JP2021082562A - All-solid-state battery - Google Patents

All-solid-state battery Download PDF

Info

Publication number
JP2021082562A
JP2021082562A JP2019211768A JP2019211768A JP2021082562A JP 2021082562 A JP2021082562 A JP 2021082562A JP 2019211768 A JP2019211768 A JP 2019211768A JP 2019211768 A JP2019211768 A JP 2019211768A JP 2021082562 A JP2021082562 A JP 2021082562A
Authority
JP
Japan
Prior art keywords
solid
sealing plate
state battery
peripheral
gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019211768A
Other languages
Japanese (ja)
Inventor
拓磨 森下
Takuma Morishita
拓磨 森下
和弘 藤川
Kazuhiro Fujikawa
和弘 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2019211768A priority Critical patent/JP2021082562A/en
Publication of JP2021082562A publication Critical patent/JP2021082562A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

To provide an all-solid-state battery capable of increasing battery capacity by effectively using an internal space while miniaturization is achieved.SOLUTION: An all-solid-state battery 1 includes: an exterior can 2 having a bottom 21 and a peripheral wall 22; a seal plate 3 covering the opening of the exterior can 2 and having a peripheral end 31 and a central part 32 having a thicker wall thickness than the peripheral end 31; a power generation element 4 stored between the bottom 21 of the exterior can 2 and the seal plate 3; and a gasket 5 disposed between the peripheral wall 22 of the exterior can 2 and the power generation element 4. By covering the opening of the exterior can 2 with the flat seal plate 3, the internal space of the all-solid-battery 1 can be effectively used and battery capacity can be increased. In addition, by caulking the tip of the peripheral wall 22 of the exterior can 2 toward the peripheral end 31 of the seal plate 3, the exterior can 2 and the seal plate 3 can be sufficiently caulked while miniaturization is achieved.SELECTED DRAWING: Figure 1

Description

本開示は、全固体電池に関する。 The present disclosure relates to an all-solid-state battery.

特開2017−162771号公報は、封口缶の側壁部に段部が設けられた電池を開示している(特許文献1)。従来の電池は、封口缶の側壁部に設けた段部の方向へ外装缶の縁端部を湾曲させることにより、外装缶と封口板とが十分にカシメられている。そのため、従来の電池は、外装缶と封口板との間に形成された内部空間を十分に密閉することができる。 Japanese Unexamined Patent Publication No. 2017-162771 discloses a battery in which a step portion is provided on a side wall portion of a sealing can (Patent Document 1). In the conventional battery, the outer can and the sealing plate are sufficiently crimped by bending the edge portion of the outer can toward the step portion provided on the side wall portion of the sealing can. Therefore, the conventional battery can sufficiently seal the internal space formed between the outer can and the sealing plate.

また、特開2005−005616号公報は、密閉容器が薄くなってもカシメられた部分がはがれにくい電気化学デバイスを開示している(特許文献2)。従来の電気化学デバイスは、容器部材の一方の端部と容器部材の他方の端部との間にガスケットを介在させた状態で、容器部材の一方の端部を容器部材の他方の端部にカシメている。また、一方の容器部材の端部と他方の容器部材の端部とがガスケットにより接着されている。そのため、従来の電気化学デバイスは、容器部材の端部が剥がれにくくなり、容器部材を薄くすることができる。これにより、従来の電気化学デバイスは、容器部材を薄くした分、電池容量を大きくすることができる。 Further, Japanese Patent Application Laid-Open No. 2005-005616 discloses an electrochemical device in which the crimped portion is hard to peel off even if the closed container becomes thin (Patent Document 2). In conventional electrochemical devices, one end of a container member is placed on the other end of the container member with a gasket interposed between one end of the container member and the other end of the container member. It is crimped. Further, the end portion of one container member and the end portion of the other container member are bonded by a gasket. Therefore, in the conventional electrochemical device, the end portion of the container member is less likely to be peeled off, and the container member can be made thinner. As a result, in the conventional electrochemical device, the battery capacity can be increased by the amount of the thin container member.

特開2017−162771号公報Japanese Unexamined Patent Publication No. 2017-162771 特開2005−005616号公報Japanese Unexamined Patent Publication No. 2005-005616

しかしながら、従来の電池は、内部空間において、封口缶の側壁部に設けられた段部の下方に無駄なスペースが形成されている。そのため、全固体電池の内部空間を有効利用できず、内部空間の広さに対する電池容量が小さくなる。したがって、従来の電池は、電池の体積効率が低くなってしまうという問題があった。 However, in the conventional battery, a wasted space is formed in the internal space below the step portion provided on the side wall portion of the sealing can. Therefore, the internal space of the all-solid-state battery cannot be effectively used, and the battery capacity with respect to the size of the internal space becomes small. Therefore, the conventional battery has a problem that the volumetric efficiency of the battery becomes low.

また、従来の電気化学デバイスは、薄くした容器部材を十分にカシメるべく、容器部材の端部が電気化学素体の側面から外側に間延びした形状となっている。そのため、従来の電気化学デバイスは、平面視で、電気化学素体の面積に対して電池全体の面積が大きくなる。したがって、従来の電気化学デバイスは、電池の面積効率が低くなってしまうという問題があった。 Further, the conventional electrochemical device has a shape in which the end portion of the container member extends outward from the side surface of the electrochemical element body in order to sufficiently crimp the thinned container member. Therefore, in the conventional electrochemical device, the area of the entire battery is larger than the area of the electrochemical body in a plan view. Therefore, the conventional electrochemical device has a problem that the area efficiency of the battery becomes low.

そこで、本開示は、小型化しながらも内部空間を有効利用して電池容量を増大できる全固体電池を提供することを課題とする。 Therefore, an object of the present disclosure is to provide an all-solid-state battery capable of increasing the battery capacity by effectively utilizing the internal space while reducing the size.

