JP2021044895A - Energy harvesting wireless sensor with charging terminal - Google Patents

Energy harvesting wireless sensor with charging terminal Download PDF

Info

Publication number
JP2021044895A
JP2021044895A JP2019164097A JP2019164097A JP2021044895A JP 2021044895 A JP2021044895 A JP 2021044895A JP 2019164097 A JP2019164097 A JP 2019164097A JP 2019164097 A JP2019164097 A JP 2019164097A JP 2021044895 A JP2021044895 A JP 2021044895A
Authority
JP
Japan
Prior art keywords
energy harvesting
unit
storage element
power supply
external power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019164097A
Other languages
Japanese (ja)
Inventor
小林 照雄
Teruo Kobayashi
照雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Solutions Corp
Original Assignee
Hitachi High Tech Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Solutions Corp filed Critical Hitachi High Tech Solutions Corp
Priority to JP2019164097A priority Critical patent/JP2021044895A/en
Publication of JP2021044895A publication Critical patent/JP2021044895A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To maintain a sensor function even when an energy harvesting element is replaced in an energy harvesting wireless sensor.SOLUTION: In order to solve the above problem, in the present invention, a power supply circuit unit 2 and a sensor circuit unit 3 of an energy harvesting wireless sensor 1 are connected by a backflow prevention diode 4. A lead wire is drawn from a wireless sensor circuit so that an external power source 20 can be supplied. A power storage element 5 is separated from the power supply circuit unit 2, the lead wire is pulled out from the power storage element 5, and made to be connectable to the external power source 20. As a result, charging from the external power source 20 is enabled.SELECTED DRAWING: Figure 1

Description

本発明は、環境発電により電力供給を受け、無線で信号伝送する環境発電無線式センサに関し、その中でも特に、当該センサの充電技術に関する。 The present invention relates to an energy harvesting wireless sensor that receives electric power by energy harvesting and wirelessly transmits a signal, and more particularly to a charging technique for the sensor.

近年、免許不要の特定小電力無線の範囲で長距離の無線伝送が可能なLPWA(Low Power Wide Area)通信方式が実用になり、また、環境発電技術も進歩してきている。このような技術動向の中、電源配線、信号配線が不要な環境発電無線式センサが実用化されつつある。これらの環境発電無線式センサは、電源配線、信号配線が不要と言う特徴を生かし、今まで設置コストが嵩むため断念していた山間地や河川などの環境計測用として期待されるものである。また、遠隔地に設置の設備の状態監視用としても使用される。 In recent years, LPWA (Low Power Wide Area) communication methods capable of long-distance wireless transmission within the range of specific low-power radios that do not require a license have become practical, and energy harvesting technology has also advanced. Under such technological trends, energy harvesting wireless sensors that do not require power supply wiring and signal wiring are being put into practical use. These energy harvesting wireless sensors are expected to be used for environmental measurement of mountainous areas and rivers, which have been abandoned due to the high installation cost, taking advantage of the feature that power supply wiring and signal wiring are unnecessary. It is also used for monitoring the condition of equipment installed in remote areas.

ここで、一般的な環境発電無線式センサの設計例について、以下に記載する。 Here, a design example of a general energy harvesting wireless sensor will be described below.

環境発電無線式センサでは、環境発電素子から得られた発電電力を大容量の蓄電素子に蓄積し、発電量の小さいときでも動作可能としている。 The energy harvesting wireless sensor stores the generated power obtained from the energy harvesting element in a large-capacity power storage element so that it can operate even when the amount of power generation is small.

本発明の環境発電無線式センサの目的とするところは、山間地や河川などの環境計測、遠隔地に設置の設備の状態監視であり、主に屋外に設置される。例えば、太陽光発電の場合を考えると、常に適切な太陽光が得られるわけではなく、夜間に限らず、昼間でも雨天、曇天、降雪の日の時には、必要な発電量が得られない場合がある。そのため、以下のように大容量の蓄電素子が必要とされる。 An object of the energy harvesting wireless sensor of the present invention is to measure the environment of mountainous areas and rivers, and to monitor the condition of equipment installed in remote areas, and it is mainly installed outdoors. For example, considering the case of solar power generation, it is not always possible to obtain appropriate sunlight, and it may not be possible to obtain the required amount of power generation not only at night but also in the daytime on rainy, cloudy, or snowy days. is there. Therefore, a large-capacity power storage element is required as follows.

