JP2021090263A - Magnetostrictor and manufacturing method of the same - Google Patents

Magnetostrictor and manufacturing method of the same Download PDF

Info

Publication number
JP2021090263A
JP2021090263A JP2019218936A JP2019218936A JP2021090263A JP 2021090263 A JP2021090263 A JP 2021090263A JP 2019218936 A JP2019218936 A JP 2019218936A JP 2019218936 A JP2019218936 A JP 2019218936A JP 2021090263 A JP2021090263 A JP 2021090263A
Authority
JP
Japan
Prior art keywords
magnetic
magnetostrictive element
main surface
magnetostrictive
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019218936A
Other languages
Japanese (ja)
Inventor
将矢 城谷
Masaya Shirotani
将矢 城谷
太一 中村
Taichi Nakamura
太一 中村
一樹 酒井
Kazuki Sakai
一樹 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019218936A priority Critical patent/JP2021090263A/en
Publication of JP2021090263A publication Critical patent/JP2021090263A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To provide an Fe-Ga system magnetostrictor having improved magnetic flux density change with magnetostriction even when a relatively low magnetic field is applied, and a manufacturing method of the same.SOLUTION: A magnetic element is made of Fe-Ga-based alloy in a rectangular parallelepiped shape with a thickness smaller than a width, where a magnetic domain on a main surface has a magnetic domain width of 10 μm to 200 μm, and an area of the magnetic domain of which an angular difference between a width direction of the main surface and a direction of a magnetic moment is 10° or less is 70 to 100% of an area of the main surface.SELECTED DRAWING: Figure 1

Description

本発明は、Fe−Ga系単結晶合金の磁歪素子およびその製造方法に関する。 The present invention relates to a magnetostrictive element of a Fe—Ga based single crystal alloy and a method for producing the same.

近年、自律的に通信する機能を持ったモノ同士が情報交換を行い、自動的に相互に制御を行う世界、即ち、モノのインターネット(IoT:Internet of Things)の世界が到来することが期待されている。 In recent years, it is expected that the world of things that have the function of autonomous communication will exchange information and automatically control each other, that is, the world of the Internet of Things (IoT). ing.

IoTが社会に浸透すると、通信機能を持ったIoTデバイスが大量に出回ることになる。そのようなデバイスは種々のセンサーを有し、センサーのようなIoTデバイスを動作させるためには電源が必要である。しかし、デバイスの数が膨大になると、配線やメンテナンスの時間およびコストの面で電源確保が困難となる。そのため、IoTの実現にはIoTデバイスに適した電力供給技術が求められる。 When IoT permeates society, a large number of IoT devices with communication functions will be on the market. Such devices have various sensors and require a power source to operate IoT devices such as sensors. However, when the number of devices becomes enormous, it becomes difficult to secure a power source in terms of wiring and maintenance time and cost. Therefore, in order to realize IoT, a power supply technology suitable for IoT devices is required.

こうした背景に基づくと、我々の身の回りのどこにでもある微小エネルギーを電力に変換して活用する技術「エネルギーハーベスティング」が重要である。エネルギー源の1つである振動は、自動車、鉄道、機械、または人等が動く度に必ず発生するため、発生箇所が多くあり、気象、天候に左右されないエネルギー源である。そのため、これら移動体の動きと連動したアプリケーションの電源供給を振動発電でまかなうシステムの構築が、IoTの実現の糸口になり得る。 Based on this background, "energy harvesting," a technology that converts minute energy that is everywhere around us into electric power and utilizes it, is important. Vibration, which is one of the energy sources, is generated every time an automobile, a railroad, a machine, a person, or the like moves. Therefore, there are many places where vibration is generated, and it is an energy source that is not affected by weather or weather. Therefore, the construction of a system that supplies power to applications linked to the movement of these moving objects by vibration power generation can be a clue to the realization of IoT.

振動発電の発電方式は、磁歪式、圧電式、静電誘導式、および電磁誘導式の4種に分類される。磁歪式は、応力を加えることで変化する磁歪材料内部の磁束密度を、巻き付けたコイルを通じて電気に変換する方式であり、他の方式よりも内部抵抗が小さく、発電量が大きい。また、磁歪式は、磁歪材料として金属合金を使用するため耐久性に優れているという特徴を有する。従って、磁歪式は、耐久性の向上が可能な方式として期待される。 The power generation method of vibration power generation is classified into four types: magnetostrictive type, piezoelectric type, electrostatic induction type, and electromagnetic induction type. The magnetostrictive method is a method of converting the magnetic flux density inside the magnetostrictive material, which changes by applying stress, into electricity through a wound coil, and has a smaller internal resistance and a larger amount of power generation than other methods. Further, the magnetostrictive type has a feature of being excellent in durability because a metal alloy is used as the magnetostrictive material. Therefore, the magnetostrictive type is expected as a method capable of improving durability.

磁歪素子は、例えば、FeGa単結晶合金から単結晶の結晶方位<100>を揃えた磁歪材料を得、これを放電加工することによって切り出して製造される。そのような磁歪材料を製造するには、溶融状態のFeGa合金を、一定の速度で昇降装置によって管状炉内から管状炉外に引き出して溶融合金を下部から上部に向け一方向に凝固させる。このように凝固させることによって結晶方位<100>の方向に結晶成長させて磁歪材料を得ることができる。その後、凝固した塊を、放電加工により単結晶の結晶方位<100>に揃えて切り出して個々の磁歪素子を得る(例えば、下記の特許文献1参照)。 The magnetostrictive element is manufactured, for example, by obtaining a magnetostrictive material having a single crystal crystal orientation <100> from a FeGa single crystal alloy and cutting it out by electric discharge machining. In order to produce such a magnetic strain material, the melted FeGa alloy is pulled out from the inside of the tube furnace to the outside of the tube furnace by an elevating device at a constant speed, and the molten alloy is solidified in one direction from the lower part to the upper part. By solidifying in this way, the magnetostrictive material can be obtained by growing crystals in the direction of the crystal orientation <100>. Then, the solidified mass is cut out by electric discharge machining so as to align with the crystal orientation <100> of the single crystal to obtain individual magnetostrictive elements (see, for example, Patent Document 1 below).

上述のように製造される磁歪素子を用いる場合、磁歪式振動発電デバイスに使用する直方体に切り出した時点で、反磁界の影響を受けて磁歪素子の磁気モーメントが長手方向に揃う傾向にある。磁歪は、磁場印加方向に対して90°の磁区が回転することにより起こるため、磁歪素子を結晶方位<100>に切り出した時、直方体の長手方向に磁気モーメントが既に揃っている磁歪素子では、長手方向に磁場を印加した際、発電に寄与する、磁歪を伴う磁束密度変化がほとんど生じない。 When the magnetostrictive element manufactured as described above is used, the magnetic moments of the magnetostrictive element tend to be aligned in the longitudinal direction under the influence of the demagnetic field when the magnetostrictive element is cut into a rectangular parallelepiped used for the magnetostrictive vibration power generation device. Magnetostriction is caused by the rotation of the magnetic flux 90 ° with respect to the magnetic field application direction. Therefore, when the magnetostrictive element is cut out in the crystal orientation <100>, the magnetostrictive element in which the magnetic moments are already aligned in the longitudinal direction of the rectangular body is used. When a magnetic field is applied in the longitudinal direction, there is almost no change in magnetic flux density accompanied by magnetostriction, which contributes to power generation.

また、既知の磁歪素子の場合、磁気飽和に必要な磁場が大きく、一般的に必要とされる磁場(0.001T〜0.05T)での発電が十分に行えず、磁歪式振動発電デバイスの発電特性が低下する。 Further, in the case of a known magnetostrictive element, the magnetic field required for magnetic saturation is large, and it is not possible to sufficiently generate power with a generally required magnetic field (0.001T to 0.05T). Power generation characteristics deteriorate.

国際公開第2016/121132号公報International Publication No. 2016/12132

上述のような既知の磁歪素子に鑑み、本発明は、比較的低い磁場を印加する場合であっても、磁歪を伴う磁束密度変化が向上したFe−Ga系の磁歪素子およびその製造方法を提供する。 In view of the known magnetostrictive elements as described above, the present invention provides an Fe-Ga-based magnetostrictive element in which the change in magnetic flux density accompanied by magnetostriction is improved even when a relatively low magnetic field is applied, and a method for manufacturing the same. To do.

上記課題について鋭意検討を重ねた結果、本発明者らは、新たな磁歪素子およびその製造方法を想到するに到った。 As a result of diligent studies on the above problems, the present inventors have come up with a new magnetostrictive element and a method for manufacturing the same.

第1の要旨において、本発明は、(寸法に関して)厚さが幅よりも小さい直方体形状のFe−Ga系合金の磁歪素子を提供し、
主表面における磁区は10μm〜200μmの磁区幅を有し、
主表面の幅方向と磁気モーメントの方向との角度差が10°以内の磁区の面積が主表面の面積70%〜100%、好ましくは75%〜95%、より好ましくは80%〜90%であること
を特徴とする。
In the first gist, the present invention provides a rectangular parallelepiped shape Fe-Ga based magnetostrictive element (in terms of dimensions) whose thickness is smaller than its width.
The magnetic domain on the main surface has a magnetic domain width of 10 μm to 200 μm.
The area of the magnetic domain in which the angle difference between the width direction of the main surface and the direction of the magnetic moment is within 10 ° is 70% to 100%, preferably 75% to 95%, more preferably 80% to 90% of the area of the main surface. It is characterized by being.

尚、本発明において、「主表面」は直方体を構成する面のうち、最大の面積を有する面を意味する。磁歪素子を実用に供する観点から、磁歪素子の主表面のアスペクト比(主表面の長さに対する幅の比、即ち、主表面の幅:主表面の長さ)は、具体的には1:1.1〜1:8であるのが好ましく、1:1.5〜1:6であるのがより好ましく、例えば1:2〜1:4であってよい。 In the present invention, the "main surface" means the surface having the largest area among the surfaces constituting the rectangular parallelepiped. From the viewpoint of putting the magnetostrictive element into practical use, the aspect ratio of the main surface of the magnetostrictive element (the ratio of the width to the length of the main surface, that is, the width of the main surface: the length of the main surface) is specifically 1: 1. It is preferably 1 to 1: 8, more preferably 1: 1.5 to 1: 6, and may be, for example, 1: 2 to 1: 4.