上記課題を解決するために、本開示は次のように構成した。すなわち、本開示に係る全固体電池は、底部と周壁部とを有する外装缶を備えてよい。全固体電池は、外装缶の開口を覆い、周端部と周端部よりも肉厚の中央部とを有する封口板を備えてよい。全固体電池は、外装缶の底部と封口板との間に収容され、正極材と負極材と正極材と負極材との間に配置される固体電解質とを含む発電要素を備えてよい。全固体電池1は、外装缶の周壁部と発電要素との間に配置されるガスケットを備えてよい。外装缶の周壁部は、封口板の周端部の上面に向かってカシメられている先端部を有してよい。 In order to solve the above problems, the present disclosure is structured as follows. That is, the all-solid-state battery according to the present disclosure may include an outer can having a bottom portion and a peripheral wall portion. The all-solid-state battery may include a sealing plate that covers the opening of the outer can and has a peripheral end and a central portion that is thicker than the peripheral end. The all-solid-state battery may include a power generation element housed between the bottom of the outer can and the sealing plate and containing a solid electrolyte disposed between the positive electrode material, the negative electrode material, and the positive electrode material and the negative electrode material. The all-solid-state battery 1 may include a gasket arranged between the peripheral wall portion of the outer can and the power generation element. The peripheral wall portion of the outer can may have a tip portion that is crimped toward the upper surface of the peripheral end portion of the sealing plate.

また、好ましくは、封口板の中央部は、封口板の上面側から隆起して周端部よりも肉厚に形成されてよい。封口板の下面は、平面であってよい。 Further, preferably, the central portion of the sealing plate may be formed to be thicker than the peripheral end portion by rising from the upper surface side of the sealing plate. The lower surface of the sealing plate may be flat.

また、好ましくは、封口板の中央部は、周端部の1.5〜3倍の厚みを有してよい。 Further, preferably, the central portion of the sealing plate may have a thickness of 1.5 to 3 times that of the peripheral end portion.

また、好ましくは、封口板の中央部は、平面視で、封口板の70〜90%の面積を有してよい。 Further, preferably, the central portion of the sealing plate may have an area of 70 to 90% of the sealing plate in a plan view.

また、好ましくは、封口板の周端部は、該周端部の上面の端部に突部を備えてよい。ガスケットは、周壁部と突部との間に配置されてよい。周壁部は、突部に向かってカシメられている先端部を有してよい。 Further, preferably, the peripheral end portion of the sealing plate may be provided with a protrusion at the end portion of the upper surface of the peripheral end portion. The gasket may be arranged between the peripheral wall portion and the protrusion portion. The peripheral wall portion may have a tip portion that is crimped toward the protrusion.

また、好ましくは、突部は、周端部の上面から0.03〜0.08mmの高さを有してよい。 Further, preferably, the protrusion may have a height of 0.03 to 0.08 mm from the upper surface of the peripheral end portion.

さらに、好ましくは、ガスケットは、筒状をなし、略I字状の断面を有してよい。発電要素の周側面は、ガスケットの内周面に接してよい。ガスケットの外周面は、外装缶の周壁部の内周面に接してよい。 Further, preferably, the gasket may have a tubular shape and a substantially I-shaped cross section. The peripheral side surface of the power generation element may be in contact with the inner peripheral surface of the gasket. The outer peripheral surface of the gasket may be in contact with the inner peripheral surface of the peripheral wall portion of the outer can.

本開示に係る全固体電池によれば、小型化しながらも内部空間を有効利用して電池容量を増大することができる。 According to the all-solid-state battery according to the present disclosure, it is possible to increase the battery capacity by effectively utilizing the internal space while reducing the size.

図1は、第1実施形態に係る全固体電池の構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of the all-solid-state battery according to the first embodiment. 図2は、図1に示した全固体電池の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the all-solid-state battery shown in FIG. 図3は、図1に示した全固体電池に用いられる封口板の構造を示す平面図である。FIG. 3 is a plan view showing the structure of the sealing plate used in the all-solid-state battery shown in FIG. 図4は、第2実施形態に係る全固体電池の構造を示す断面図である。FIG. 4 is a cross-sectional view showing the structure of the all-solid-state battery according to the second embodiment.

(第1実施形態)
以下、本開示の第1実施形態について、図1〜3を用いて具体的に説明する。まず、図1に示すように、全固体電池1は、基本的には、外装缶2と、封口板3と、発電要素4と、ガスケット5とから構成されている。また、全固体電池1は、外装缶2と発電要素4との間に配置された黒鉛シート6と、封口板3と発電要素4との間に配置された黒鉛シート6とを備えている。なお、第1実施形態では、全固体電池1は、扁平形電池である。
(First Embodiment)
Hereinafter, the first embodiment of the present disclosure will be specifically described with reference to FIGS. 1 to 3. First, as shown in FIG. 1, the all-solid-state battery 1 is basically composed of an outer can 2, a sealing plate 3, a power generation element 4, and a gasket 5. Further, the all-solid-state battery 1 includes a graphite sheet 6 arranged between the outer can 2 and the power generation element 4, and a graphite sheet 6 arranged between the sealing plate 3 and the power generation element 4. In the first embodiment, the all-solid-state battery 1 is a flat battery.

外装缶2は、円形状の底部21と、底部21の外周から連続して形成される円筒状の周壁部22とを備えている。周壁部22は、縦断面視で、底部21に対して略垂直に延びるように設けられている。外装缶2は、ステンレス、ニッケル、鉄などの金属材料によって形成されている。なお、外装缶2の形状は、円形状の底部21を備えた円筒形状に限られない。例えば、外装缶2の形状は、底部21を四角形状などの多角状に形成し、周壁部22を底部21の形状に合わせた四角筒状などの多角筒状に形成してもよく、全固体電池1のサイズや形状に応じて、種々変更することができる。そのため、周壁部22の形状は、円筒状だけでなく、四角筒状などの多角筒状も含むものである。 The outer can 2 includes a circular bottom portion 21 and a cylindrical peripheral wall portion 22 formed continuously from the outer periphery of the bottom portion 21. The peripheral wall portion 22 is provided so as to extend substantially perpendicular to the bottom portion 21 in a vertical cross-sectional view. The outer can 2 is made of a metal material such as stainless steel, nickel, or iron. The shape of the outer can 2 is not limited to the cylindrical shape provided with the circular bottom portion 21. For example, the shape of the outer can 2 may be such that the bottom portion 21 is formed in a polygonal shape such as a quadrangular shape, and the peripheral wall portion 22 is formed in a polygonal tubular shape such as a square cylinder that matches the shape of the bottom portion 21. Various changes can be made according to the size and shape of the battery 1. Therefore, the shape of the peripheral wall portion 22 includes not only a cylindrical shape but also a polygonal tubular shape such as a square tubular shape.

