 2B is a cross-sectional view taken along the line B1-B1 shown in FIG. 2A in the YZ plane. The heat conduction path 7 is formed so as to penetrate from the first main surface 3a to the second main surface 3b of the substrate 3.

熱伝導路7は、基板3に第一主面3aから第二主面3bまでを貫通する貫通孔を形成し、形成した貫通孔にめっき材料を充填して形成される。貫通孔の形成は、例えば、レーザや、放電加工、ドリル等を使用して形成される。貫通孔へのめっき材料の充填には、例えば、電解めっき法を使用できる。貫通孔に充填するめっき材料には、基板3を構成する材料よりも熱伝導率の高い材料を使用する。これにより、たとえ基板3として放熱部材2に比べると、あまり熱伝導性に優れない材料が選定されたとしても、基板3に形成された熱伝導路7を介して熱を伝えることで、基板3の第一主面3aから放熱部材2に至る熱伝導性を確保できる。めっき材料として、例えば、銅を主成分とする材料が使用できる。熱伝導路7は、配線パターン4と電気的に接続されないように、配線パターン4から離間して配置される。これにより、熱伝導路7と配線パターン4の間は絶縁が確保され、熱伝導路7は非導通の状態が確保されている。 The heat conduction path 7 is formed by forming a through hole penetrating from the first main surface 3a to the second main surface 3b on the substrate 3 and filling the formed through hole with a plating material. The through hole is formed by using, for example, a laser, electric discharge machining, a drill, or the like. For example, an electrolytic plating method can be used to fill the through holes with the plating material. As the plating material to be filled in the through holes, a material having a higher thermal conductivity than the material constituting the substrate 3 is used. As a result, even if a material having less excellent thermal conductivity than the heat radiating member 2 is selected as the substrate 3, heat is transferred through the thermal conduction path 7 formed in the substrate 3 to transfer the heat to the substrate 3. It is possible to secure the thermal conductivity from the first main surface 3a of the above to the heat radiating member 2. As the plating material, for example, a material containing copper as a main component can be used. The heat conduction path 7 is arranged apart from the wiring pattern 4 so as not to be electrically connected to the wiring pattern 4. As a result, insulation is ensured between the heat conduction path 7 and the wiring pattern 4, and the heat conduction path 7 is ensured in a non-conducting state.

本実施形態において、熱伝導路7は、深さ方向(Z方向)に内径が一定の円筒形状で構成されている。熱伝導路7の直径d1は0.1mm以上にするとよく、好ましくは0.2mm以上にするとよい。これにより、熱伝導路7での熱伝導性を向上できる。さらに、直径d1(図2A参照)は0.5mm以下にするとよく、好ましくは0.3mm以下にするとよい。これにより、めっき材料を隙間なく(空気を混在させることなく)充填しやすく、熱伝導路7の熱伝導性を向上できる。 In the present embodiment, the heat conduction path 7 is formed in a cylindrical shape having a constant inner diameter in the depth direction (Z direction). The diameter d1 of the heat conduction path 7 is preferably 0.1 mm or more, preferably 0.2 mm or more. Thereby, the heat conductivity in the heat conduction path 7 can be improved. Further, the diameter d1 (see FIG. 2A) is preferably 0.5 mm or less, preferably 0.3 mm or less. As a result, the plating material can be easily filled without gaps (without mixing air), and the thermal conductivity of the heat conduction path 7 can be improved.

熱伝導路7の形状は、本実施形態の形状に限定されない。例えば、熱伝導路7は、+Z方向から見たとき、一方向に長く延びる溝や、当該溝が蛇行又は折れ曲がる形状を有しても構わない。熱伝導路7は、図2Bのような断面視において、第一主面3aと第二主面3bの少なくとも一方の面から深くなるにつれて開口幅が小さくなる、テーパ形状を有しても構わない。 The shape of the heat conduction path 7 is not limited to the shape of the present embodiment. For example, the heat conduction path 7 may have a groove extending in one direction or a shape in which the groove meanders or bends when viewed from the + Z direction. The heat conduction path 7 may have a tapered shape in which the opening width decreases as the depth increases from at least one of the first main surface 3a and the second main surface 3b in a cross-sectional view as shown in FIG. 2B. ..