尚、長さは直方体の主表面の最も長い寸法である。従って、直方体の寸法に関して、厚さ<幅<長さとなる。尚、後述するように、本発明の磁歪素子は、Fe−Ga系単結晶合金塊からその結晶方位<100>と平行になるように磁歪材料を切り出し、これを所定の形態に加工して後述のように加熱処理することによって製造できる。従って、磁歪素子の直方体の長さ方向、幅方向および厚さ方向は単結晶の結晶面の結晶方位<100>に対応する。 The length is the longest dimension of the main surface of a rectangular parallelepiped. Therefore, with respect to the dimensions of the rectangular parallelepiped, thickness <width <length. As will be described later, in the magnetostrictive element of the present invention, a magnetostrictive material is cut out from an Fe—Ga-based single crystal alloy block so as to be parallel to the crystal orientation <100>, and the magnetostrictive material is processed into a predetermined form to be described later. It can be manufactured by heat treatment as in. Therefore, the length direction, the width direction, and the thickness direction of the rectangular body of the magnetostrictive element correspond to the crystal orientation <100> of the crystal plane of the single crystal.

本発明の磁歪素子は、主表面の長さ方向との角度差が10°以内の方向の磁場印加に対して、磁区が飽和する磁場が0.001T〜0.05T、好ましくは0.005T〜0.04Tである。即ち、本発明の磁歪素子は、このように比較的低い磁場で十分に大きい磁歪を伴う磁束密度変化を示すことができる。 In the magnetostrictive element of the present invention, the magnetic field at which the magnetic domain is saturated is 0.001T to 0.05T, preferably 0.005T or more, with respect to the application of a magnetic field in a direction in which the angle difference from the length direction of the main surface is within 10 °. It is 0.04T. That is, the magnetostrictive element of the present invention can exhibit a change in magnetic flux density accompanied by a sufficiently large magnetostriction in such a relatively low magnetic field.

本発明は、第2の要旨において、磁歪素子の製造方法を提供し、この方法は、
(1)Fe−Ga系合金の単結晶を磁歪材料として得る工程、
(2)得られる磁歪材料から、厚さが主表面の幅よりも小さい直方体形状、好ましくは板状の直方体形状を有し、主表面の長さの方向が単結晶の結晶方位<100>と平行である磁歪材料を切り出す工程、
(3)切り出した磁歪材料を磁歪素子としての所定の形状に加工する工程、ならびに
(4)所定の形状を有する磁歪材料を、幅方向に磁場を印加した状態で所定温度にて加熱処理して、主表面における磁区の磁気モーメントの向きを幅方向に揃える工程
磁歪素子を得る工程
を含んで成ることを特徴とする。
The present invention provides, in the second gist, a method of manufacturing a magnetostrictive element, which method is:
(1) A step of obtaining a single crystal of an Fe-Ga alloy as a magnetostrictive material.
(2) From the obtained magnetic strain material, it has a rectangular parallelepiped shape whose thickness is smaller than the width of the main surface, preferably a plate-like rectangular parallelepiped shape, and the direction of the length of the main surface is the crystal orientation <100> of a single crystal. The process of cutting out parallel magnetic strain materials,
(3) The process of processing the cut out magnetostrictive material into a predetermined shape as a magnetostrictive element, and (4) the magnetostrictive material having a predetermined shape is heat-treated at a predetermined temperature in a state where a magnetic field is applied in the width direction. , A process of aligning the directions of magnetic moments of magnetic domains on the main surface in the width direction.

本発明の製造方法によって得られる磁歪素子は、本発明の第1の要旨の磁歪素子の特徴を有する。即ち、得られる磁歪素子は、主表面における磁区構造は10μm〜200μmの磁区幅を有し、主表面の幅方向と磁気モーメントの方向との角度差が10°以内の磁区の面積は主表面の面積70〜100%である。 The magnetostrictive element obtained by the manufacturing method of the present invention has the characteristics of the magnetostrictive element of the first gist of the present invention. That is, in the obtained magnetostrictive element, the magnetic domain structure on the main surface has a magnetic domain width of 10 μm to 200 μm, and the area of the magnetic domain in which the angular difference between the width direction of the main surface and the direction of the magnetic moment is within 10 ° is the area of the main surface. The area is 70 to 100%.

本発明の磁歪素子は、主表面の長さ方向に磁場を印加した時に、誘導磁気異方性によって低磁場で十分に大きい磁歪を伴う磁束密度変化を示すことができる。尚、誘導磁気異方性とは、例えば磁場中で熱処理することによって元の磁気モーメントの向きを強制的に他方向へ誘導して磁気モーメントの向きを均一に揃えた時の異方性のことである。特に、主表面の幅方向の寸法と長さ方向の寸法の比であるアスペクト比が1:2〜1:4の場合、反磁界の影響で長さ方向に元々磁気モーメントが揃うが、磁場中熱処理によって幅方向に磁気モーメントの方向を回転させても、反磁界は常に長さ方向に影響を及ぼすため、通常、幅方向の磁気モーメントはより低磁場で長さ方向に揃い易くなる。 The magnetostrictive element of the present invention can exhibit a change in magnetic flux density accompanied by a sufficiently large magnetostriction at a low magnetic field due to induced magnetic anisotropy when a magnetic field is applied in the length direction of the main surface. The induced magnetic anisotropy is anisotropy when, for example, heat treatment is performed in a magnetic field to forcibly induce the direction of the original magnetic moment in another direction so that the directions of the magnetic moments are uniformly aligned. Is. In particular, when the aspect ratio, which is the ratio of the width direction dimension to the length direction dimension of the main surface, is 1: 2 to 1: 4, the magnetic moments are originally aligned in the length direction due to the influence of the demagnetic field, but in the magnetic field. Even if the direction of the magnetic moment is rotated in the width direction by the heat treatment, the demagnetic field always affects the length direction, so that the magnetic moment in the width direction is usually more likely to be aligned in the length direction at a lower magnetic field.

更に、本発明の磁歪素子の製造方法よれば、低磁場で十分に大きい磁歪を伴う磁束密度変化を示し、磁歪式振動発電デバイスの発電量を向上させることができる磁歪素子を得ることができる。 Further, according to the method for manufacturing a magnetostrictive element of the present invention, it is possible to obtain a magnetostrictive element that exhibits a change in magnetic flux density accompanied by a sufficiently large magnetostriction in a low magnetic field and can improve the amount of power generated by the magnetostrictive vibration power generation device.

図1(a)は、本発明の1つの態様の板状の直方体状の磁歪素子を、その向きを結晶方位<100>に対応させた配置状態で斜視図にて模式的に示し、図1(b)は、主表面の領域Pの磁区構造を模式的に示す。FIG. 1A schematically shows a plate-shaped rectangular parallelepiped magnetostrictive element according to one aspect of the present invention in a perspective view in an arrangement state in which the orientation corresponds to the crystal orientation <100>. (B) schematically shows the magnetic domain structure of the region P on the main surface. 図2は、本発明の1つの態様の板状の非直方体状の磁歪素子を、その向きを結晶方位<100>に対応させた配置状態で斜視図にて模式的に示す。FIG. 2 schematically shows a plate-shaped non-rectangular magnetostrictive element according to one aspect of the present invention in a perspective view in an arrangement state in which the orientation corresponds to the crystal orientation <100>. 図3は、本発明の磁歪素子の製造方法の工程をフローチャートにて示す。FIG. 3 is a flowchart showing a process of the method for manufacturing a magnetostrictive element of the present invention. 図4は、磁歪素子の評価をするに際して、磁歪素子の長さ方向と磁歪素子に印加する磁場の方向Hとの間の角度θが0°〜10°である状態を模式的に示す。FIG. 4 schematically shows a state in which the angle θ between the length direction of the magnetostrictive element and the direction H of the magnetic field applied to the magnetostrictive element is 0 ° to 10 ° when evaluating the magnetostrictive element. 図5は、実施例および比較例の条件および結果を示す表1である。FIG. 5 is Table 1 showing the conditions and results of Examples and Comparative Examples.

次に、添付図面を参照して、また、更に実施例を説明して、本発明を実施するための形態を詳細に説明する。尚、発明はそのような形態に限定されるものではない。 Next, an embodiment for carrying out the present invention will be described in detail with reference to the accompanying drawings and further explaining examples. The invention is not limited to such a form.

本発明の磁歪素子を構成する磁歪材料は、Fe−Ga系合金、好ましくは下記式(1)または下記式(2)で表されるFe−Ga系合金である:
・Fe(100−α1)Gaα・・・(1)
(式(1)中、α1はGa含有率(at%)であり、かつ14≦α1≦19を満たす)
・Fe(100−α2−β)Gaα2β・・・(2)
(式(2)中、XはSm、Eu、Tb、Dy、Cu、Ce、GdおよびCからなる群から選択される1以上の元素であり、α2はGa含有率(at%)であり、βはX含有率(at%)であり、5≦α2≦19かつ0.05≦β≦4を満たす)。
The magnetostrictive material constituting the magnetostrictive element of the present invention is a Fe-Ga based alloy, preferably a Fe-Ga based alloy represented by the following formula (1) or the following formula (2):
・ Fe (100-α1) Ga α・ ・ ・ (1)
(In the formula (1), α1 is the Ga content (at%) and satisfies 14 ≦ α1 ≦ 19.)
・ Fe (100-α2-β) Ga α2 X β・ ・ ・ (2)
(In the formula (2), X is one or more elements selected from the group consisting of Sm, Eu, Tb, Dy, Cu, Ce, Gd and C, and α2 is the Ga content (at%). β is the X content (at%) and satisfies 5 ≦ α2 ≦ 19 and 0.05 ≦ β ≦ 4).

式(1)の磁歪材料(単結晶合金)について、GaをFeに固溶させることで優れた磁歪を伴う磁束密度変化を示す。また、式(2)の磁歪材料(単結晶合金)について、式(1)のGaの一部を他の第3元素、即ち、Sm、Eu、Tb、Dy、Cu、Ce、GdおよびCからなる群から選択される1以上の元素、特にかかる群から選択される少なくとも1以上の元素で置き換えることで、より優れた磁歪を伴う磁束密度変化を示す。 Regarding the magnetostrictive material (single crystal alloy) of the formula (1), the change in magnetic flux density accompanied by excellent magnetostriction is shown by dissolving Ga in Fe. Further, regarding the magnetostrictive material (single crystal alloy) of the formula (2), a part of Ga of the formula (1) is derived from another third element, that is, Sm, Eu, Tb, Dy, Cu, Ce, Gd and C. By substituting one or more elements selected from the group, particularly at least one element selected from the group, a change in magnetic flux density with better magnetostriction is exhibited.