封口板3は、円形の平板状に形成されている。封口板3は、周端部31と、周端部31よりも肉厚に形成された中央部32とを有している。封口板3は、外装缶2の開口と対向している。封口板3の外径は、外装缶2の周壁部22の内径よりも小さい。封口板3は、ステンレス、ニッケル、鉄などの金属材料によって形成されている。封口板3は、外装缶2の開口に応じた平面視形状に形成される。よって、封口板3の平面視形状は、円形に限られず、四角形状などの多角状に形成してもよい。 The sealing plate 3 is formed in a circular flat plate shape. The sealing plate 3 has a peripheral end portion 31 and a central portion 32 formed to be thicker than the peripheral end portion 31. The sealing plate 3 faces the opening of the outer can 2. The outer diameter of the sealing plate 3 is smaller than the inner diameter of the peripheral wall portion 22 of the outer can 2. The sealing plate 3 is made of a metal material such as stainless steel, nickel, or iron. The sealing plate 3 is formed in a plan view shape corresponding to the opening of the outer can 2. Therefore, the plan view shape of the sealing plate 3 is not limited to a circle, and may be formed into a polygonal shape such as a quadrangular shape.

封口板3は、周端部31の上面側から隆起した比較的肉厚の中央部32が形成されている。これにより、封口板3の上方から掛かる圧力に対して、封口板3の強度を向上させることができる。また、封口板3の下面は、平面に形成されている。これにより、封口板3の上方から掛かる圧力が発電要素4に対して均一に伝わるため、発電要素4の損傷を抑制することができる。なお、封口板3の下面は、後述する発電要素4の負極材42の上面とサイズ及び形状が同じであり、負極材42に隣接する黒鉛シート6の上面とサイズ及び形状が同じである。 The sealing plate 3 is formed with a relatively thick central portion 32 that rises from the upper surface side of the peripheral end portion 31. As a result, the strength of the sealing plate 3 can be improved against the pressure applied from above the sealing plate 3. Further, the lower surface of the sealing plate 3 is formed to be flat. As a result, the pressure applied from above the sealing plate 3 is uniformly transmitted to the power generation element 4, so that damage to the power generation element 4 can be suppressed. The lower surface of the sealing plate 3 has the same size and shape as the upper surface of the negative electrode material 42 of the power generation element 4 described later, and has the same size and shape as the upper surface of the graphite sheet 6 adjacent to the negative electrode material 42.

図2に示すように、中央部32の厚みt2は、周端部31の厚みt1の1.5〜3倍である。厚みt2を薄くすると、全固体電池1を小型化できるが、封口板3が上方からの圧力によって変形しやすくなる。そのため、発電要素4が損傷し、電池性能が低下するおそれがある。一方で、厚みt2を厚くすると、封口板3の強度を向上できるが、全固体電池1全体の体積が増加し、全固体電池1が小型化されない。そのため、厚みt2は、厚みt1の1.5倍以上、好ましくは2倍以上とするのがよく、厚みt2の3倍以下、好ましくは2.5倍以下とするのがよい。 As shown in FIG. 2, the thickness t2 of the central portion 32 is 1.5 to 3 times the thickness t1 of the peripheral end portion 31. When the thickness t2 is reduced, the all-solid-state battery 1 can be miniaturized, but the sealing plate 3 is easily deformed by the pressure from above. Therefore, the power generation element 4 may be damaged and the battery performance may be deteriorated. On the other hand, if the thickness t2 is increased, the strength of the sealing plate 3 can be improved, but the volume of the entire all-solid-state battery 1 is increased, and the all-solid-state battery 1 is not miniaturized. Therefore, the thickness t2 is preferably 1.5 times or more, preferably 2 times or more the thickness t1, and is preferably 3 times or less, preferably 2.5 times or less the thickness t2.

図3に示すように、平面視で、中央部32は、封口板3の70〜90%の面積を有している。中央部32の面積を広くすると、封口板3の強度は向上するが、周端部31が占める面積の割合は低下する。そのため、外装缶2の周壁部22の先端部をカシメる際、ガスケット5の封口板3側の先端部が中央部32に接触するなど、カシメ作業が困難になる。また、外装缶2の周壁部22の先端部が中央部32に接触すると、短絡が生じるおそれもある。一方、中央部32の面積を狭くすると、封口板3の強度が低下してしまう。したがって、封口板3の中央部32の面積は、封口板3の70%以上、好ましくは75%以上、とするのがよく、封口板3の90%以下、好ましくは85%以下とするのがよい。 As shown in FIG. 3, in a plan view, the central portion 32 has an area of 70 to 90% of the sealing plate 3. When the area of the central portion 32 is increased, the strength of the sealing plate 3 is improved, but the ratio of the area occupied by the peripheral end portion 31 is decreased. Therefore, when crimping the tip of the peripheral wall portion 22 of the outer can 2, the tip of the gasket 5 on the sealing plate 3 side comes into contact with the central portion 32, which makes the caulking work difficult. Further, if the tip end portion of the peripheral wall portion 22 of the outer can 2 comes into contact with the central portion 32, a short circuit may occur. On the other hand, if the area of the central portion 32 is narrowed, the strength of the sealing plate 3 is reduced. Therefore, the area of the central portion 32 of the sealing plate 3 is preferably 70% or more, preferably 75% or more, and 90% or less, preferably 85% or less of the sealing plate 3. Good.

外装缶2と封口板3をカシメる際、外装缶2の周壁部22の先端部とガスケット5の先端部とは、封口板3の周端部31と中央部32との段差、すなわち、周端部31と中央部32との高低差によって形成される周端部31上方のスペースに収容される。したがって、湾曲によって封口板3の上面に位置付けられる外装缶2の周壁部22の先端部とガスケット5の先端部の径方向の長さは、周端部31の径方向の長さよりも短い。 When crimping the outer can 2 and the sealing plate 3, the tip of the peripheral wall portion 22 of the outer can 2 and the tip of the gasket 5 are a step between the peripheral end portion 31 and the central portion 32 of the sealing plate 3, that is, the circumference. It is accommodated in the space above the peripheral end portion 31 formed by the height difference between the end portion 31 and the central portion 32. Therefore, the radial lengths of the tip end portion of the peripheral wall portion 22 of the outer can 2 and the tip end portion of the gasket 5 positioned on the upper surface of the sealing plate 3 by bending are shorter than the radial length of the peripheral end portion 31.