環境発電素子として太陽光発電素子を使用した場合の実際の動作について検討し、蓄電素子の静電容量を計算する。このような環境発電無線式センサとしては、1Wクラスの太陽光発電素子が価格、寸法ともに適している。1Wクラスでは、おおよそ150mm×100mmくらいの寸法である。発電特性としては、定格の最大発電ポイントとして電圧10V、電流100mA程度である。 The actual operation when a photovoltaic power generation element is used as an energy harvesting element is examined, and the capacitance of the power storage element is calculated. As such an energy harvesting wireless sensor, a 1W class photovoltaic element is suitable in terms of price and size. In the 1W class, the size is about 150mm x 100mm. As for the power generation characteristics, the maximum rated power generation point is a voltage of 10 V and a current of about 100 mA.

そして、負荷としての無線式センサとしては、センサ消費電力3V、3mA、1回の測定時に2秒間駆動、無線送信回路部は、消費電力3V、50mA、1回の送信時間を10秒程度の動作である。以上の条件で、1時間に1回測定し送信する場合の消費電力を計算すると、3V×3mA×2秒+3V×50mA×10秒=18mジュール+1500mジュール=1.518ジュールとなる。すると、1日当りは、この24倍で36.4ジュールとなる。環境発電無線式センサでは、梅雨時のように天候の悪い日が続いても、2週間くらいは蓄電素子の蓄電電力で動作可能とする必要がある。すると蓄電素子の蓄電電力量は、36.4ジュール×14日=509.6ジュールとなる。これを、定格電圧3Vの蓄電素子に蓄電する場合の、蓄電素子の静電容量は、E=(1/2)×C×V2より、C=2×E/V2=2×509.6/32≒113Fとなる。 As a wireless sensor as a load, the sensor power consumption is 3V, 3mA, and it is driven for 2 seconds at one measurement. The wireless transmission circuit unit operates at power consumption of 3V, 50mA, and one transmission time is about 10 seconds. Is. Under the above conditions, the power consumption when measuring and transmitting once an hour is calculated as 3V × 3mA × 2 seconds + 3V × 50mA × 10 seconds = 18m joules + 1500m joules = 1.518 joules. Then, the daily amount is 24 times this, which is 36.4 joules. Energy harvesting wireless sensors need to be able to operate with the stored power of the power storage element for about two weeks even if the weather is bad, such as during the rainy season. Then, the amount of stored power of the power storage element is 36.4 joules x 14 days = 509.6 joules. When this is stored in a power storage element with a rated voltage of 3 V, the capacitance of the power storage element is C = 2 x E / V 2 = 2 x 509.6 / from E = (1/2) x C x V 2. 3 2 ≒ 113F.

特開2011-077961号公報Japanese Unexamined Patent Publication No. 2011-077961

上述の特許文献1は、蓄電素子を充電するのに手動の発電機を用いたものである。この方式は、機械的動作部があるため、この部分の保守も必要であり、手動式であるため発電電圧、電流が一定せず回路が複雑になっている。また、二次電池が劣化した場合、環境発電素子劣化時の交換については考慮されていない。 The above-mentioned Patent Document 1 uses a manual generator to charge the power storage element. Since this method has a mechanical operating part, maintenance of this part is also required, and since it is a manual type, the generated voltage and current are not constant and the circuit is complicated. In addition, when the secondary battery deteriorates, replacement when the energy harvesting element deteriorates is not considered.

また、環境発電無線式センサは、遠隔地に多数設置されるが、設置および設置後のテストの効率を上げるためには、設置後直ぐに電力が供給される必要がある。さらに、また、環境発電無線式センサは、工場における組立後の動作確認の際にも、直ぐに起動し動作確認作業ができることが要求される。 In addition, many energy harvesting wireless sensors are installed in remote locations, but in order to improve the efficiency of installation and post-installation tests, it is necessary to supply power immediately after installation. Furthermore, the energy harvesting wireless sensor is required to be immediately activated and to be able to perform the operation check work when checking the operation after assembly in the factory.

蓄電素子として大容量コンデンサを使用した場合、前述の計算例のようにその容量は100Fを超える大容量が必要となる。 When a large-capacity capacitor is used as the power storage element, the capacity needs to be large, exceeding 100F, as in the above calculation example.

このコンデンサを、例えば定格出力10V、100mAの太陽光発電素子で充電する場合の充電時間を計算してみる。コンデンサ容量を100F、定格電圧3Vとし、電圧3Vまで充電するのに要する時間をtとする。太陽光発電素子の発電制御にはMPPT(Maximum Power Point Tracking:最大電力点追従)制御を採用し、10V、100mAの電力で充電されるものとする。すると、容量100F、定格3Vのコンデンサの蓄積エネルギーEは、E=(1/2)×C×Vジュール(C:コンデンサ容量、V:コンデンサ電圧)=(1/2)×100×32=450ジュールとなるから、t=E/(10V×100mA)=450/(1W)=450s=7.5分と求められる。 Let's calculate the charging time when charging this capacitor with, for example, a photovoltaic power generation element with a rated output of 10V and 100mA. Let the capacitor capacity be 100F, the rated voltage be 3V, and the time required to charge to a voltage of 3V be t. MPPT (Maximum Power Point Tracking) control is adopted for the power generation control of the photovoltaic power generation element, and it is assumed that the battery is charged with a power of 10 V and 100 mA. Then, the stored energy E of the capacitor with a capacity of 100F and a rating of 3V is E = (1/2) x C x V 2 joules (C: capacitor capacity, V: capacitor voltage) = (1/2) x 100 x 3 2 Since = 450 joules, t = E / (10V × 100mA) = 450 / (1W) = 450s = 7.5 minutes.