但し、Feに対するFe以外の元素の固溶量は、結晶の構造を変えない量において含有させてよい。具体的には、Feに対する固溶限と考えられる30at%(固溶後の元素量の全体基準)に対して十分に少ない量である20at%以下となるようにするのが好ましく、15at%以下とするのがより好ましい。 However, the solid solution amount of the element other than Fe with respect to Fe may be contained in an amount that does not change the crystal structure. Specifically, it is preferably 20 at% or less, which is a sufficiently small amount with respect to 30 at% (the overall standard of the amount of elements after solid solution), which is considered to be the solid solution limit for Fe, and 15 at% or less. Is more preferable.

好ましい態様では、上記式(2)において、他の第3元素であるXは、Ce、Sm、CuおよびCからなる群から選択される1以上の元素であってよい。なかでもCe、Smは、四極子モーメントによって磁歪を伴う磁束密度変化が向上すると考えられるので特に好ましい。 In a preferred embodiment, in the above formula (2), the other third element, X, may be one or more elements selected from the group consisting of Ce, Sm, Cu and C. Among them, Ce and Sm are particularly preferable because it is considered that the change in magnetic flux density accompanied by magnetostriction is improved by the quadrupole moment.

本開示において、式(1)または式(2)の磁歪材料(単結晶合金)における各元素の含有率(濃度ともいう)とは、磁歪材料(単結晶合金)全体の原子数に対する各元素の原子数の割合であり、at%(原子パーセント)の単位を用いて表される値をいう。 In the present disclosure, the content (also referred to as concentration) of each element in the magnetic strain material (single crystal alloy) of the formula (1) or the formula (2) is the content of each element with respect to the total number of atoms of the magnetic strain material (single crystal alloy). It is the ratio of the number of atoms, and is a value expressed using the unit of at% (atomic percentage).

具体的には、磁歪材料(単結晶合金)を蛍光X線分析(XRF)で分析することにより、元素の含有率を測定した値をいう。詳細には、磁歪素子の主表面のXRFによるスポット分析を実施することによって測定される値をいう。 Specifically, it refers to a value obtained by measuring the element content by analyzing a magnetic strain material (single crystal alloy) by fluorescent X-ray analysis (XRF). Specifically, it refers to a value measured by performing spot analysis by XRF on the main surface of the magnetostrictive element.

より詳細には、磁歪素子の主表面の任意の点をXRFにより分析した含有率(at%)をいう。尚、本実施形態における磁歪素子を構成する磁歪材料(単結晶合金)は、列挙した元素で実質的に構成されているが、不可避的に混入する微量元素(例えば、酸素0.005at%未満)を含み得る。 More specifically, it refers to the content rate (at%) obtained by analyzing an arbitrary point on the main surface of the magnetostrictive element by XRF. The magnetostrictive material (single crystal alloy) constituting the magnetostrictive element in the present embodiment is substantially composed of the listed elements, but is inevitably mixed with trace elements (for example, less than 0.005 at% oxygen). May include.

本発明の1つの実施形態における磁歪素子を図1に模式的に示す。図1(a)は、の磁歪素子10の概略斜視図であり、図1(b)は、磁歪素子10の主表面における領域Pの拡大模式図である。図2は、本発明の実施の形態における磁歪素子10の概略傾斜図と座標を組み合わせた図である。 The magnetostrictive element according to one embodiment of the present invention is schematically shown in FIG. FIG. 1A is a schematic perspective view of the magnetostrictive element 10, and FIG. 1B is an enlarged schematic view of a region P on the main surface of the magnetostrictive element 10. FIG. 2 is a diagram in which the schematic inclination diagram and the coordinates of the magnetostrictive element 10 according to the embodiment of the present invention are combined.

本発明の実施の形態における磁歪素子10は、上述の単結晶合金の磁歪材料からなり、
例えば図1(a)に示すように板状の直方体の形状を有する。本明細書において、用語「板状の直方体」は、3つの寸法、即ち、長さ、幅および厚さを有し、直方体を構成する互いに対向し、互いに等しい面積を有する3対の長方形表面のうち、最も広い面積を占める対を構成し、長さと幅で規定される面を「主表面」と呼ぶ。また、磁歪素子が、板状の場合、長さおよび幅の寸法は、厚さの寸法より相当大きく、主表面は、板のいわゆる表面に相当する。
The magnetostrictive element 10 according to the embodiment of the present invention is made of the above-mentioned single crystal alloy magnetostrictive material.
For example, as shown in FIG. 1A, it has a plate-like rectangular parallelepiped shape. As used herein, the term "plate-like rectangular parallelepiped" refers to three pairs of rectangular parallelepipeds having three dimensions: length, width and thickness, facing each other and having an equal area to each other. Of these, the surface that constitutes the pair that occupies the largest area and is defined by the length and width is called the "main surface". When the magnetostrictive element has a plate shape, the length and width dimensions are considerably larger than the thickness dimension, and the main surface corresponds to the so-called surface of the plate.

本明細書において、主表面の寸法のうち最も長い寸法である長さに沿った方向を「長さ方向」または「長手方向」と呼び、該長さ方向に直交するより短い寸法である幅に沿った方向を「幅方向」または「短手方向」と呼び、また、最も短い寸法である厚さに沿った方向を「厚さ方向」と呼ぶ。 In the present specification, the direction along the length, which is the longest dimension of the main surface, is referred to as the "longitudinal direction" or the "longitudinal direction", and the width is shorter than the dimension orthogonal to the length direction. The direction along the width is called the "width direction" or the "short direction", and the direction along the thickness, which is the shortest dimension, is called the "thickness direction".

「板状」なる用語は、主表面間の距離(板の厚さ(図1のt)に相当する)が、主表面の幅方向の寸法に比べて比較的小さい、好ましくは相当小さい形状、即ち、薄い形状(具体的には、厚さ方向の寸法は幅方向寸法の1/20〜1/4の寸法、例えば1/15〜1/5の寸法、特に1/10程度)を意味する。従って、本発明の磁歪素子において、その寸法の関係は、厚さ<幅<長さである。 The term "plate-like" refers to a shape in which the distance between the main surfaces (corresponding to the thickness of the plate (t in FIG. 1)) is relatively small compared to the widthwise dimensions of the main surface, preferably considerably small. That is, it means a thin shape (specifically, the dimension in the thickness direction is 1/20 to 1/4 of the width direction dimension, for example, 1/15 to 1/5 dimension, particularly about 1/10). .. Therefore, in the magnetostrictive element of the present invention, the dimensional relationship is thickness <width <length.

尚、本発明の磁歪素子において、図示する磁歪素子10の主表面5および6(直方体を構成する、互いに対向して互いに等しい面積を有する3対の面のうち、最も広い面積を占める1対の面)の間に位置する平行な仮想的な任意の面も主表面と同様の特徴を有してよく、そのような特徴を有するのが好ましい。通常、板状の磁歪素子はそのような特徴を有する。 In the magnetostrictive element of the present invention, the main surfaces 5 and 6 of the illustrated magnetostrictive element 10 (a pair of faces that form a rectangular parallelepiped and that face each other and have the same area as each other and occupy the widest area. Any parallel virtual surface located between the surfaces) may have the same characteristics as the main surface, and it is preferable to have such characteristics. Usually, a plate-shaped magnetostrictive element has such a feature.

図1に示す磁歪素子10は、上述の単結晶合金の磁歪材料からなり、説明の便宜上、磁歪素子10の主表面5の頂点Aを原点として、各々が互いに直交する幅方向のx軸、長さ方向のy軸、厚さ方向のz軸の所定の箇所に頂点をそれぞれ有するような板状の直方体形状である。 The magnetostrictive element 10 shown in FIG. 1 is made of the above-mentioned single crystal alloy magnetostrictive material, and for convenience of explanation, the x-axis and length in the width direction are orthogonal to each other with the origin A of the main surface 5 of the magnetostrictive element 10 as the origin. It is a plate-shaped rectangular parallelepiped shape having vertices at predetermined positions on the y-axis in the orthogonal direction and the z-axis in the thickness direction.

本発明の磁歪素子において、その主表面は通常複数の磁区を含み、その磁区は10μm〜200μmの磁区幅を有する。尚、「磁区」は、原子の磁気モーメントが同じ方向に並ぶ領域を意味する。磁区の「幅」は、その磁区を区画している互いに対向する磁壁間の最小距離を意味する。 In the magnetostrictive element of the present invention, the main surface thereof usually contains a plurality of magnetic domains, and the magnetic domains have a magnetic domain width of 10 μm to 200 μm. The "magnetic domain" means a region where the magnetic moments of atoms are arranged in the same direction. The "width" of a magnetic domain means the minimum distance between the opposing domain walls that partition the magnetic domain.

主表面において磁区がどのような磁区幅で存在するのか、また、各磁区において磁気モーメントがどの方向を向いているのか(以下、本明細書において「磁区構造」とも言う)は、例えば、Kerr効果顕微鏡を用いた方法により、主表面を観察することにより調べられる。Kerr効果顕微鏡は特定の材料に対して、直線偏光を入射すると楕円偏光となるKerr効果を利用した顕微鏡であり、観察範囲は光学顕微鏡より小さく、表面の磁区構造のみを抽出して観察をすることができる。 The width of the magnetic domain on the main surface and the direction in which the magnetic moment is oriented in each magnetic domain (hereinafter, also referred to as “magnetic domain structure” in the present specification) are determined by, for example, the Kerr effect. It is examined by observing the main surface by a method using a microscope. The Kerr effect microscope is a microscope that uses the Kerr effect, which becomes elliptically polarized light when linearly polarized light is applied to a specific material. The observation range is smaller than that of an optical microscope, and only the magnetic domain structure on the surface is extracted for observation. Can be done.

本発明の磁歪素子は、図示するように板状であるのが好ましく、厚さtが他の寸法より相当小さいため、主表面5および6ならびにこれらの間の平行な面において磁区構造が実質的に相違しないと考えてよいので、上述の磁区構造は磁歪素子の対向する2つの主表面5および6の少なくとも一方が満足していればよい。いずれか一方の主表面を観察して磁気モーメントの方向を観察することで十分である。 The magnetostrictive element of the present invention preferably has a plate shape as shown in the drawing, and since the thickness t is considerably smaller than other dimensions, the magnetostrictive structure is substantially formed on the main surfaces 5 and 6 and the parallel plane between them. Therefore, it is sufficient that at least one of the two opposing main surfaces 5 and 6 of the magnetostrictive element is satisfied in the above-mentioned magnetic domain structure. It is sufficient to observe the direction of the magnetic moment by observing one of the main surfaces.