また、図2に示すように、封口板3の周端部31の上面には、突部33が形成されている。突部33は、周端部31の端部に沿って、平面視リング状に形成されている。突部33は、周端部31の上面から0.03〜0.08mmの高さhを有している。突部33と外装缶2の周壁部22の先端部との間には、ガスケット5が配置されている。外装缶2の周壁部22の先端部は、突部33に向かって湾曲するようにカシメられている。このように、突部33を設けたことにより、ガスケット5の封口板3側の先端部が突部33に係止されるようにして、外装缶2と封口板3とを十分にカシメることができ、全固体電池1の内部空間を密閉状態に維持することができる。突部33の高さhは、外装缶2と封口板3とを適切にカシメることを鑑みると、0.03mm以上、好ましくは0.04mm以上、とするのがよく、0.08mm以下、好ましくは0.07mm以下とするのがよい。 Further, as shown in FIG. 2, a protrusion 33 is formed on the upper surface of the peripheral end portion 31 of the sealing plate 3. The protrusion 33 is formed in a ring shape in a plan view along the end of the peripheral end portion 31. The protrusion 33 has a height h of 0.03 to 0.08 mm from the upper surface of the peripheral end portion 31. A gasket 5 is arranged between the protrusion 33 and the tip of the peripheral wall portion 22 of the outer can 2. The tip of the peripheral wall portion 22 of the outer can 2 is crimped so as to be curved toward the protrusion 33. By providing the protrusion 33 in this way, the tip of the gasket 5 on the sealing plate 3 side is locked to the protrusion 33, and the outer can 2 and the sealing plate 3 are sufficiently crimped. The internal space of the all-solid-state battery 1 can be maintained in a sealed state. The height h of the protrusion 33 is preferably 0.03 mm or more, preferably 0.04 mm or more, and 0.08 mm or less, in consideration of appropriately caulking the outer can 2 and the sealing plate 3. It is preferably 0.07 mm or less.

発電要素4は、外装缶2と封口板3との間に収容され、正極材41と負極材42と固体電解質43とを含んでいる。固体電解質43は、正極材41と負極材42との間に配置されている。発電要素4は、外装缶2の底部21側(図示の下方)から正極材41、固体電解質43、負極材42の順で積層されている。発電要素4は、円柱形状に形成されている。発電要素4は、外装缶2の底部21の上面に黒鉛シート6を介して配置されている。よって、外装缶2は、正極缶として機能する。また、発電要素4は、封口板3の下面に黒鉛シート6を介して対向している。よって、封口板3は、負極板として機能する。なお、発電要素4は、円柱形状に限られず、直方体形状や多角柱形状等、全固体電池1のサイズや形状に応じて、種々変更することができる。また、外装缶2側に負極材42を位置付け、封口板3側に正極材41を位置付けるように発電要素4を配置してもよい。その場合、外装缶2が負極缶として機能し、封口板3が正極板として機能する。 The power generation element 4 is housed between the outer can 2 and the sealing plate 3, and includes a positive electrode material 41, a negative electrode material 42, and a solid electrolyte 43. The solid electrolyte 43 is arranged between the positive electrode material 41 and the negative electrode material 42. The power generation element 4 is laminated in the order of the positive electrode material 41, the solid electrolyte 43, and the negative electrode material 42 from the bottom 21 side (lower part in the drawing) of the outer can 2. The power generation element 4 is formed in a cylindrical shape. The power generation element 4 is arranged on the upper surface of the bottom 21 of the outer can 2 via a graphite sheet 6. Therefore, the outer can 2 functions as a positive electrode can. Further, the power generation element 4 faces the lower surface of the sealing plate 3 via the graphite sheet 6. Therefore, the sealing plate 3 functions as a negative electrode plate. The power generation element 4 is not limited to the cylindrical shape, and can be variously changed according to the size and shape of the all-solid-state battery 1, such as a rectangular parallelepiped shape and a polygonal prism shape. Further, the power generation element 4 may be arranged so that the negative electrode material 42 is positioned on the outer can 2 side and the positive electrode material 41 is positioned on the sealing plate 3 side. In that case, the outer can 2 functions as a negative electrode can, and the sealing plate 3 functions as a positive electrode plate.

正極材41は、リチウムイオン二次電池に用いられる正極活物質として、平均粒径3μmのLiNi0.6Co0.2Mn0.2と、硫化物固体電解質(LiPSCl)と、導電助剤であるカーボンナノチューブとを質量比で55:40:5の割合で含有した180mgの正極合剤を直径10mmの金型に入れて円柱形状に成形した正極ペレットである。なお、正極材41は、発電要素4の正極材として機能することができれば、特に限定されるものではなく、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リチウムニッケルコバルトマンガン複合酸化物、オリビン型複合酸化物等であってもよく、これらを適宜混合したものであってもよい。また、正極材41のサイズや形状は、円柱形状に限定されるものではなく、全固体電池1のサイズや形状に応じて種々変更可能である。 The positive electrode material 41 contains LiNi 0.6 Co 0.2 Mn 0.2 O 2 having an average particle size of 3 μm and a sulfide solid electrolyte (Li 6 PS 5 Cl) as the positive electrode active material used in the lithium ion secondary battery. This is a positive electrode pellet formed into a cylindrical shape by putting 180 mg of a positive electrode mixture containing carbon nanotubes, which are conductive aids, in a mass ratio of 55:40: 5 into a mold having a diameter of 10 mm. The positive electrode material 41 is not particularly limited as long as it can function as the positive electrode material of the power generation element 4. For example, lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium nickel cobalt manganese composite oxide, and the like. It may be an olivine type composite oxide or the like, or it may be a mixture thereof as appropriate. Further, the size and shape of the positive electrode material 41 are not limited to the cylindrical shape, and can be variously changed according to the size and shape of the all-solid-state battery 1.

負極材42は、リチウムイオン二次電池に用いられる負極活物質として、LTO(LiTi12、チタン酸リチウム)と、硫化物固体電解質(LiPSCl)と、カーボンナノチューブとを重量比で50:45:5の割合で含有した300mgの負極合剤を円柱形状に成形した負極ペレットである。なお、負極材42は、発電要素4の負極材として機能することができれば、特に限定されるものではなく、例えば、金属リチウム、リチウム合金、黒鉛、低結晶カーボンなどの炭素材料や、SiO、LTO(LiTi12、チタン酸リチウム)等であってもよく、これらを適宜混合したものであってもよい。また、負極材42のサイズや形状は、円柱形状に限定されるものではなく、全固体電池1のサイズや形状に応じて種々変更可能である。 The negative electrode material 42 contains LTO (Li 4 Ti 5 O 12 , lithium titanate), a sulfide solid electrolyte (Li 6 PS 5 Cl), and carbon nanotubes as negative electrode active materials used in a lithium ion secondary battery. It is a negative electrode pellet obtained by molding 300 mg of a negative electrode mixture contained in a weight ratio of 50:45: 5 into a cylindrical shape. The negative electrode material 42 is not particularly limited as long as it can function as the negative electrode material of the power generation element 4. For example, carbon materials such as metallic lithium, lithium alloy, graphite, and low crystal carbon, SiO, and LTO. (Li 4 Ti 5 O 12 , lithium titanate) or the like may be used, or a mixture thereof may be used as appropriate. Further, the size and shape of the negative electrode material 42 are not limited to the cylindrical shape, and can be variously changed according to the size and shape of the all-solid-state battery 1.