太陽光発電素子の定格は放射照度1000W/m2の条件のときのものであり、これは昼間の快晴時の太陽光に相当し、照度で表すと約100,000ルクスである、通常のオフィスの1,000ルクス程度の照度で充電した場合には、単純に、7.5分の100倍の時間が掛かることになり、太陽光発電素子に光を当てて、蓄電素子に充電することは効率的ではない。 The rating of the photovoltaic power generation element is the one under the condition of irradiance of 1000 W / m 2 , which corresponds to the sunlight in the daytime in fine weather, which is about 100,000 lux in terms of illuminance, which is 1,000 in a normal office. When charging with an illuminance of about lux, it simply takes 100 times 7.5 times longer, and it is not efficient to shine light on the photovoltaic power generation element to charge the power storage element.

また、設置後においても、何らかの発電環境変化、例えば太陽光発電の場合、建造物が新築された、あるいは周囲の木々の枝葉が繁茂し常に日陰となった、または蓄電素子の劣化による蓄電量の低下による対策が必要となる場合がある。このような場合、設置場所の変更あるいは木々の枝葉の伐採、または蓄電素子の交換を行い、蓄電素子を満充電し復旧させる必要がある。また、環境発電素子の劣化により発電量が低下したため、蓄電量が低下し、対策が必要となる場合がある。そして、公共性が高い、重要度が高い計測データのためデータの欠落が許容されない場合、設置場所変更、木々の枝葉の伐採、蓄電素子、環境発電素子交換時にも、装置に給電し動作を継続させる必要がある。 In addition, even after installation, in the case of some change in the power generation environment, for example, in the case of solar power generation, the amount of electricity stored due to the construction of a new building, the overgrowth of branches and leaves of surrounding trees, and the constant shade, or the deterioration of the power storage element It may be necessary to take measures due to the decline. In such a case, it is necessary to change the installation location, cut down the branches and leaves of the trees, or replace the power storage element to fully charge and restore the power storage element. In addition, since the amount of power generation has decreased due to the deterioration of the energy harvesting element, the amount of electricity stored may decrease and countermeasures may be required. If data loss is not tolerated due to highly public and important measurement data, power is supplied to the device and operation continues even when the installation location is changed, the branches and leaves of trees are cut down, the power storage element, and the energy harvesting element are replaced. Need to be done.

本発明の目的は、充電が必要な場合など様々な動作状況でも環境発電無線式センサの検知機能を継続、維持することである。例えば、環境発電無線式センサに動作電力を供給しながら、蓄電素子を充電し、工場での組立後の試験、設置後の試験および運転を速やかに行えるようにすることを可能とすることが、本発明の目的の一例である。また、本発明の目的の他の一例として、環境発電無線式センサを構成する部品交換を、検知機能を維持ないし機能が発揮できない期間の短縮を可能とすることが含まれる。 An object of the present invention is to continue and maintain the detection function of the energy harvesting wireless sensor even in various operating conditions such as when charging is required. For example, it is possible to charge a power storage element while supplying operating power to an energy harvesting wireless sensor so that a post-assembly test, a post-installation test, and an operation in a factory can be performed promptly. This is an example of the object of the present invention. Further, as another example of the object of the present invention, it is included that the replacement of parts constituting the energy harvesting wireless sensor can maintain the detection function or shorten the period during which the function cannot be exhibited.