尚、本発明の磁歪素子の製造方法によって製造される磁歪素子については、主表面の一部の領域(例えば図1(a)の領域P)のみを観察して磁気モーメントの方向が幅方向である領域(即ち、幅方向に揃っている領域)の面積の割合を求めてよいことが分かっている。そのような領域Pの選択に関しては、磁歪素子の主表面縁部を含まない限り、いずれの領域のいずれのサイズであってもよい。縁部では、場合により磁区が欠損している場合があるためである。従って、主表面の中央付近の領域であるのが好ましい。尚、領域Pのサイズに関しても、欠損していない限り、いずれのサイズでもよいが、例えば500μm×500μm、400μm×300μm、300μm×300μm等であってよい。 Regarding the magnetostrictive element manufactured by the method for manufacturing the magnetostrictive element of the present invention, the direction of the magnetic moment is the width direction by observing only a part of the main surface (for example, the region P in FIG. 1A). It is known that the ratio of the area of a certain region (that is, the region aligned in the width direction) may be obtained. Regarding the selection of such a region P, any size of any region may be used as long as the main surface edge portion of the magnetostrictive element is not included. This is because the magnetic domain may be missing at the edge in some cases. Therefore, it is preferably a region near the center of the main surface. The size of the region P may be any size as long as it is not defective, and may be, for example, 500 μm × 500 μm, 400 μm × 300 μm, 300 μm × 300 μm, or the like.

例えば、主表面のある領域を観察対象とし、観察対象の領域内における各磁区について、主表面の幅方向(本実施形態ではx軸方向)と、磁区の磁気モーメントの方向とがなる角度(即ち、角度差)を調べ、当該角度差が10°以下である磁区の合計の面積を求め、観察対象の領域の面積に対する、角度差が10°以下である磁区の合計の面積の割合を算出できる。 For example, a certain region of the main surface is the observation target, and for each magnetic domain in the observation target region, an angle (that is, the direction of the width direction of the main surface (x-axis direction in this embodiment) and the direction of the magnetic moment of the magnetic domain) is formed. , Angle difference), the total area of the magnetic domains with the angle difference of 10 ° or less can be obtained, and the ratio of the total area of the magnetic domains with the angle difference of 10 ° or less to the area of the observation target area can be calculated. ..

尚、本発明において「主表面の幅方向と磁区の磁気モーメントの方向との角度差」(単に「角度差」とも呼ぶ)は、2つの方向が為す角度の差の絶対値を意味する(従って、角度差の最小値は0°である)。 In the present invention, the "angle difference between the width direction of the main surface and the direction of the magnetic moment of the magnetic domain" (also simply referred to as "angle difference") means the absolute value of the difference between the angles formed by the two directions (hence,). , The minimum value of the angle difference is 0 °).

「角度差が10°以下である」とは、一方の方向(例えば主表面の幅方向)を基準(0°)とし、この基準から反時計回りに、もう一方の方向(例えば磁区の磁気モーメントの方向)が形成する角度を測定した場合、かかる測定角度が±10°以内であることを意味する。 "The angle difference is 10 ° or less" is based on one direction (for example, the width direction of the main surface) as a reference (0 °), counterclockwise from this reference, and the other direction (for example, the magnetic moment of the magnetic domain). When the angle formed by (direction) is measured, it means that the measurement angle is within ± 10 °.

図1(b)は、代表的に、主表面5における領域Pを拡大して模式的に示すものであり、磁区における磁気モーメントの方向を矢印にして示し、磁区の境界である磁壁を実線で示している。図1(b)の模式的な例において、主表面5の領域Pは、複数の(具体的には6の)磁区で占められている。 FIG. 1B is typically an enlarged schematic view of the region P on the main surface 5, where the direction of the magnetic moment in the magnetic domain is indicated by an arrow, and the domain wall, which is the boundary of the magnetic domain, is shown by a solid line. Shown. In the schematic example of FIG. 1 (b), the region P of the main surface 5 is occupied by a plurality of (specifically, 6) magnetic domains.

主表面の幅方向として図示するx軸方向から反時計回りを基準に考えて、各磁区の磁気モーメントの方向の角度を調べて判断する。磁区2では、磁気モーメントの方向が180°であり、幅方向の角度が0°であるので、これらの方向が為す角度としての角度差は0°となる。磁区3では磁気モーメントの方向が0°であり、幅方向の角度が0°であるので、角度差が0°となる。また、磁区4は、磁気モーメントの方向が−90°であり、幅方向の角度が0°であるので、これらの方向が為す角度としての角度差は90°となる。従って、図1(b)に示す例において、主表面の観察領域Pの面積に対する、角度差が10°以下に該当する磁区2および3の面積の割合は例えば約90%となる。 Judgment is made by examining the angle in the direction of the magnetic moment of each magnetic domain, considering the counterclockwise direction from the x-axis direction shown as the width direction of the main surface as a reference. In the magnetic domain 2, the direction of the magnetic moment is 180 ° and the angle in the width direction is 0 °, so that the angle difference as the angle formed by these directions is 0 °. In the magnetic domain 3, the direction of the magnetic moment is 0 ° and the angle in the width direction is 0 °, so that the angle difference is 0 °. Further, in the magnetic domain 4, the direction of the magnetic moment is −90 ° and the angle in the width direction is 0 °, so that the angle difference as the angle formed by these directions is 90 °. Therefore, in the example shown in FIG. 1B, the ratio of the areas of the magnetic domains 2 and 3 corresponding to the angle difference of 10 ° or less to the area of the observation region P on the main surface is, for example, about 90%.

上述のようなKerr効果顕微鏡による観察に基づき、本発明の磁歪素子10において、主表面の幅方向と磁区の磁気モーメントの方向との角度差が±10°以下である磁区が主表面の面積70〜100%を占め、好ましくは80〜98%を占め、特に85%〜95%またはそれ以上を占める。また、磁歪素子の主表面を構成する磁区は、10μm〜200μmの磁区幅を有する。 Based on the observation with the Kerr effect microscope as described above, in the magnetostrictive element 10 of the present invention, the magnetic domain has an area 70 of the main surface in which the angular difference between the width direction of the main surface and the direction of the magnetic moment of the magnetic domain is ± 10 ° or less. It occupies ~ 100%, preferably 80-98%, especially 85% -95% or more. The magnetic domain constituting the main surface of the magnetostrictive element has a magnetic domain width of 10 μm to 200 μm.

本発明の磁歪素子の形状は、上述のように直方体形状であるのが特に好ましいが、図示するような板状の直方体形状である必要は必ずしもない。直方体形状に代えて、磁歪素子は板状のいずれの適当な他の形状(即ち、非直方体形状)であってもよい。例えば、図2に模式的に示すように、本発明の磁歪素子は主表面の形状が長円形である板状の形態であってもよい。このような非直方体形状の磁歪素子10’においても、先に説明したアスペクト比の範囲の特徴が当て嵌まる。但し、このような非直方体形状の磁歪素子の場合のアスペクト比は、非直方体形状の磁歪素子を構成する単結晶合金の結晶方位をx軸、y軸およびz軸に対応させて算出する。 The shape of the magnetostrictive element of the present invention is particularly preferably a rectangular parallelepiped shape as described above, but it does not necessarily have to be a plate-shaped rectangular parallelepiped shape as shown in the figure. Instead of the rectangular parallelepiped shape, the magnetostrictive element may have any other suitable plate-like shape (ie, non-cuboidal shape). For example, as schematically shown in FIG. 2, the magnetostrictive element of the present invention may have a plate-like shape in which the shape of the main surface is oval. Even in such a non-rectangular shape magnetostrictive element 10', the characteristics of the aspect ratio range described above apply. However, the aspect ratio in the case of such a rectangular parallelepiped magnetostrictive element is calculated by associating the crystal orientation of the single crystal alloy constituting the non-cuboidal magnetostrictive element with the x-axis, y-axis, and z-axis.

詳しくは、磁歪素子10’を構成する単結晶の結晶方位<100>が図2に破線にて示すx軸、y軸およびz軸に対応するように磁歪素子を位置決めして、非直方体形状の磁歪素子10’の主表面のx軸方向の最長寸法(例えば図示するように長さa)を直方体形状の磁歪素子10の幅方向の寸法に対応させ、非直方体形状の磁歪素子10’の主表面のy軸方向の最長寸法(例えば図示するように長さb)を直方体形状の磁歪素子10の長さ方向の寸法mに対応させてアスペクト比を規定する。従って、非直方体形状の磁歪素子の場合、このような主表面のx軸方向の最長寸法aを幅とみなし、また、y軸方向の最長寸法bを長さとみなして、上述および後述の直方体形状の磁歪素子の説明を当て嵌めることができる。 Specifically, the magnetic strain element is positioned so that the crystal orientation <100> of the single crystal constituting the magnetic strain element 10'corresponds to the x-axis, y-axis, and z-axis shown by the broken lines in FIG. The longest dimension of the main surface of the magnetic strain element 10'in the x-axis direction (for example, the length a as shown) corresponds to the dimension in the width direction of the rectangular magnetic strain element 10 and is the main of the non-rectangular magnetic strain element 10'. The aspect ratio is defined by making the longest dimension of the surface in the y-axis direction (for example, the length b as shown) correspond to the dimension m in the length direction of the rectangular magnetic strain element 10. Therefore, in the case of a magnetostrictive element having a non-rectangular shape, the longest dimension a in the x-axis direction of such a main surface is regarded as a width, and the longest dimension b in the y-axis direction is regarded as a length. The description of the magnetostrictive element can be applied.

従って、非直方体形状の磁歪素子のアスペクト比(図2におけるa:b)は、直方体形状の磁歪素子10と同様に、1:1.1〜1:8であるのが好ましく、1:1.5〜1:6であるのがより好ましく、例えば1:2〜1:4であってよい。尚、非直方体形状の磁歪素子の主表面の他の形状は、アスペクト比の特徴を有する限り、いずれの適当な形状であってもよく、例えば多角形、半円形、半楕円形、およびこれらの種々の組み合わせの形状であってよい。 Therefore, the aspect ratio (a: b in FIG. 2) of the non-rectangular magnetostrictive element is preferably 1: 1.1 to 1: 8, similarly to the rectangular parallelepiped magnetostrictive element 10. It is more preferably 5 to 1: 6, and may be, for example, 1: 2 to 1: 4. The other shape of the main surface of the non-rectangular magnetostrictive element may be any suitable shape as long as it has the characteristics of the aspect ratio, for example, polygonal shape, semicircular shape, semi-elliptical shape, and these. It may have various combinations of shapes.