固体電解質43は、60mgの硫化物固体電解質(LiPSCl)を円柱形状に成形したものである。なお、固体電解質43は、特に限定はされないが、イオン伝導性の点から他のアルジロダイト型などの硫黄系固体電解質であってもよい。硫黄系固体電解質を用いる場合には、正極活物質との反応を防ぐために、正極活物質の表面をニオブ酸化物で被覆することが好ましい。また、固体電解質43は、水素化物系固体電解質や酸化物系固体電解質等であってもよい。また、固体電解質43のサイズや形状は、円柱形状に限定されるものではなく、全固体電池1のサイズや形状に応じて種々変更可能である。 The solid electrolyte 43 is formed by molding 60 mg of a sulfide solid electrolyte (Li 6 PS 5 Cl) into a cylindrical shape. The solid electrolyte 43 is not particularly limited, but may be another sulfur-based solid electrolyte such as an algyrodite type from the viewpoint of ionic conductivity. When a sulfur-based solid electrolyte is used, it is preferable to coat the surface of the positive electrode active material with niobium oxide in order to prevent the reaction with the positive electrode active material. Further, the solid electrolyte 43 may be a hydride-based solid electrolyte, an oxide-based solid electrolyte, or the like. Further, the size and shape of the solid electrolyte 43 are not limited to the cylindrical shape, and can be variously changed according to the size and shape of the all-solid-state battery 1.

ガスケット5は、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂、PFA樹脂などの水分低透過性樹脂によって形成されている。ガスケット5は、外装缶2の周壁部22の内周面に沿う筒状に形成され、外装缶2の周壁部22と発電要素4との間に配置されている。図2に示すように、ガスケット5は、径方向において、0.05〜0.2mmの厚みt3を有している。ガスケット5は、外装缶2の周壁部22と負極材42とを絶縁でき、且つ、外装缶2の周壁部22と封口板3とを絶縁できれば、比較的薄く形成してもよい。全固体電池1の内部空間は、ガスケット5を薄くするほど広くなる。よって、全固体電池1の電池容量を増大させることができる。ただし、ガスケット5は、薄くなりすぎると破損するおそれがある。ガスケット5が破損すると、短絡が生じるおそれがある。したがって、ガスケット5の厚みt3は、0.05mm以上、好ましくは0.07mm以上、とするのがよく、0.2mm以下、好ましくは0.15mm以下とするのがよい。 The gasket 5 is formed of a low moisture permeable resin such as polypropylene resin, polyphenylene sulfide resin, and PFA resin. The gasket 5 is formed in a tubular shape along the inner peripheral surface of the peripheral wall portion 22 of the outer can 2, and is arranged between the peripheral wall portion 22 of the outer can 2 and the power generation element 4. As shown in FIG. 2, the gasket 5 has a thickness t3 of 0.05 to 0.2 mm in the radial direction. The gasket 5 may be formed relatively thin as long as it can insulate the peripheral wall portion 22 of the outer can 2 and the negative electrode material 42 and can insulate the peripheral wall portion 22 of the outer can 2 and the sealing plate 3. The internal space of the all-solid-state battery 1 becomes wider as the gasket 5 becomes thinner. Therefore, the battery capacity of the all-solid-state battery 1 can be increased. However, if the gasket 5 becomes too thin, it may be damaged. If the gasket 5 is damaged, a short circuit may occur. Therefore, the thickness t3 of the gasket 5 is preferably 0.05 mm or more, preferably 0.07 mm or more, and 0.2 mm or less, preferably 0.15 mm or less.

また、ガスケット5は、図1に示すように略I字状の断面を有している。発電要素4の周側面は、ガスケット5の内周面に接し、ガスケット5の外周面は、外装缶2の周壁部22の内周面に接している。上述の特許文献1の電池において、ガスケットは、封口缶の内壁部の先端部側で折り返された略J字状の断面を有している。そのため、ガスケットの配置が困難になる。一方で、本開示に係るガスケット5は、略I字状の断面を有しているため、発電要素4の周側面と外装缶2の周壁部22との間に容易且つシンプルに配置することができる。また、全固体電池1は、ガスケット5が略I字状の断面を有し、発電要素4の外周面がガスケット5の内周面に接し、ガスケット5の外周面が外装缶2の周壁部22の内周面に接するようにしたことにより、全固体電池1の内部空間を有効利用でき、電池容量を増大させることができる。 Further, the gasket 5 has a substantially I-shaped cross section as shown in FIG. The peripheral side surface of the power generation element 4 is in contact with the inner peripheral surface of the gasket 5, and the outer peripheral surface of the gasket 5 is in contact with the inner peripheral surface of the peripheral wall portion 22 of the outer can 2. In the battery of Patent Document 1 described above, the gasket has a substantially J-shaped cross section folded back on the tip end side of the inner wall portion of the sealing can. Therefore, it becomes difficult to arrange the gasket. On the other hand, since the gasket 5 according to the present disclosure has a substantially I-shaped cross section, it can be easily and simply arranged between the peripheral side surface of the power generation element 4 and the peripheral wall portion 22 of the outer can 2. it can. Further, in the all-solid-state battery 1, the gasket 5 has a substantially I-shaped cross section, the outer peripheral surface of the power generation element 4 is in contact with the inner peripheral surface of the gasket 5, and the outer peripheral surface of the gasket 5 is the peripheral wall portion 22 of the outer can 2. By contacting the inner peripheral surface of the battery 1, the internal space of the all-solid-state battery 1 can be effectively used and the battery capacity can be increased.