熱伝導路7の配置に関し、本実施形態は、二種類の配置方針に基づいて熱伝導路7を配置している。第一の配置方針は、1個のLED1に対し、2個の熱伝導路7が+Y方向及び−Y方向から挟むように配置している(図2A参照)。第二の配置方針は、多数の熱伝導路7が、複数のLED1及び複数の配線パターン4を取り囲むように配置している(図1参照)。本実施形態の熱伝導路7の配置方針及び配置構成は、一例を示すものであって、本開示内容を限定するものではない。 Regarding the arrangement of the heat conduction path 7, in the present embodiment, the heat conduction path 7 is arranged based on two types of arrangement policies. The first arrangement policy is to arrange the two heat conduction paths 7 so as to sandwich the one LED 1 from the + Y direction and the −Y direction (see FIG. 2A). In the second arrangement policy, a large number of heat conduction paths 7 are arranged so as to surround the plurality of LEDs 1 and the plurality of wiring patterns 4 (see FIG. 1). The arrangement policy and arrangement configuration of the heat conduction path 7 of the present embodiment shows an example and does not limit the contents of the present disclosure.

図2Bに見られるように、第二主面3bと放熱部材2との間に中間膜8を有している。中間膜8の作用効果について説明する。 As seen in FIG. 2B, the interlayer film 8 is provided between the second main surface 3b and the heat radiating member 2. The action and effect of the interlayer film 8 will be described.

基板3は導電性を有する配線パターン4と異なる材料が使用されるため、基板3は、配線パターン4との間に熱膨張率差がある。そのため、LED1の発熱に伴い配線パターン4及び基板3が膨張すると、配線パターン4近傍の第一主面3aは、配線パターン4から熱膨張率差に起因する力を受ける。この力は、配線パターン4近傍の第一主面3aにのみ働くため、基板3を撓ませる要因となる。そこで、第二主面3bに接して中間膜8を配置し、中間膜8近傍の第二主面3bが、中間膜8から熱膨張率差に起因する力を受けるようにする。中間膜8は、第一主面3aと第二主面3bとの間において受ける力の大きさの差を緩和する。これによって、温度変化に伴う基板3の撓みを抑制する。基板3の撓みを抑制すると、放熱部材2との密着性が高まり、熱伝導性が向上する。 Since the substrate 3 uses a material different from that of the conductive wiring pattern 4, the substrate 3 has a difference in thermal expansion coefficient from that of the wiring pattern 4. Therefore, when the wiring pattern 4 and the substrate 3 expand due to the heat generated by the LED 1, the first main surface 3a in the vicinity of the wiring pattern 4 receives a force due to the difference in thermal expansion coefficient from the wiring pattern 4. Since this force acts only on the first main surface 3a near the wiring pattern 4, it causes the substrate 3 to bend. Therefore, the intermediate film 8 is arranged in contact with the second main surface 3b so that the second main surface 3b in the vicinity of the intermediate film 8 receives a force from the intermediate film 8 due to the difference in the coefficient of thermal expansion. The interlayer film 8 alleviates the difference in the magnitude of the force received between the first main surface 3a and the second main surface 3b. As a result, the bending of the substrate 3 due to the temperature change is suppressed. When the bending of the substrate 3 is suppressed, the adhesion with the heat radiating member 2 is enhanced, and the thermal conductivity is improved.

中間膜8は、第二主面3bにおいて、少なくとも、第一主面3a側に設けられた配線パターン4に対向する領域に設けるとよい。基板3の局所領域における第一主面3aと第二主面3bとの熱膨張差を小さくして、基板3の局所的な撓みを抑制できる。 The interlayer film 8 may be provided on the second main surface 3b at least in a region facing the wiring pattern 4 provided on the first main surface 3a side. The difference in thermal expansion between the first main surface 3a and the second main surface 3b in the local region of the substrate 3 can be reduced to suppress the local bending of the substrate 3.

熱伝導路7に充填されためっき材料は、第二主面3bに成膜された中間膜8に繋がっているとよい。これにより、熱伝導路7の熱を中間膜8に拡散させて、放熱部材2への熱伝導性が向上する。 The plating material filled in the heat conduction path 7 may be connected to the interlayer film 8 formed on the second main surface 3b. As a result, the heat of the heat conduction path 7 is diffused to the interlayer film 8, and the heat conductivity to the heat radiating member 2 is improved.