上述の本発明の磁歪素子は、本発明の磁歪素子の製造方法によって製造できる。図3に、本発明の磁歪素子の製造方法の例をフローチャートにて示す。本発明の磁歪素子の製造方法は以下の工程を含んで成る:
(1)Fe−Ga系合金の単結晶を磁歪材料として得る工程、
(2)得られる磁歪材料から、厚さが主表面の幅よりも小さい直方体形状、好ましくは板状の直方体形状であって、主表面の長さの方向が単結晶の結晶方位<100>と平行である磁歪材料を切り出す工程、
(3)切り出した磁歪材料を磁歪素子としての所定の形状に加工する工程、ならびに
(4)所定の形状を有する磁歪材料を、幅方向に磁場を印加した状態で所定温度(好ましくは400℃〜700℃)にて加熱処理する工程。
The magnetostrictive element of the present invention described above can be manufactured by the method for manufacturing a magnetostrictive element of the present invention. FIG. 3 shows an example of the method for manufacturing the magnetostrictive element of the present invention in a flowchart. The method for manufacturing a magnetostrictive element of the present invention comprises the following steps:
(1) A step of obtaining a single crystal of an Fe-Ga alloy as a magnetostrictive material.
(2) From the obtained magnetic strain material, a rectangular parallelepiped shape whose thickness is smaller than the width of the main surface, preferably a plate-like rectangular parallelepiped shape, and the direction of the length of the main surface is the crystal orientation <100> of a single crystal. The process of cutting out parallel magnetic strain materials,
(3) A step of processing the cut out magnetostrictive material into a predetermined shape as a magnetostrictive element, and (4) a magnetostrictive material having a predetermined shape at a predetermined temperature (preferably 400 ° C. or higher) in a state where a magnetic field is applied in the width direction. A step of heat treatment at 700 ° C.).

本発明の製造方法によって製造される磁歪素子の主表面における磁区は例えば10μm〜200μmの磁区幅を有する。尚、工程(4)における加熱処理によって、主表面における磁気モーメントの向きを幅方向に揃えることができる。本明細書において、「幅方向に揃える」とは、本発明の磁気素子の特徴、即ち、磁歪素子の主表面の幅方向と主表面の磁区における磁気モーメントの方向との角度差が10°以内の磁区の面積が主表面の面積の例えば70〜100%であることを意味する。 The magnetic domain on the main surface of the magnetostrictive element manufactured by the manufacturing method of the present invention has, for example, a magnetic domain width of 10 μm to 200 μm. By the heat treatment in the step (4), the directions of the magnetic moments on the main surface can be aligned in the width direction. In the present specification, "aligning in the width direction" means that the feature of the magnetic element of the present invention, that is, the angle difference between the width direction of the main surface of the magnetostrictive element and the direction of the magnetic moment in the magnetic domain of the main surface is within 10 °. It means that the area of the magnetic domain is, for example, 70 to 100% of the area of the main surface.

工程(1)において、例えば上述の式(1)または式(2)で表される単結晶合金を組成する所定量の元素を混合・加熱して溶融した後に冷却することによって円柱状の磁歪材料を得る。このような磁歪材料の製造には、いずれの既知の方法を用いてもよく、例えばチョクラルスキー法(CZ法)、ブリッジマン法または急冷凝固法等が挙げられる。CZ法により製造すると、大型の結晶において、化学組成および結晶方位を精度良く製造することができる。 In step (1), for example, a columnar magnetic strain material is formed by mixing, heating, melting, and then cooling a predetermined amount of elements constituting the single crystal alloy represented by the above formula (1) or formula (2). To get. Any known method may be used for producing such a magnetostrictive material, and examples thereof include a Czochralski method (CZ method), a Bridgman method, and a quick-cooling solidification method. When manufactured by the CZ method, the chemical composition and crystal orientation can be accurately manufactured in a large crystal.

工程(2)では、得られた円柱状の単結晶合金塊から結晶方位<100>と平行になるように直方体形状、好ましくは上述の板状の直方体の磁歪材料を切り出す。円柱状の単結晶合金では、円柱の端部に近いほど円柱の径方向の長さは短くなるが、直方体の主表面の長さが円柱状の単結晶合金の直胴部の長さに実質的に等しくなるように切り出すのが好ましく、板状に切り出すのがより好ましい。尚、単結晶合金の結晶方位<100>は、公知の方法によって決定され得るが、特に電子線後方散乱回折法(EBSD:Electron Backscatter Diffraction)により決定できる。 In the step (2), a rectangular parallelepiped shape, preferably the above-mentioned plate-shaped rectangular parallelepiped magnetostrictive material is cut out from the obtained columnar single crystal alloy block so as to be parallel to the crystal orientation <100>. In a cylindrical single crystal alloy, the length in the radial direction of the cylinder becomes shorter as it is closer to the end of the cylinder, but the length of the main surface of the rectangular parallelepiped is substantially the length of the straight body of the cylindrical single crystal alloy. It is preferable to cut out so as to be equal to each other, and it is more preferable to cut out in a plate shape. The crystal orientation <100> of the single crystal alloy can be determined by a known method, but in particular, it can be determined by an electron backscatter diffraction method (EBSD).

工程(3)では、工程(2)で切り出した磁歪材料を所定の形状に加工する。例えば、所定の長さおよび幅を有する直方体形状、好ましくは板状の直方体形状に加工する。尚、加工して得られる磁歪材料の形状および寸法は、工程(4)における加熱処理によっても実質的に変わらない。従って、磁歪素子に関して先に説明した事項が、工程(3)に当て嵌まる。従って、磁歪材料の所定の形状は、直方体形状、特に板状の直方体形状であるのが好ましいが、別の態様では、非直方体形状、例えば主表面が長方形ではないいずれかの適当な形状のものであってよく、特に板状のそのような形状であるのが好ましい。 In the step (3), the magnetostrictive material cut out in the step (2) is processed into a predetermined shape. For example, it is processed into a rectangular parallelepiped shape having a predetermined length and width, preferably a plate-shaped rectangular parallelepiped shape. The shape and dimensions of the magnetostrictive material obtained by processing are substantially unchanged by the heat treatment in the step (4). Therefore, the matters described above regarding the magnetostrictive element apply to the step (3). Therefore, the predetermined shape of the magnetostrictive material is preferably a rectangular parallelepiped shape, particularly a plate-like rectangular parallelepiped shape, but in another embodiment, a non-rectangular parallelepiped shape, for example, one having a suitable shape whose main surface is not rectangular. It may be, and particularly preferably has such a plate-like shape.

上述の製造方法では、工程(2)および工程(3)は独立した工程であるが、別の態様では、工程(1)において得られた単結晶合金塊から、所定の形状を有する磁歪材料を直接切り出してもよい。従って、工程(2)および工程(3)を一緒に実施してもよい。尚、工程(3)工程(2)における切り出しおよびに工程(3)おける加工は、いずれの適当な既知の方法で実施してよい。例えば、レーザー加工、ワイヤー放電加工等を用いることができる。 In the above-mentioned manufacturing method, the step (2) and the step (3) are independent steps, but in another embodiment, a magnetostrictive material having a predetermined shape is obtained from the single crystal alloy ingot obtained in the step (1). It may be cut out directly. Therefore, step (2) and step (3) may be carried out together. The cutting in the step (3) step (2) and the processing in the step (3) may be carried out by any suitable known method. For example, laser machining, wire electric discharge machining and the like can be used.

工程(4)において、磁場を印加した状態で加熱処理(「磁場中熱処理」とも呼ぶ)を実施することによって、上述のように所定形状の磁気材料の主表面の磁気モーメントの方向を幅方向に揃えることができる。この加熱処理は、磁歪素子の幅方向に磁場を印加した状態で磁歪素子を所定の温度の環境下に置くことによって実施する。尚、このような磁場中印加は、製造される磁歪素子の幅方向と磁場の印加方向とが為す角度が10°以下となるように実施するのが好ましい。 In step (4), by performing a heat treatment (also called "heat treatment in a magnetic field") in a state where a magnetic field is applied, the direction of the magnetic moment on the main surface of the magnetic material having a predetermined shape is set in the width direction as described above. Can be aligned. This heat treatment is carried out by placing the magnetostrictive element in an environment of a predetermined temperature in a state where a magnetic field is applied in the width direction of the magnetostrictive element. It is preferable that such application in a magnetic field is performed so that the angle formed by the width direction of the manufactured magnetostrictive element and the application direction of the magnetic field is 10 ° or less.

尚、磁気モーメントが幅方向に揃っているか否かは、公知の方法によって判断できる。例えば特にKerr効果顕微鏡によって判断でき、主表面において複数の磁区がどのように存在し、かつ、各磁区において磁気モーメントがどの方向を向いているのかを確認できる。 Whether or not the magnetic moments are aligned in the width direction can be determined by a known method. For example, it can be determined particularly by a Kerr effect microscope, and it is possible to confirm how a plurality of magnetic domains exist on the main surface and in which direction the magnetic moment is oriented in each magnetic domain.

この磁場中熱処理の条件(例えば印加磁場の強度、加熱温度、加熱開始から加熱終了を経て冷却までの温度プロファイル等)は、主表面の磁気モーメントの方向を幅方向に揃えることができる限り、特に限定されるものではない。例えば、不活性雰囲気(例えば窒素またはアルゴン雰囲気)または真空雰囲気中で磁歪材料を加熱する。磁場の印加方向を製造される磁歪素子の幅方向に整列させるに際して、好ましくは0.2T〜1Tの磁場、より好ましくは0.3T〜1Tの磁場、特に好ましくは0.5T〜1Tの磁場を印加する。 The conditions for heat treatment in a magnetic field (for example, the strength of the applied magnetic field, the heating temperature, the temperature profile from the start of heating to the end of heating to cooling, etc.) are particularly limited as long as the direction of the magnetic moment on the main surface can be aligned in the width direction. It is not limited. For example, the magnetostrictive material is heated in an inert atmosphere (eg, nitrogen or argon atmosphere) or a vacuum atmosphere. When aligning the application direction of the magnetic field with the width direction of the magnetostrictive element to be manufactured, a magnetic field of preferably 0.2T to 1T, more preferably a magnetic field of 0.3T to 1T, and particularly preferably a magnetic field of 0.5T to 1T is applied. Apply.

この時の加熱温度は、好ましくは400℃〜700℃、より好ましくは450℃〜650℃、特に好ましくは450℃〜600℃である。このような温度範囲であれば、Fe−Ga系合金は、その状態図上では状態が実質的に変わらず、加熱温度が400℃未満であるか、または700℃を越えると、磁性が変わって磁気モーメントの方向を十分に揃えることができない可能性がある。 The heating temperature at this time is preferably 400 ° C. to 700 ° C., more preferably 450 ° C. to 650 ° C., and particularly preferably 450 ° C. to 600 ° C. Within such a temperature range, the state of the Fe-Ga based alloy does not change substantially on the phase diagram, and the magnetism changes when the heating temperature is less than 400 ° C or exceeds 700 ° C. It may not be possible to align the directions of the magnetic moments sufficiently.