このように全固体電池1は、外装缶2の開口を平板状の封口板3で覆うことによって、全固体電池1の内部空間を有効利用でき、電池容量を増大させることができる。また、外装缶2の周壁部22の先端部を封口板3の周端部31に向かってカシメることにより、小型化を図りながらも外装缶2と封口板3とを十分にカシメることができる。 In this way, the all-solid-state battery 1 can effectively utilize the internal space of the all-solid-state battery 1 and increase the battery capacity by covering the opening of the outer can 2 with the flat plate-shaped sealing plate 3. Further, by crimping the tip end portion of the peripheral wall portion 22 of the outer can 2 toward the peripheral end portion 31 of the sealing plate 3, the outer can 2 and the sealing plate 3 can be sufficiently crimped while reducing the size. it can.

黒鉛シート6は、膨張黒鉛を圧延して形成されている。黒鉛シート6の平面視形状は、全固体電池1の内部空間の平面視形状と略相似形状に形成されている。そのため、黒鉛シート6は、平面視略円形状に形成されている。外装缶2側の黒鉛シート6の上面の面積は、発電要素4の正極材41の下面の面積と同じであってもよく、或いは、発電要素4の正極材41の下面の面積より広くてもよい。また、封口板3側の黒鉛シート6の下面の面積は、発電要素4の負極材42の上面の面積と同じであってもよく、或いは、発電要素4の負極材42の上面の面積より多少小さくなってもよい。すなわち、外装缶2側の黒鉛シート6の上面は、正極材41の下面を覆っていればよい。また、封口板3側の黒鉛シート6の下面は、カシメ時に加わる力が端部に集中するのを防ぐため、負極材42の上面の周縁からはみださないようにすることが望ましい。なお、黒鉛シート6は、平面視略円形状に限られず、楕円形状、平面視略多角形状等、全固体電池1の平面視形状に応じて種々変更することができる。 The graphite sheet 6 is formed by rolling expanded graphite. The plan-view shape of the graphite sheet 6 is formed to be substantially similar to the plan-view shape of the internal space of the all-solid-state battery 1. Therefore, the graphite sheet 6 is formed in a substantially circular shape in a plan view. The area of the upper surface of the graphite sheet 6 on the outer can 2 side may be the same as the area of the lower surface of the positive electrode material 41 of the power generation element 4, or may be larger than the area of the lower surface of the positive electrode material 41 of the power generation element 4. Good. Further, the area of the lower surface of the graphite sheet 6 on the sealing plate 3 side may be the same as the area of the upper surface of the negative electrode material 42 of the power generation element 4, or slightly smaller than the area of the upper surface of the negative electrode material 42 of the power generation element 4. It may be smaller. That is, the upper surface of the graphite sheet 6 on the outer can 2 side may cover the lower surface of the positive electrode material 41. Further, it is desirable that the lower surface of the graphite sheet 6 on the sealing plate 3 side does not protrude from the peripheral edge of the upper surface of the negative electrode material 42 in order to prevent the force applied at the time of caulking from concentrating on the end portion. The graphite sheet 6 is not limited to a substantially circular shape in a plan view, and can be variously changed according to the plan view shape of the all-solid-state battery 1, such as an elliptical shape and a substantially polygonal shape in a plan view.

黒鉛シート6は、より具体的には、以下のように製造される。まず、天然黒鉛に酸処理を施した酸処理黒鉛の粒子を加熱する。そうすると、酸処理黒鉛は、その層間にある酸が気化して発泡することによって膨張する。この膨張化した黒鉛(膨張黒鉛)をフェルト状に成型し、さらに、ロール圧延機を用いて圧延することによりシート体を形成する。黒鉛シート6は、この膨張黒鉛のシート体を円形状にくり抜くことにより製造される。上述の通り、膨張黒鉛は、酸が気化して酸処理黒鉛が発泡することによって形成される。そのため、黒鉛シート6は、多孔質シートに形成されている。したがって、黒鉛シート6は、黒鉛自体がもつ導電性とともに、多孔質による優れた可撓性をも有する。なお、黒鉛シート6の製造方法はこれに限られず、どのような方法で黒鉛シート6を製造してもよい。 More specifically, the graphite sheet 6 is manufactured as follows. First, the particles of acid-treated graphite obtained by subjecting natural graphite to acid treatment are heated. Then, the acid-treated graphite expands by vaporizing and foaming the acid between the layers. The expanded graphite (expanded graphite) is molded into a felt shape and further rolled using a roll rolling machine to form a sheet body. The graphite sheet 6 is manufactured by hollowing out the expanded graphite sheet body into a circular shape. As described above, expanded graphite is formed by vaporizing the acid and foaming the acid-treated graphite. Therefore, the graphite sheet 6 is formed into a porous sheet. Therefore, the graphite sheet 6 has excellent flexibility due to its porosity as well as the conductivity of graphite itself. The method for producing the graphite sheet 6 is not limited to this, and the graphite sheet 6 may be produced by any method.

黒鉛シート6は、上述の通り、優れた導電性及び可撓性を有する。そのため、黒鉛シート6は、集電体として機能することができるとともに、発電要素4の充放電による膨張及び収縮、又は、外装缶2と封口板3とをカシメる際の押圧力を吸収することができる。これにより、全固体電池1は、発電要素4の損傷や隙間の形成による電池性能の低下を抑制することができる。 As mentioned above, the graphite sheet 6 has excellent conductivity and flexibility. Therefore, the graphite sheet 6 can function as a current collector and absorbs expansion and contraction of the power generation element 4 due to charging and discharging, or pressing force when crimping the outer can 2 and the sealing plate 3. Can be done. As a result, the all-solid-state battery 1 can suppress deterioration of battery performance due to damage to the power generation element 4 and formation of gaps.

なお、全固体電池1は、黒鉛シート6を設けず、外装缶2の底部21の上面に正極材41が接するように配置し、封口板3の下面に負極材42が接するように配置してもよい。また、黒鉛シート6は、正極材41側又は負極材42側のいずれか一方にのみ配置してもよい。また、全固体電池1は、黒鉛シート6に代えて、負極材42側及び正極材41側の少なくとも一方に、銅、ニッケル、ステンレス、アルミ及びチタンなどの金属製の箔、多孔質基材並びに、カーボンナノチューブなどの炭素繊維の不織布などを、集電シートとして設けてもよい。 The all-solid-state battery 1 is not provided with the graphite sheet 6, and is arranged so that the positive electrode material 41 is in contact with the upper surface of the bottom 21 of the outer can 2, and the negative electrode material 42 is in contact with the lower surface of the sealing plate 3. May be good. Further, the graphite sheet 6 may be arranged only on either the positive electrode material 41 side or the negative electrode material 42 side. Further, in the all-solid-state battery 1, instead of the graphite sheet 6, at least one of the negative electrode material 42 side and the positive electrode material 41 side is made of a metal foil such as copper, nickel, stainless steel, aluminum and titanium, a porous base material, and a porous base material. , A non-woven fabric of carbon fibers such as carbon nanotubes may be provided as a current collecting sheet.