本実施形態において、中間膜8は、熱伝導路7に充填されためっき材料と同じ材料が使用される。そして、図2Bに示される中間膜8は、第一主面3a側に設けられた配線パターン4に対向する領域、及び熱伝導路7に繋がる領域を含む、放熱部材2に接する面全体に設けられている。その結果、中間膜8と熱伝導路7とが一体化し、中間膜8から放熱部材2への熱伝導性のさらなる向上を図っている。 In the present embodiment, the interlayer film 8 is made of the same material as the plating material filled in the heat conduction path 7. The interlayer film 8 shown in FIG. 2B is provided on the entire surface in contact with the heat radiating member 2, including a region facing the wiring pattern 4 provided on the first main surface 3a side and a region connected to the heat conduction path 7. Has been done. As a result, the interlayer film 8 and the heat conduction path 7 are integrated, and the heat conductivity from the interlayer film 8 to the heat radiating member 2 is further improved.

中間膜8の成膜には、電解めっき法を使用してもよい。熱伝導路7の形成(めっき材料の貫通孔への充填)と、中間膜8の成膜と、を同じめっき工程で一体的に形成してもよい。また、放熱部材2との密着性を向上させるために、熱伝導路7及び中間膜8の形成後、中間膜8の表面を研磨して、当該表面にある凹凸を小さくしても構わない。また、中間膜8に、熱伝導路7に充填されためっき材料と異なる材料を使用しても構わない。 An electrolytic plating method may be used for forming the interlayer film 8. The formation of the heat conduction path 7 (filling of the through holes of the plating material) and the film formation of the interlayer film 8 may be integrally formed in the same plating step. Further, in order to improve the adhesion to the heat radiating member 2, after the heat conduction path 7 and the intermediate film 8 are formed, the surface of the intermediate film 8 may be polished to reduce the unevenness on the surface. Further, a material different from the plating material filled in the heat conduction path 7 may be used for the interlayer film 8.

ところで、熱伝導路7は、第二主面3bに対して、突出又は窪みのない平坦面であるとよい。熱伝導路7と一体化した中間膜8の場合は、放熱部材2に対向する中間膜8の表面が平坦であるとよい。これにより、熱伝導路7又は中間膜8と放熱部材2との密着性が向上する。 By the way, the heat conduction path 7 is preferably a flat surface having no protrusions or dents with respect to the second main surface 3b. In the case of the interlayer film 8 integrated with the heat conduction path 7, it is preferable that the surface of the interlayer film 8 facing the heat radiating member 2 is flat. As a result, the adhesion between the heat conduction path 7 or the interlayer film 8 and the heat radiating member 2 is improved.

図3は図2Bに示した基板3の断面の要部拡大図である。熱伝導路7の第一主面3a側の端面10は、第一主面3aに対して第二主面3b側に位置する部分を含む。すなわち、熱伝導路7の第一主面3a側の端面10は、第一主面3aに対して−Z方向に窪んだ窪みを有する。窪みを有する端面10に第一主面3aに光を照射すると、端面10の反射光は、第一主面3aの反射光と異なる態様を示す。そのため、例えば、基板3を形成した後にLED1を基板3に取り付ける工程において、窪みを有する端面10を、LED1の位置決めマークとして使用できる。端面10の窪みは、めっき処理速度やめっき処理時間、貫通孔の径の大きさの調整や、めっき成膜後におけるめっき不要部の除去のためのエッチング条件の調整により、形成できる。 FIG. 3 is an enlarged view of a main part of the cross section of the substrate 3 shown in FIG. 2B. The end surface 10 of the heat conduction path 7 on the first main surface 3a side includes a portion located on the second main surface 3b side with respect to the first main surface 3a. That is, the end surface 10 on the first main surface 3a side of the heat conduction path 7 has a recess recessed in the −Z direction with respect to the first main surface 3a. When the first main surface 3a is irradiated with light on the end surface 10 having a recess, the reflected light of the end surface 10 shows a different mode from the reflected light of the first main surface 3a. Therefore, for example, in the step of attaching the LED 1 to the substrate 3 after forming the substrate 3, the end face 10 having a recess can be used as a positioning mark of the LED 1. The dent of the end face 10 can be formed by adjusting the plating processing speed, the plating processing time, the size of the diameter of the through hole, and the etching conditions for removing the unnecessary portion of plating after the plating film formation.