本発明の磁歪素子の製造方法によって製造される磁歪素子10の特性について、後述する実施例の結果を踏まえて更に説明する。 The characteristics of the magnetostrictive element 10 manufactured by the method for manufacturing a magnetostrictive element of the present invention will be further described based on the results of Examples described later.

Feの飽和磁束密度の理論限界値が2.2Tであること、また、後述の実施例で製造した本発明の磁歪素子(鉄の原子%が80〜83原子%)の場合、十分に大きい磁歪量L(例えば平均で約285ppm)を示し、この時、磁束密度変化ΔBが平均で約1.32Tであること、および別途実施した実験の結果に基づいてFe−Ga系の単結晶合金から製造される本発明の磁歪素子の飽和磁束密度変化の最大値は約2.0Tであると推察される。従って、本発明の磁歪素子の飽和磁束密度変化は1.1〜2(T)である。尚、磁束密度変化ΔBは、磁歪素子に引張応力を加えた場合の磁束密度Bと磁歪素子に圧縮応力を加えた場合の磁束密度Bの差の最大値である。 In the case where the theoretical limit value of the saturation magnetic flux density of Fe is 2.2T and the magnetostrictive element of the present invention manufactured in the examples described later (iron atomic% is 80 to 83 atomic%), the magnetostriction is sufficiently large. It shows a quantity L (for example, about 285 ppm on average), and at this time, it is manufactured from a Fe-Ga-based single crystal alloy based on the fact that the magnetostrictive density change ΔB is about 1.32 T on average and the result of a separately conducted experiment. It is estimated that the maximum value of the change in saturation magnetic flux density of the magnetostrictive element of the present invention is about 2.0 T. Therefore, the change in saturation magnetic flux density of the magnetostrictive element of the present invention is 1.1 to 2 (T). The magnetic flux density change ΔB is the maximum value of the difference between the magnetic flux density B when a tensile stress is applied to the magnetostrictive element and the magnetic flux density B when a compressive stress is applied to the magnetostrictive element.

本発明の磁歪素子の飽和磁束密度変化が1.32T、磁歪量が285ppmであること、および上述のように飽和磁束密度変化の最大値が上述のように約2Tと推察されることを考慮すると、本発明の磁歪素子の磁歪量の最大値は、これまでの種々の実験結果に基づいて、約450〜600ppmと推察される。また、本発明の磁歪素子の磁歪量の最小値は、別行った実験の結果に基づいて約150ppmである。従って、本発明の磁歪素子の磁歪量は、150ppm〜600ppmである。 Considering that the change in the magnetostrictive magnetic flux density of the magnetostrictive element of the present invention is 1.32T and the amount of magnetostriction is 285ppm, and that the maximum value of the change in the saturation magnetic flux density is estimated to be about 2T as described above. The maximum value of the magnetostrictive amount of the magnetostrictive element of the present invention is estimated to be about 450 to 600 ppm based on the results of various experiments so far. Further, the minimum value of the magnetostrictive amount of the magnetostrictive element of the present invention is about 150 ppm based on the result of another experiment. Therefore, the amount of magnetostriction of the magnetostrictive element of the present invention is 150 ppm to 600 ppm.

本発明の磁歪素子を振動させることによって発電することができる。例えば、磁歪素子をU字型の磁歪式振動発電デバイスに乗せ、加振機を振動させることによって発電できる。例えば、加速度を0.3G、周波数を13Hzとして、後述の実施例にて製造した本発明の磁歪素子を用いて発電量を測定すると、磁束密度変化ΔBが1.32Tで発電量は平均で530μWとなった。この結果、および上述のΔBの最大値が2.0Tであることを考慮すると、発電量はその計算方法よりΔBの2乗に比例して向上するので、発電量の最大値は、約2.4倍の約1200μWと推察できる。従って、本発明の磁歪素子を振動式発電デバイスに用いると、発電量の向上が期待できる。例えば、後述の実施例と比較例の結果を考慮すると、発電量は少なくとも30%以上増加する。 Power can be generated by vibrating the magnetostrictive element of the present invention. For example, a magnetostrictive element can be placed on a U-shaped magnetostrictive vibration power generation device to vibrate the exciter to generate electricity. For example, when the amount of power generation is measured using the magnetostrictive element of the present invention manufactured in the examples described later with an acceleration of 0.3 G and a frequency of 13 Hz, the magnetic flux density change ΔB is 1.32 T and the power generation amount is 530 μW on average. It became. Considering this result and the above-mentioned maximum value of ΔB being 2.0T, the amount of power generation is improved in proportion to the square of ΔB from the calculation method, so that the maximum value of the amount of power generation is about 2. It can be estimated to be about 1200 μW, which is four times as large. Therefore, when the magnetostrictive element of the present invention is used in an oscillating power generation device, an improvement in the amount of power generation can be expected. For example, considering the results of Examples and Comparative Examples described later, the amount of power generation increases by at least 30% or more.

以下に、実施例および比較例により本発明をより具体的に説明するが、本発明の磁歪素子および磁歪素子の製造方法は、本発明はこれらの実施例および比較例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the method for manufacturing the magnetostrictive element and the magnetostrictive element of the present invention is not limited to these Examples and Comparative Examples. ..

実施例および比較例では、単結晶合金(Fe83Ga17単結晶合金およびFe80.9Ga19Sm0.1単結晶合金)の磁歪材料から図1に示す板状の直方体形状の磁歪素子を製造し、以下のように評価した。 In Examples and Comparative Examples, a plate-shaped square-shaped magnetostrictive element shown in FIG. 1 was obtained from a magnetostrictive material of a single crystal alloy (Fe 83 Ga 17 single crystal alloy and Fe 80.9 Ga 19 Sm 0.1 single crystal alloy). It was manufactured and evaluated as follows.

磁歪素子の主表面の磁区構造は、Kerr効果顕微鏡を用いて主表面を観察することにより調べた。磁歪素子の主表面において幾何的に実質的に同じ箇所の領域(主表面の中央領域;サイズ:約400μm×約300μm)を選択してその領域を評価した。 The magnetic domain structure of the main surface of the magnetostrictive element was investigated by observing the main surface using a Kerr effect microscope. A region (central region of the main surface; size: about 400 μm × about 300 μm) at substantially the same position on the main surface of the magnetostrictive element was selected and evaluated.

磁歪素子の長さ方向に磁場を印加し、飽和磁化した時の磁歪量および磁束密度が飽和する磁場、磁歪素子に圧縮/引張応力を加えた時の磁束密度変化を測定した。詳細には、飽和磁束密度の測定は、磁歪素子を長さ方向(y軸方向、図4参照)に圧縮/引張応力の加えることができる治具に設置し、磁歪素子にコイルを巻き電流を流す。図4に実線Hで示す磁場印加方向(角度θ、但し、0°≦θ≦10°)に磁場が印加されるようにして電磁誘導を用いて30MPaの圧縮/引張応力が作用した状態で磁場に対する磁束密度変化であるヒステリシスを測定した。 A magnetic field was applied in the length direction of the magnetostrictive element, and the amount of magnetostriction when saturated and magnetized, the magnetic field where the magnetic flux density was saturated, and the change in magnetic flux density when compressive / tensile stress was applied to the magnetostrictive element were measured. Specifically, the measurement of the saturation magnetic flux density is performed by installing the magnetostrictive element on a jig capable of applying compressive / tensile stress in the longitudinal direction (y-axis direction, see FIG. 4), and winding a coil around the magnetostrictive element to apply a current. Shed. In FIG. 4, the magnetic field is applied in the magnetic field application direction (angle θ, where 0 ° ≤ θ ≤ 10 °) shown by the solid line H, and the magnetic field is applied with a compressive / tensile stress of 30 MPa using electromagnetic induction. Hysteresis, which is the change in magnetic flux density with respect to, was measured.

磁歪量は、図4に示すように、磁場印加方向H(角度θ、但し、0°≦θ≦10°)の時に測定される、磁歪効果による寸法変化の割合を磁歪量L(ppm)として測定する。この測定は、一般的に用いられている歪みゲージ法によって室温環境下(25℃)で実施した。より詳細には、歪みゲージのゲージ軸が磁歪素子のxy平面の長さ方向と平行となるように歪ゲージを磁歪素子に貼付し、磁歪素子のxy平面に対して平行に磁場を印加して磁歪が飽和したときの値をその磁歪素子の磁歪量とした。尚、磁場発生装置には振動試料型磁力計(VSM)を用い、磁場の強さは0Tから1Tへと変化させて測定した。 As shown in FIG. 4, the magnetostrictive amount is the rate of dimensional change due to the magnetostrictive effect measured in the magnetic field application direction H (angle θ, where 0 ° ≤ θ ≤ 10 °) as the magnetostrictive amount L (ppm). Measure. This measurement was carried out in a room temperature environment (25 ° C.) by the commonly used strain gauge method. More specifically, the strain gauge is attached to the magnetostrictive element so that the gauge axis of the strain gauge is parallel to the length direction of the xy plane of the magnetostrictive element, and a magnetic field is applied parallel to the xy plane of the magnetostrictive element. The value when the magnetostriction was saturated was taken as the amount of magnetostriction of the magnetostrictive element. A vibrating sample magnetometer (VSM) was used as the magnetic field generator, and the strength of the magnetic field was changed from 0T to 1T for measurement.

更に、磁歪式振動発電デバイスを用いて発電量を簡易的に測定した。得られた磁歪素子を振動させることによって発電した。具体的には、磁歪素子をU字型の磁歪式振動発電デバイスに乗せ、加振機を振動させることによって発電し、この時の発電量の簡易的に測定した。発電量測定時の加速度Gは0.3G、周波数は13Hzとした。 Furthermore, the amount of power generation was simply measured using a magnetostrictive vibration power generation device. Power was generated by vibrating the obtained magnetostrictive element. Specifically, the magnetostrictive element was placed on a U-shaped magnetostrictive vibration power generation device to generate electricity by vibrating the exciter, and the amount of power generated at this time was simply measured. The acceleration G at the time of measuring the amount of power generation was 0.3 G, and the frequency was 13 Hz.