(製造方法)
次に、全固体電池1の製造方法について、図1を参照しながら説明する。
(Production method)
Next, a method of manufacturing the all-solid-state battery 1 will be described with reference to FIG.

まず、上述した外装缶2と封口板3とを準備する。なお、外装缶2の周壁部22は、この状態では、未だ先端部が内側に湾曲しておらず、縦断面視で、底部21に対して略垂直に直線状に延びている。 First, the outer can 2 and the sealing plate 3 described above are prepared. In this state, the peripheral wall portion 22 of the outer can 2 has a tip portion that is not yet curved inward, and extends in a straight line substantially perpendicular to the bottom portion 21 in a vertical cross-sectional view.

次に、外装缶2の周壁部22の内周面に、上述した筒状のガスケット5を配置する。なお、ガスケット5も、封口板3側の先端部が内側に湾曲しておらず、縦断面視で、先端部方向に向かって直線状に延びている。 Next, the above-mentioned tubular gasket 5 is arranged on the inner peripheral surface of the peripheral wall portion 22 of the outer can 2. The tip of the gasket 5 on the sealing plate 3 side is not curved inward, and extends linearly toward the tip in a vertical cross-sectional view.

次に、外装缶2の内部に発電要素4と2枚の黒鉛シート6とを収容する。発電要素4と2枚の黒鉛シート6とは、外装缶2の底部21から、正極材41側の黒鉛シート6、発電要素4、負極材42側の黒鉛シート6の順で積層されている。 Next, the power generation element 4 and the two graphite sheets 6 are housed inside the outer can 2. The power generation element 4 and the two graphite sheets 6 are laminated in this order from the bottom 21 of the outer can 2, the graphite sheet 6 on the positive electrode material 41 side, the power generation element 4, and the graphite sheet 6 on the negative electrode material 42 side.

次に、負極材42側の黒鉛シート6の上面に封口板3を配置する。この際、封口板3は、平面に形成された下面が負極材42側の黒鉛シート6の上面に対向している。また、外装缶2の周壁部22と封口板3の周端部31との間には、ガスケット5が位置付けられている。 Next, the sealing plate 3 is arranged on the upper surface of the graphite sheet 6 on the negative electrode material 42 side. At this time, the lower surface of the sealing plate 3 formed on a flat surface faces the upper surface of the graphite sheet 6 on the negative electrode material 42 side. Further, a gasket 5 is positioned between the peripheral wall portion 22 of the outer can 2 and the peripheral end portion 31 of the sealing plate 3.

最後に、外装缶2の周壁部22の先端部をガスケット5の先端部とともに、封口板3の突部33の方向へ内側下方に湾曲させ、外装缶2と封口板3とをカシメる。これにより、全固体電池1を製造することができる。 Finally, the tip of the peripheral wall portion 22 of the outer can 2 is curved inward and downward in the direction of the protrusion 33 of the sealing plate 3 together with the tip of the gasket 5, and the outer can 2 and the sealing plate 3 are crimped. Thereby, the all-solid-state battery 1 can be manufactured.

(第2実施形態)
次に、第2実施形態の全固体電池1について、図4を用いて具体的に説明する。なお、第1実施形態の全固体電池1と同様の構成については説明を省略し、第1実施形態の全固体電池1と異なる構成についてのみ説明する。
(Second Embodiment)
Next, the all-solid-state battery 1 of the second embodiment will be specifically described with reference to FIG. The same configuration as the all-solid-state battery 1 of the first embodiment will be omitted, and only the configuration different from the all-solid-state battery 1 of the first embodiment will be described.

図4に示すように、封口板3の下面は、凹凸構造を有してもよい。凹凸構造は、所定の間隔で延びる複数の溝部34と、この複数の溝部34に直交して所定の間隔で延びる複数の溝部34とによって、平面視略格子状に形成されている。このように凹凸構造を形成したことにより、負極材42側の黒鉛シート6は、封口板3の下面との接触面積、すなわち、集電面積を増加させることができる。なお、溝部34は、平面視略格子状に限られるものではない。例えば、溝部34の平面視形状は、上下方向に平行に延びる縦縞状であってもよく、円形状やリング状等の溝部34が複数所定のバランスで配置された水玉状等であってもよい。逆に、円形状やリング状の隆起部が複数所定のバランスで配置された水玉状等であってもよい。また、凹凸構造は、封口板3の下面の一部、例えば、肉厚の中央部32の下面に溝部34を設けた構造も含む。また、凹凸構造は、外装缶2の底部21の上面にも設けてもよい。また、凹凸構造は、封口板3の下面または外装缶2の底部21の上面のいずれか一方に設けてもよい。 As shown in FIG. 4, the lower surface of the sealing plate 3 may have an uneven structure. The uneven structure is formed in a substantially grid pattern in a plan view by a plurality of groove portions 34 extending at predetermined intervals and a plurality of groove portions 34 extending at predetermined intervals orthogonal to the plurality of groove portions 34. By forming the uneven structure in this way, the graphite sheet 6 on the negative electrode material 42 side can increase the contact area with the lower surface of the sealing plate 3, that is, the current collecting area. The groove 34 is not limited to a substantially grid pattern in a plan view. For example, the plan view shape of the groove portion 34 may be a vertical stripe shape extending in parallel in the vertical direction, or a polka dot shape in which a plurality of groove portions 34 such as a circular shape or a ring shape are arranged in a predetermined balance. .. On the contrary, it may be in the shape of polka dots in which a plurality of circular or ring-shaped ridges are arranged in a predetermined balance. The uneven structure also includes a structure in which a groove 34 is provided on a part of the lower surface of the sealing plate 3, for example, the lower surface of the thick central portion 32. Further, the uneven structure may be provided on the upper surface of the bottom portion 21 of the outer can 2. Further, the uneven structure may be provided on either the lower surface of the sealing plate 3 or the upper surface of the bottom portion 21 of the outer can 2.

以上、実施形態について説明したが、本開示は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the embodiments.