配線パターン4は、貫通孔に充填するめっき材料と同じ材料で構成しても構わない。配線パターン4の成膜と、熱伝導路7の形成(貫通孔へのめっき材料の充填)と、を同じめっき工程で形成しても構わない。さらに、配線パターン4と、熱伝導路7と、中間膜8と、を同じ材料で構成し、配線パターン4の成膜と、熱伝導路7の形成(貫通孔へのめっき材料の充填)と、中間膜8の成膜とを、同じめっき工程で形成しても構わない。なお、配線パターン4の形成及び配線パターン4と熱伝導路7との分離は、成膜後のエッチングや機械的切削等により行うことができる。 The wiring pattern 4 may be made of the same material as the plating material to be filled in the through holes. The film formation of the wiring pattern 4 and the formation of the heat conduction path 7 (filling of the through holes with the plating material) may be formed by the same plating step. Further, the wiring pattern 4, the heat conduction path 7, and the interlayer film 8 are made of the same material, and the wiring pattern 4 is formed and the heat conduction path 7 is formed (filling of the through holes with the plating material). , The film formation of the interlayer film 8 may be formed by the same plating step. The wiring pattern 4 can be formed and the wiring pattern 4 and the heat conduction path 7 can be separated by etching after film formation, mechanical cutting, or the like.

熱伝導路7の中には、当該熱伝導路7から配線パターン4までの距離が、基板3の厚みよりも小さい熱伝導路を有していても構わない。このような熱伝導路の作用効果について、図4を参照しながら説明する。 The heat conduction path 7 may have a heat conduction path in which the distance from the heat conduction path 7 to the wiring pattern 4 is smaller than the thickness of the substrate 3. The action and effect of such a heat conduction path will be described with reference to FIG.

図4は、熱伝導路7と基板3の厚みt1との関係を説明するための模式図である。図4において、配線パターン4から熱伝導路7までの距離d2は、基板3の厚みt1よりも小さい。当図では、LED1から、配線パターン4の端部にあり基板3の第一主面3aに接する点p1における熱が、基板3及び中間膜8内を伝播する様子を模式的に示している。点p1における熱は、基板3の中で、点p1を中心として球状に拡散していく。図4に示されたL1〜L3は、それぞれ、点p1から伝播した熱の前線(最も遠くまで伝播した熱の位置を示す線)を示し、時系列で第一前線L1(破線で示す)、第二前線L2(一点鎖線で示す)及び第三前線L3(二点鎖線で示す)の順に形成されていく。点p1と各前線(L1〜L3)に囲まれたハッチング領域が、熱の伝播経路となる。 FIG. 4 is a schematic view for explaining the relationship between the heat conduction path 7 and the thickness t1 of the substrate 3. In FIG. 4, the distance d2 from the wiring pattern 4 to the heat conduction path 7 is smaller than the thickness t1 of the substrate 3. In this figure, it is schematically shown that the heat at the point p1 at the end of the wiring pattern 4 and in contact with the first main surface 3a of the substrate 3 propagates in the substrate 3 and the interlayer film 8 from the LED 1. The heat at the point p1 diffuses spherically around the point p1 in the substrate 3. L1 to L3 shown in FIG. 4 indicate a heat front (a line indicating the position of the heat propagated farthest) from the point p1, respectively, and the first front L1 (indicated by a broken line) in chronological order. The second front L2 (indicated by the alternate long and short dash line) and the third front L3 (indicated by the alternate long and short dash line) are formed in this order. The hatched region surrounded by the point p1 and each front (L1 to L3) serves as a heat propagation path.