<実施例1−1〜1−3>
単結晶合金の試料は、高周波誘導加熱型CZ炉を用いて育成した。
Fe83Ga17単結晶合金から磁歪材料から板状の形状の磁歪素子を作製した。最初に、合金の原料をそれぞれ秤量してルツボに入れ、真空にした高周波誘導加熱型CZ炉にアルゴンガスを導入した。その後、炉内が大気圧となった時点で、炉の加熱を開始し、融液となるまで加熱した。
<Examples 1-1 to 1-3>
The single crystal alloy sample was grown using a high frequency induction heating type CZ furnace.
A plate-shaped magnetostrictive element was produced from a magnetostrictive material from a Fe 83 Ga 17 single crystal alloy. First, the raw materials of the alloys were weighed and placed in a crucible, and argon gas was introduced into a vacuumed high-frequency induction heating type CZ furnace. Then, when the pressure inside the furnace reached atmospheric pressure, heating of the furnace was started and heated until it became a melt.

結晶方位<100>に切り出したFeGa単結晶を種結晶として用い、種結晶を融液の近くまで降下させて種結晶の先端を融液に接触させた。炉の温度を徐々に降下させながら、その後、種結晶を回転させながら上昇させて結晶成長を行った。その結果、直径10mm、直胴部の長さ80mmの円柱状の単結晶合金塊を得た。この単結晶合金は、円柱高さ方向に<100>結晶方位を有していた。 A FeGa single crystal cut out in the crystal orientation <100> was used as a seed crystal, and the seed crystal was lowered close to the melt to bring the tip of the seed crystal into contact with the melt. Crystal growth was carried out by gradually lowering the temperature of the furnace and then raising the seed crystal while rotating it. As a result, a columnar single crystal alloy mass having a diameter of 10 mm and a straight body portion length of 80 mm was obtained. This single crystal alloy had a <100> crystal orientation in the height direction of the cylinder.

次に、ワイヤー放電加工によって、得られた単結晶合金の直胴部から、円柱の高さ方向(<100>結晶方位)の長さが80mmで、幅が10mmで、厚さが1mmの板状の直方体形状の3枚の磁歪材料(板A、板Bおよび板C)を切り出した。 Next, a plate having a length of 80 mm, a width of 10 mm, and a thickness of 1 mm in the height direction (<100> crystal orientation) of the cylinder from the rectangular parallelepiped portion of the single crystal alloy obtained by wire discharge processing. Three pieces of magnetic strain materials (plate A, plate B, and plate C) having a rectangular parallelepiped shape were cut out.

切出した板A〜Cを加工して、円柱高さ方向が製造すべき磁歪素子の長さ方向に一致するように、長さ32mm、幅8mmおよび厚さ1mmの主表面を有する板状の直方体形状の磁歪材料を得た。 A plate-shaped rectangular parallelepiped having a main surface of 32 mm in length, 8 mm in width and 1 mm in thickness so that the height direction of the cylinder coincides with the length direction of the magnetostrictive element to be manufactured by processing the cut out plates A to C. A magnetostrictive material of shape was obtained.

次に、磁場中熱処理装置を用いて、温度500℃の下、磁場Hの印加方向と磁歪素子の幅方向との角度差が10°以下となるように磁場H(0.3T)を印加して磁歪材料A〜Cをそれぞれ磁場中熱処理して磁歪素子a〜cを得た。尚、磁場Hの印加方向と磁歪素子の幅方向との角度差は10°以下であった。 Next, using a heat treatment device in a magnetic field, a magnetic field H (0.3T) is applied at a temperature of 500 ° C. so that the angle difference between the application direction of the magnetic field H and the width direction of the magnetostrictive element is 10 ° or less. The magnetostrictive materials A to C were heat-treated in a magnetic field to obtain magnetostrictive elements a to c. The angle difference between the application direction of the magnetic field H and the width direction of the magnetostrictive element was 10 ° or less.

<実施例2−1および2−2>
単結晶合金としてFe80.9Ga19Sm0.1単結晶合金を製造したことを除いて、実施例1を繰り返して実施例2を実施した。但し、実施例2は、同じ手順で2回実施し、それぞれを実施例2−1および実施例2−2と称し、得られた素子を磁歪素子dおよび磁歪素子eと称する。
<Examples 2-1 and 2-2>
Example 2 was carried out by repeating Example 1 except that Fe 80.9 Ga 19 Sm 0.1 single crystal alloy was produced as the single crystal alloy. However, Example 2 is carried out twice in the same procedure, and each is referred to as Example 2-1 and Example 2-2, and the obtained elements are referred to as a magnetostrictive element d and a magnetostrictive element e.

<比較例1−1〜比較例1−3>
実施例1−1〜1−3を繰り返したが、次の点で異なっていた:比較例1−1では、磁場中加熱処理を実施しなかった。比較例1−2では、磁場中加熱処理において印加した磁場は0.1Tであった。比較例1−3では、磁場中加熱処理の温度が200℃であった。これらの比較例においてそれぞれ磁歪素子f〜hを得た。
<Comparative Examples 1-1 to 1-3>
Examples 1-1 to 1-3 were repeated, but differed in the following points: In Comparative Example 1-1, the heat treatment in a magnetic field was not performed. In Comparative Example 1-2, the magnetic field applied in the heat treatment in the magnetic field was 0.1 T. In Comparative Example 1-3, the temperature of the heat treatment in the magnetic field was 200 ° C. Magnetostrictive elements f to h were obtained in each of these comparative examples.

<比較例2−1〜比較例2−3>
磁場中熱処理を実施しなかった以外は、実施例2を繰り返して比較例2を実施して、磁歪素子iおよびjを得た。
<Comparative Examples 2-1 to 2-3>
Comparative Example 2 was carried out by repeating Example 2 except that the heat treatment in the magnetic field was not carried out to obtain magnetostrictive elements i and j.

実施例および比較例の条件および得られた素子の評価結果を図5としての表1に示している。 The conditions of Examples and Comparative Examples and the evaluation results of the obtained devices are shown in Table 1 as FIG.

表1から明らかなように、主表面の磁区構造に関して、実施例の素子では、主表面の70%以上の領域で磁気モーメントの方向が磁歪素子の幅方向に揃っているのに対して、比較例の磁歪素子では、主表面の20%以下の領域で磁気モーメントの方向が磁歪素子の幅方向に揃っているに過ぎない。 As is clear from Table 1, with respect to the magnetic domain structure of the main surface, in the elements of the embodiment, the directions of the magnetic moments are aligned with the width direction of the magnetostrictive element in a region of 70% or more of the main surface, whereas comparison is made. In the example magnetostrictive element, the directions of the magnetic moments are only aligned with the width direction of the magnetostrictive element in a region of 20% or less of the main surface.

実施例の磁歪素子では、0.04T以下の低磁場で磁化が飽和するのに対し、比較例の磁歪素子では0.06T以上の磁場を必要とした。実施例の磁歪素子では、磁束密度変化ΔBが1.2T以上と大きいのに対し、比較例の磁歪素子では0.5T以下と小さい値であった。尚、別途行った実験では、更に低い磁場、例えば0.005T、0.001Tにおいても磁化が飽和した。従って、本発明の磁歪素子では、主表面の長さ方向との角度差が10°以内の方向の磁場印加に対して、磁区が飽和する磁場が0.001T〜0.05T、好ましくは0.005T〜0.04Tである。即ち、本発明の磁歪素子は、このように比較的低い磁場で十分に大きい磁歪を伴う磁束密度変化を示すことができる。 The magnetostrictive element of the example saturates the magnetization at a low magnetic field of 0.04 T or less, whereas the magnetostrictive element of the comparative example requires a magnetic field of 0.06 T or more. In the magnetostrictive element of the example, the magnetic flux density change ΔB was as large as 1.2 T or more, whereas in the magnetostrictive element of the comparative example, it was as small as 0.5 T or less. In a separate experiment, the magnetization was saturated even in a lower magnetic field, for example, 0.005T and 0.001T. Therefore, in the magnetostrictive element of the present invention, the magnetic field at which the magnetic domain is saturated is 0.001T to 0.05T, preferably 0. It is 005T to 0.04T. That is, the magnetostrictive element of the present invention can exhibit a change in magnetic flux density accompanied by a sufficiently large magnetostriction in such a relatively low magnetic field.

磁歪量Lに関して、実施例の磁歪素子では270ppm以上であったのに対して、比較例の磁歪素子では20ppm以下と非常に小さい値であった。また、磁歪素子を用いた発電量に関して、本発明の磁歪素子を用いた場合、比較例の場合と比べて、少なくとも50%以上増加している。 The magnetostrictive amount L was 270 ppm or more in the magnetostrictive element of the example, whereas it was 20 ppm or less in the magnetostrictive element of the comparative example, which was a very small value. Further, the amount of power generated by using the magnetostrictive element is increased by at least 50% or more when the magnetostrictive element of the present invention is used as compared with the case of the comparative example.

これらの結果を考慮すると、単結晶合金塊から所定の形状の磁歪素子を得た後、主表面の磁気モーメントの方向と幅方向との角度差が10°以内の領域が主表面の面積の少なくとも70%となるように、磁場中熱処理を行うことによって、得られる磁歪素子の歪特性および磁気特性が向上し、その結果、そのような磁歪素子を発電に用いと、発電量向上に繋げることができる。 Considering these results, after obtaining a magnetostrictive element having a predetermined shape from a single crystal alloy ingot, the region where the angular difference between the direction of the magnetic moment and the width direction of the main surface is within 10 ° is at least the area of the main surface. By performing heat treatment in a magnetic field so as to be 70%, the strain characteristics and magnetic characteristics of the obtained magnetostrictive element are improved, and as a result, the use of such a magnetostrictive element for power generation can lead to an improvement in the amount of power generation. it can.

磁場中熱処理を実施しない従来の方法、または磁場中熱処理を実施してもその時の加熱温度が低過ぎる、または印加磁場が弱すぎる場合、得られる磁歪素子は、低磁場での長さ方向の磁歪を伴う磁束密度変化が小さく、発電量が小さくなってしまう。換言すれば、本発明の磁歪素子の製造方法のように、結晶方位<100>に磁歪素子を切り出した後、幅方向に磁場中熱処理を行うことで、発電量が向上することを示唆している。 If the heating temperature at that time is too low or the applied magnetic field is too weak even if the conventional method without performing the heat treatment in the magnetic field or the heat treatment in the magnetic field is performed, the obtained magnetostrictive element has a magnetostriction in the length direction in the low magnetic field. The change in magnetic flux density is small, and the amount of power generated is small. In other words, it is suggested that the amount of power generation can be improved by cutting out the magnetostrictive element in the crystal orientation <100> and then performing heat treatment in the magnetic field in the width direction as in the method for manufacturing the magnetostrictive element of the present invention. There is.