1 全固体電池
2 外装缶、21 底部、22 周壁部
3 封口板、31 周端部、32 中央部、33 突部、34 溝部
4 発電要素、41 正極材、42 負極材、43 固体電解質
5 ガスケット
6 黒鉛シート
1 All-solid-state battery 2 Exterior can, 21 Bottom, 22 Peripheral wall 3 Seal plate, 31 Peripheral end, 32 Central part, 33 Protrusion, 34 Groove 4 Power generation element, 41 Positive electrode material, 42 Negative electrode material, 43 Solid electrolyte 5 Gasket 6 Graphite sheet

Claims (7)

底部と周壁部とを有する外装缶と、
前記外装缶の開口を覆い、周端部と該周端部よりも肉厚の中央部とを有する封口板と、
前記外装缶の底部と前記封口板との間に収容され、正極材と負極材と前記正極材と前記負極材との間に配置される固体電解質とを含む発電要素と、
前記外装缶の周壁部と前記発電要素との間に配置されるガスケットとを備え、
前記外装缶の周壁部は、前記封口板の周端部の上面に向かってカシメられている先端部を有する、全固体電池。
An exterior can with a bottom and a peripheral wall,
A sealing plate that covers the opening of the outer can and has a peripheral end portion and a central portion that is thicker than the peripheral end portion.
A power generation element housed between the bottom of the outer can and the sealing plate and containing a positive electrode material, a negative electrode material, and a solid electrolyte arranged between the positive electrode material and the negative electrode material.
A gasket provided between the peripheral wall portion of the outer can and the power generation element is provided.
The peripheral wall portion of the outer can is an all-solid-state battery having a tip portion crimped toward the upper surface of the peripheral end portion of the sealing plate.
請求項1に記載の全固体電池であって、
前記封口板の中央部は、前記封口板の上面側から隆起して前記周端部よりも肉厚に形成され、
前記封口板の下面は、平面である、全固体電池。
The all-solid-state battery according to claim 1.
The central portion of the sealing plate is formed to be thicker than the peripheral end portion by protruding from the upper surface side of the sealing plate.
An all-solid-state battery in which the lower surface of the sealing plate is flat.
請求項1又は2に記載の全固体電池であって、
前記封口板の中央部は、前記周端部の1.5〜3倍の厚みを有する、全固体電池。
The all-solid-state battery according to claim 1 or 2.
The central portion of the sealing plate is an all-solid-state battery having a thickness of 1.5 to 3 times that of the peripheral end portion.
請求項1〜3のいずれか1項に記載の全固体電池であって、
前記封口板の中央部は、平面視で、封口板の70〜90%の面積を有する、全固体電池。
The all-solid-state battery according to any one of claims 1 to 3.
The central portion of the sealing plate is an all-solid-state battery having an area of 70 to 90% of the sealing plate in a plan view.
請求項1〜4のいずれか1項に記載の全固体電池であって、
前記封口板の周端部は、該周端部の上面の端部に突部を備え、
前記ガスケットは、前記周壁部と前記突部との間に配置され、
前記周壁部の先端部は、前記突部に向かってカシメられている、全固体電池。
The all-solid-state battery according to any one of claims 1 to 4.
The peripheral end portion of the sealing plate is provided with a protrusion at the end portion of the upper surface of the peripheral end portion.
The gasket is arranged between the peripheral wall portion and the protrusion portion, and is arranged.
The tip of the peripheral wall is an all-solid-state battery that is crimped toward the protrusion.
請求項5に記載の全固体電池であって、
前記突部は、周端部の上面から0.03〜0.08mmの高さを有する、全固体電池。
The all-solid-state battery according to claim 5.
The protrusion is an all-solid-state battery having a height of 0.03 to 0.08 mm from the upper surface of the peripheral end portion.
請求項1〜6のいずれか1項に記載の全固体電池であって、
前記ガスケットは、筒状をなし、略I字状の断面を有し、
前記発電要素の周側面は、前記ガスケットの内周面に接し、
前記ガスケットの外周面は、前記外装缶の周壁部の内周面に接する、全固体電池。
The all-solid-state battery according to any one of claims 1 to 6.
The gasket has a tubular shape and a substantially I-shaped cross section.
The peripheral side surface of the power generation element is in contact with the inner peripheral surface of the gasket.
An all-solid-state battery in which the outer peripheral surface of the gasket is in contact with the inner peripheral surface of the peripheral wall portion of the outer can.
JP2019211768A 2019-11-22 2019-11-22 All-solid-state battery Pending JP2021082562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019211768A JP2021082562A (en) 2019-11-22 2019-11-22 All-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211768A JP2021082562A (en) 2019-11-22 2019-11-22 All-solid-state battery

Publications (1)

Publication Number Publication Date
JP2021082562A true JP2021082562A (en) 2021-05-27

Family

ID=75965907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211768A Pending JP2021082562A (en) 2019-11-22 2019-11-22 All-solid-state battery

Country Status (1)

Country Link
JP (1) JP2021082562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145830A1 (en) * 2022-01-31 2023-08-03 パナソニックIpマネジメント株式会社 Power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145830A1 (en) * 2022-01-31 2023-08-03 パナソニックIpマネジメント株式会社 Power storage device

Similar Documents

Publication Publication Date Title
EP3477729B1 (en) Rechargeable lithium ion button cell battery
JP5383616B2 (en) Secondary battery
KR100782993B1 (en) Secondary battery
JP6020442B2 (en) Cylindrical battery and battery electrode structure
JP6102057B2 (en) Electricity storage element
WO2021033601A1 (en) All-solid-state battery
WO1999008332A1 (en) Battery and method of its manufacture
JPWO2018061381A1 (en) Non-aqueous electrolyte secondary battery
JPS63175345A (en) Organic electrolyte battery
JP2006080066A (en) Lithium-ion secondary battery
JP2021082562A (en) All-solid-state battery
JP7107150B2 (en) power storage device
WO2022102639A1 (en) All-solid-state battery
KR100284343B1 (en) Flock of Electrode in secondary battery
WO2021040044A1 (en) All-solid-state battery
JP6719100B2 (en) Coin cell battery
JP7256702B2 (en) solid electrolyte battery
JPH10255733A (en) Small-sized battery
JP2000357535A (en) Rectangular lithium secondary battery
CN220753482U (en) Current collecting unit, pole piece and battery
US20220200056A1 (en) Solid-state battery
JP2018195406A (en) Power storage element
JP2000048780A (en) Coin type organic electrolyte cell, and its manufacture
CN116918146A (en) Cylindrical battery
JP2019008941A (en) Electrode, alkali storage battery and method for manufacturing electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507