点p1と第一前線L1に囲まれたハッチング領域(斜線の間隔が最も狭い領域)は、点p1から−Y方向に伝播する伝播経路h11を経た熱と、点p1から−Z方向に伝播する伝播経路h21を経た熱とを含んでいる。距離d2が厚みt1よりも小さいため、伝播経路h11を経た熱は、距離d2を進み熱伝導路7に到達しているが、伝播経路h21を経た熱は、第二主面3bに到達していない。第一前線L1と第二前線L2に囲まれたハッチング領域(斜線の間隔が2番目に狭い領域)では、熱伝導路7に伝わった熱h1が、熱伝導性に優れた熱伝導路内を−Z方向に大幅に伝播し(伝播経路h12)、第二主面3bに接近するが、伝播経路h21を経た熱は、−Z方向に僅かに進む程度である(伝播経路h22)。第二前線L2と第三前線L3に囲まれたハッチング領域(斜線の間隔が最も広い領域)では、伝播経路h12を経た熱が、既に第二主面3bに到達し中間膜8を伝播するが(伝播経路h13)、伝播経路h22を経た熱は、ようやく第二主面3bに到達したところである。 The hatched region surrounded by the point p1 and the first front L1 (the region where the interval between diagonal lines is the narrowest) propagates in the −Z direction from the point p1 and the heat that has passed through the propagation path h11 that propagates in the −Y direction from the point p1. It contains heat that has passed through the propagation path h21. Since the distance d2 is smaller than the thickness t1, the heat passing through the propagation path h11 travels the distance d2 and reaches the heat conduction path 7, but the heat passing through the propagation path h21 reaches the second main surface 3b. Absent. In the hatching region surrounded by the first front line L1 and the second front line L2 (the region where the interval between the diagonal lines is the second narrowest), the heat h1 transmitted to the heat conduction path 7 passes through the heat conduction path having excellent thermal conductivity. It propagates significantly in the −Z direction (propagation path h12) and approaches the second main surface 3b, but the heat that has passed through the propagation path h21 travels slightly in the −Z direction (propagation path h22). In the hatched region surrounded by the second front L2 and the third front L3 (the region where the interval between the diagonal lines is the widest), the heat that has passed through the propagation path h12 has already reached the second main surface 3b and propagates through the interlayer film 8. (Propagation path h13), the heat that has passed through the propagation path h22 has finally reached the second main surface 3b.

こうして、熱伝導路7から配線パターン4までの距離d2が、基板3の厚みt1よりも小さい場合には、熱伝導路7を経由した熱が、基板3の厚みt1を伝播する熱よりも速く放熱部材2側に伝播するため、熱伝導性がより向上する。なお、熱伝導路7から配線パターン4までの距離d2が基板3の厚みt1よりも大きくても、熱伝導路7を設けることで、熱伝導性に優れた排熱経路が増えるため、熱伝導性の向上効果を得られる。 Thus, when the distance d2 from the heat conduction path 7 to the wiring pattern 4 is smaller than the thickness t1 of the substrate 3, the heat passing through the heat conduction path 7 is faster than the heat propagating through the thickness t1 of the substrate 3. Since it propagates to the heat radiating member 2 side, the thermal conductivity is further improved. Even if the distance d2 from the heat conduction path 7 to the wiring pattern 4 is larger than the thickness t1 of the substrate 3, the provision of the heat conduction path 7 increases the number of exhaust heat paths having excellent heat conductivity. The effect of improving sex can be obtained.

本発明は、上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。上述の実施形態では、中間膜8を有する光源装置100を示したが、図5に示される光源装置200のように、基板3と放熱部材2との間に中間膜8を有していなくても構わない。また、発光素子としてLEDを使用する例を示したが、LD(レーザーダイオード)等の他の固体光源を使用しても構わない。 The present invention is not limited to the above-described embodiment, and various improvements and changes can be made without departing from the spirit of the present invention. In the above-described embodiment, the light source device 100 having the interlayer film 8 is shown, but unlike the light source device 200 shown in FIG. 5, the interlayer film 8 is not provided between the substrate 3 and the heat radiating member 2. It doesn't matter. Further, although an example of using an LED as a light emitting element is shown, another solid-state light source such as an LD (laser diode) may be used.

1 :LED
2 :放熱部材
2c :流路
3 :基板
3a :第一主面
3b :第二主面
4 :配線パターン
5 :電極
6 :ワイヤ
7 :熱伝導路
8 :中間膜
10 :端面
100,200:光源装置
1: LED
2: Heat dissipation member 2c: Flow path 3: Substrate 3a: First main surface 3b: Second main surface 4: Wiring pattern 5: Electrode 6: Wire 7: Heat conduction path 8: Intermediate film 10: End faces 100, 200: Light source apparatus

Claims (6)