本発明の磁歪素子とその製造方法は、かつ長さ方向において低磁場で十分に大きい磁歪を伴う磁束密度変化を示すFeGa系の磁歪素子とその製造方法を提供する。従って、該製造方法によると、FeGa系単結晶合金から切り出される磁歪素子の磁気特性を向上させ、それによりデバイスの発電特性を向上させることができる。これによって、製造された磁歪素子を、社会的インフラストラクチャーまたは工場内設備のモニタリング向け自立電源用の磁歪式振動発電デバイス等に積極的に適用することができる。 The magnetostrictive element of the present invention and a method for manufacturing the same provide a FeGa-based magnetostrictive element and a method for manufacturing the same, which exhibit a change in magnetic flux density accompanied by a sufficiently large magnetostriction at a low magnetic field in the length direction. Therefore, according to the manufacturing method, it is possible to improve the magnetic characteristics of the magnetostrictive element cut out from the FeGa-based single crystal alloy, thereby improving the power generation characteristics of the device. As a result, the manufactured magnetostrictive element can be positively applied to a magnetostrictive vibration power generation device or the like for a self-sustaining power source for monitoring social infrastructure or factory equipment.

2…磁歪素子の主表面の幅方向と磁区の磁気モーメントの方向との角度差が0°の磁区
3…磁歪素子の主表面の幅方向と磁区の磁気モーメントの方向との角度差が0°の磁区
4…磁歪素子の主表面面の幅方向と磁区の磁気モーメントの方向との角度差が90°の磁区
5,6…磁歪素子の主表面
10…磁歪素子
P…磁歪素子の主表面の領域(観察領域)
x軸…磁歪素子の主表面の幅または幅方向
y軸…磁歪素子の主表面の長さまたは長さ方向
z軸…磁歪素子の厚さ方向
2 ... Magnetic domain in which the angular difference between the width direction of the main surface of the magnetostrictive element and the direction of the magnetic moment in the magnetic domain is 0 ° 3 ... The angular difference between the width direction of the main surface of the magnetostrictive element and the direction of the magnetic moment in the magnetic domain is 0 ° Magnetic domain 4 ... Magnetic domain in which the angular difference between the width direction of the main surface surface of the magnetostrictive element and the direction of the magnetic moment of the magnetostrictive element is 90 ° 5, 6 ... Main surface of the magnetostrictive element 10 ... Magnetostrictive element P ... Main surface of the magnetostrictive element Area (observation area)
x-axis: width or width direction of the main surface of the magnetostrictive element y-axis: length or length direction of the main surface of the magnetostrictive element z-axis: thickness direction of the magnetostrictive element

Claims (9)

厚さが幅よりも小さい直方体形状のFe−Ga系合金の磁歪素子であって、
主表面における磁区は10μm〜200μmの磁区幅を有し、
主表面の幅方向と磁気モーメントの方向との角度差が10°以内の磁区の面積が主表面の面積70〜100%であり、
を特徴とする磁歪素子。
A rectangular parallelepiped Fe-Ga alloy magnetostrictive element whose thickness is smaller than its width.
The magnetic domain on the main surface has a magnetic domain width of 10 μm to 200 μm.
The area of the magnetic domain in which the angle difference between the width direction of the main surface and the direction of the magnetic moment is within 10 ° is 70 to 100% of the area of the main surface.
A magnetostrictive element characterized by.
主表面のアスペクト比が1:2〜1:4であることを特徴とする請求項1に記載の磁歪素子。 The magnetostrictive element according to claim 1, wherein the aspect ratio of the main surface is 1: 2 to 1: 4. 磁歪素子の主表面の長さ方向との角度差が10°以内の方向の磁場印加に対して、主表面の磁区が飽和する磁場が0.001T〜0.05Tであることを特徴とする請求項1または2に記載の磁歪素子。 A claim characterized in that the magnetic field at which the magnetic domain of the main surface is saturated is 0.001T to 0.05T with respect to the application of a magnetic field in a direction in which the angular difference from the length direction of the main surface of the magnetostrictive element is within 10 °. Item 2. The magnetostrictive element according to Item 1 or 2. Fe−Ga系合金は、下記式(1)または下記式(2)
・Fe(100−α1)Gaα1・・・(1)
(式(1)中、αはGa含有率(at%)であり、かつ10≦α1≦19を満たす)
・Fe(100−α2−β)Gaα2β・・・(2)
(式(2)中、Ga含有率(at%)をα、X含有率(at%)をβとし、
XはSm、Eu、Tb、Dy、Cu、Ce、GdおよびCからなる群から選択される1以上の元素であり、5≦α2≦19かつ0.05≦β≦4を満たす)
で表される、請求項1〜3のいずれかに記載の磁歪素子。
The Fe-Ga alloy has the following formula (1) or the following formula (2).
・ Fe (100-α1) Ga α1・ ・ ・ (1)
(In the formula (1), α is the Ga content (at%) and satisfies 10 ≦ α1 ≦ 19)
・ Fe (100-α2-β) Ga α2 X β・ ・ ・ (2)
(In the formula (2), the Ga content (at%) is α and the X content (at%) is β.
X is one or more elements selected from the group consisting of Sm, Eu, Tb, Dy, Cu, Ce, Gd and C, satisfying 5 ≦ α2 ≦ 19 and 0.05 ≦ β ≦ 4).
The magnetostrictive element according to any one of claims 1 to 3.
板状の直方体形状を有する請求項1〜4のいずれかに記載の磁歪素子。 The magnetostrictive element according to any one of claims 1 to 4, which has a plate-shaped rectangular parallelepiped shape. 磁歪素子の製造方法の製造方法であって、
(1)Fe−Ga系合金の単結晶を磁歪材料として得る工程、
(2)得られる磁歪材料から、厚さが主表面の幅よりも小さい直方体形状、好ましくは板状の直方体形状であって、主表面の長さの方向が単結晶の結晶方位<100>と平行である磁歪材料を切り出す工程、
(3)切り出した磁歪材料を所定の形状に加工する工程、ならびに
(4)所定の形状を有する磁歪材料を、幅方向に磁場を印加した状態で所定温度にて加熱処理して、主表面における磁気モーメントの向きを幅方向に揃える工程
磁歪素子を得る工程
を含んで成ることを特徴とする製造方法。
It is a manufacturing method of a magnetostrictive element manufacturing method.
(1) A step of obtaining a single crystal of an Fe-Ga alloy as a magnetostrictive material.
(2) From the obtained magnetic strain material, a rectangular parallelepiped shape whose thickness is smaller than the width of the main surface, preferably a plate-like rectangular parallelepiped shape, and the direction of the length of the main surface is the crystal orientation <100> of a single crystal. The process of cutting out parallel magnetic strain materials,
(3) A step of processing the cut out magnetostrictive material into a predetermined shape, and (4) a magnetostrictive material having a predetermined shape is heat-treated at a predetermined temperature with a magnetic field applied in the width direction on the main surface. A step of aligning the directions of magnetic moments in the width direction A manufacturing method comprising a step of obtaining a magnetostrictive element.
工程(4)の所定温度は400℃〜700℃であることを特徴とする請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein the predetermined temperature in the step (4) is 400 ° C. to 700 ° C. 工程(4)において、0.2T〜1Tの磁場を印加することを特徴とする請求項6または7に記載の製造方法。 The manufacturing method according to claim 6 or 7, wherein a magnetic field of 0.2T to 1T is applied in the step (4). 工程(4)において、印加する磁場の方向と磁歪材料の幅方向の角度差が10°であることを特徴とする請求項6〜8のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 6 to 8, wherein in the step (4), the angle difference between the direction of the applied magnetic field and the width direction of the magnetostrictive material is 10 °.
JP2019218936A 2019-12-03 2019-12-03 Magnetostrictor and manufacturing method of the same Pending JP2021090263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019218936A JP2021090263A (en) 2019-12-03 2019-12-03 Magnetostrictor and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019218936A JP2021090263A (en) 2019-12-03 2019-12-03 Magnetostrictor and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2021090263A true JP2021090263A (en) 2021-06-10

Family

ID=76220544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218936A Pending JP2021090263A (en) 2019-12-03 2019-12-03 Magnetostrictor and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2021090263A (en)

Similar Documents

Publication Publication Date Title
US20200105997A1 (en) Magnetostriction element and method of manufacture of magnetostriction element
Golovin et al. Structure and properties of Fe–Ga alloys as promising materials for electronics
CN107614715A (en) Contain L10The iron-nickel alloy constituent of sections nickel rule phase, contain L10The manufacture method of the iron-nickel alloy constituent of sections nickel rule phase, the iron-nickel alloy constituent using amorphous as principal phase, the foundry alloy of amorphous material, amorphous material, the manufacture method of magnetic material and magnetic material
Asano et al. Magnetic domain structure and magnetostriction of Fe-Ga single crystal grown by the Czochralski method
Jiheng et al. Effect of yttrium on the mechanical and magnetostrictive properties of Fe83Ga17 alloy
JP2008069434A (en) FeGaAl BASED ALLOY AND MAGNETOSTRICTION TYPE TORQUE SENSOR
US20200274056A1 (en) Magnetostrictive element and method for manufacturing same
JP4053328B2 (en) Polycrystalline FeGa alloy ribbon with giant magnetostrictive properties
JP2015517024A (en) Single crystal microstructure and related methods and equipment
US8308874B1 (en) Magnetostrictive materials, devices and methods using high magnetostriction, high strength FeGa and FeBe alloys
JP6399502B1 (en) Magnetostrictive material and magnetostrictive device using the same
Fujieda et al. Significant reduction in Young's modulus of Fe–Ga alloy single crystal by inverse magnetostrictive effect under tensile stress
Ito et al. Shape-controlled crystal growth of Fe-Ga alloys to apply a magnetostrictive vibration energy harvester
Boesenberg et al. Texture development in Galfenol wire
JP2020035887A (en) Magnetostrictive element and magnetostrictive vibration power generation device using the same
JP2021090263A (en) Magnetostrictor and manufacturing method of the same
Li et al. Magnetostrictive Fe82Ga13. 5Al4. 5 wires with large Wiedemann twist over wide temperature range
Guruswamy et al. Short range ordering and magnetostriction in Fe–Ga and other Fe alloy single crystals
JP2021066627A (en) Magnetostrictive material and magnetostrictive element
US11008642B2 (en) Magnetostrictive material and magnetostriction type device using the same
US20190296219A1 (en) Magnetostrictive material and magnetostriction type device using the same
JP2021158265A (en) Magnetostrictive material, and magnetostriction type device arranged by use thereof
JP2019169672A (en) Magnetostrictive material and magnetostrictive device using the same
MANTA et al. Processing, Microstructure And Magnetic Properties Of Alnico Ribbons
WO2022172876A1 (en) Magnetostrictive member and method for producing magnetostrictive member