基板と、
前記基板の第一主面側に配置される発光素子と、
前記基板の前記第一主面の反対面の第二主面側に配置される放熱部材と、
前記第一主面と前記発光素子との間に形成され、前記発光素子に電気的に接続される配線パターンと、を備え、
前記基板は、前記配線パターンと電気的に接続されない位置に、前記第一主面から前記第二主面までを貫通するように、前記基板を構成する材料よりも熱伝導率の高いめっき材料が充填された熱伝導路を有する、ことを特徴とする光源装置。
With the board
A light emitting element arranged on the first main surface side of the substrate and
A heat radiating member arranged on the second main surface side of the opposite surface of the first main surface of the substrate, and
A wiring pattern formed between the first main surface and the light emitting element and electrically connected to the light emitting element is provided.
The substrate is provided with a plating material having a higher thermal conductivity than the material constituting the substrate so as to penetrate from the first main surface to the second main surface at a position not electrically connected to the wiring pattern. A light source device characterized by having a filled heat conduction path.
前記第二主面において、少なくとも、前記第一主面側に設けられた前記配線パターンに対向する領域には、前記めっき材料からなる中間膜を備えることを特徴とする、請求項1に記載の光源装置。 The second main surface, according to claim 1, wherein an interlayer film made of the plating material is provided at least in a region facing the wiring pattern provided on the first main surface side. Light source device. 前記熱伝導路に充填されためっき材料は、前記中間膜に繋がっていることを特徴とする、請求項2に記載の光源装置。 The light source device according to claim 2, wherein the plating material filled in the heat conduction path is connected to the interlayer film. 前記熱伝導路の前記第一主面側の端面は、前記第一主面に対して前記第二主面側に位置する部分を含むことを特徴とする、請求項1〜3のいずれか一項に記載の光源装置。 Any one of claims 1 to 3, wherein the end surface of the heat conduction path on the first main surface side includes a portion located on the second main surface side with respect to the first main surface. The light source device according to the section. 前記配線パターンは、前記めっき材料と同じ材料からなることを特徴とする、請求項1〜4のいずれか一項に記載の光源装置。 The light source device according to any one of claims 1 to 4, wherein the wiring pattern is made of the same material as the plating material. 前記熱伝導路の少なくとも一つにおいて、当該少なくとも一つの熱伝導路から前記配線パターンまでの距離が、前記基板の厚みよりも小さいことを特徴とする、請求項1〜5のいずれか一項に記載の光源装置。
The invention according to any one of claims 1 to 5, wherein in at least one of the heat conduction paths, the distance from the at least one heat conduction path to the wiring pattern is smaller than the thickness of the substrate. The light source device described.
JP2019232286A 2019-12-24 2019-12-24 Light source device Pending JP2021100086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019232286A JP2021100086A (en) 2019-12-24 2019-12-24 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019232286A JP2021100086A (en) 2019-12-24 2019-12-24 Light source device

Publications (1)

Publication Number Publication Date
JP2021100086A true JP2021100086A (en) 2021-07-01

Family

ID=76541416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019232286A Pending JP2021100086A (en) 2019-12-24 2019-12-24 Light source device

Country Status (1)

Country Link
JP (1) JP2021100086A (en)

Similar Documents

Publication Publication Date Title
JP5784261B2 (en) Cooling device and power module with cooling device using the same
US7572033B2 (en) Light source module with high heat-dissipation efficiency
JP4969332B2 (en) Substrate and lighting device
JP2009231757A (en) Radiation member and circuit substrate device
JP2008270609A (en) Heat radiating apparatus for electronic component
JP2010283253A (en) Light-emitting device and substrate for light-emitting device
JP5333765B2 (en) Printed circuit board for light emitting module
JP2017033779A (en) Light source device, display device and electronic apparatus
US10177065B2 (en) Silicon-based heat dissipation device for heat-generating devices
JP6595531B2 (en) Heat sink assembly
JP5500971B2 (en) Light source module and lighting device
JP4256463B1 (en) Heat dissipation structure
JP2021100086A (en) Light source device
JP2019062033A (en) Semiconductor laser device
CN112368894A (en) Diode laser assembly and method of manufacturing a diode laser assembly
JP2022173319A (en) Light-emitting device and mobile body comprising the same
JP6155531B2 (en) Optical communication module
WO2023008038A1 (en) Laser module
JP6815347B2 (en) Semiconductor module
JP2011171686A (en) Metal-based printed board with heat radiation part
WO2024071244A1 (en) Semiconductor module
JP2010040569A (en) Electronic component module
JP2023023762A (en) Light source device
JP2009146973A (en) Laser apparatus
JP2022186044A (en) Heat sink and heat sink manufacturing method