本発明は、上記課題を解決するため、物理量を測定、検知するための環境発電無線式センサにおいて、以下のとおりの外部電源と接続する構成を有する。物理量を検知するセンサ部と、前記センサ部に対して、環境発電により発電された電源を供給する環境発電部と、外部電源と接続する外部電源接続部とを有し、前記センサ部は、前記環境発電部との電気的に接続が切断された場合、前記物理量の検知を、前記外部電源接続部を介して供給された電源を利用して行う。より具体的には、環境発電無線式センサの電源回路部とセンサ回路部を逆流防止ダイオードで接続し、無線式センサ回路部から導線を引き出して外部電源を供給できるようにし、電源回路部から蓄電素子を切り離し蓄電素子から導線を引出して外部電源と接続可能として、外部電源から充電できるようにするものである。 In order to solve the above problems, the present invention has a configuration in which an energy harvesting wireless sensor for measuring and detecting a physical quantity is connected to the following external power sources. The sensor unit has a sensor unit that detects a physical quantity, an environmental power generation unit that supplies power generated by environmental power generation to the sensor unit, and an external power supply connection unit that connects to an external power source. When the electrical connection with the environmental power generation unit is disconnected, the physical quantity is detected by using the power supply supplied through the external power generation connection unit. More specifically, the power supply circuit section and the sensor circuit section of the environmental power generation wireless sensor are connected by a backflow prevention diode, and a lead wire is pulled out from the wireless sensor circuit section so that external power can be supplied, and electricity is stored from the power supply circuit section. The element is separated and a lead wire is pulled out from the power storage element so that it can be connected to an external power source so that it can be charged from the external power source.

また、本発明の一態様には、環境発電無線式センサの動作の際に、環境発電電力を蓄積する蓄電素子の交換、充電および環境発電素子の交換のいずれを実行することが含まれる。この場合、さらに前記外部電源接続部を介して供給される電源を蓄電する充電部とを有し、前記センサ部は、前記環境発電部との電気的に接続が切断された場合、前記物理量の検知を、前記外部電源接続部からの直接供給される電源または前記充電部に蓄電された電源を利用することも本発明に含まれる。 In addition, one aspect of the present invention includes performing any of replacement, charging, and replacement of the energy harvesting element of the energy harvesting element that stores the energy harvesting power when the energy harvesting wireless sensor is operated. In this case, the sensor unit further has a charging unit that stores power supplied via the external power generation connection unit, and the sensor unit has the physical quantity when the connection with the energy harvesting unit is electrically disconnected. It is also included in the present invention that the detection uses the power source directly supplied from the external power source connection unit or the power source stored in the charging unit.

本発明によれば、外部電源を利用することにより、様々な状況においても、環境発電無線式センサの動作を継続・持続させることが可能になる。 According to the present invention, by using an external power source, it is possible to continue and sustain the operation of the energy harvesting wireless sensor even in various situations.

本発明の一実施例における環境発電素子17の意交換手順を説明するための環境発電無線式センサ1と外部電源20の構成図Configuration diagram of the energy harvesting wireless sensor 1 and the external power supply 20 for explaining the procedure for exchanging the energy harvesting element 17 in one embodiment of the present invention. 本発明の一実施例における蓄電素子5の交換手順を説明するための環境発電無線式センサ1外部電源20の構成図Configuration diagram of the energy harvesting wireless sensor 1 external power supply 20 for explaining the replacement procedure of the power storage element 5 in the embodiment of the present invention. 本発明の一実施例における環境発電無線式センサ1の通常動作における状態を示す図The figure which shows the state in the normal operation of the energy harvesting wireless type sensor 1 in one Example of this invention. 本発明の一実施例の外部電源回路20の1例を示す図The figure which shows one example of the external power supply circuit 20 of one Example of this invention. 本発明の一実施例の蓄電素子への充電回路を簡略化した図The figure which simplified the charging circuit to the power storage element of one Example of this invention 本発明の一実施例の蓄電素子への充電時間を示すグラフA graph showing the charging time of the power storage element according to the embodiment of the present invention.

図1から図6を用いて本発明の一実施例を説明する。 An embodiment of the present invention will be described with reference to FIGS. 1 to 6.

図1、図2、図3において、1は環境発電無線式センサ、2は電源回路部、3はセンサ回路部、4は逆流防止ダイオード、5は蓄電素子、6は逆流防止ダイオード、7、8、9は抵抗器、18は外部電源接続端子、10はスイッチSW1、11はスイッチSW2、12はスイッチSW3、13は抵抗器、14および15は蓄電素子接続端子、16は環境発電素子接続端子、17は環境発電素子、18は外部電源接続端子、20は外部電源である。 In FIGS. 1, 2, and 3, 1 is an environmental power generation wireless sensor, 2 is a power supply circuit unit, 3 is a sensor circuit unit, 4 is a backflow prevention diode, 5 is a power storage element, 6 is a backflow prevention diode, 7, 8 , 9 is a resistor, 18 is an external power supply connection terminal, 10 is switch SW1, 11 is switch SW2, 12 is switch SW3, 13 is a resistor, 14 and 15 are storage element connection terminals, 16 is an environmental power generation element connection terminal, 17 is an environmental power generation element, 18 is an external power supply connection terminal, and 20 is an external power supply.

図1は、環境発電無線式センサ1が外部電源20を接続して、センサ回路部3に電源を供給し動作を継続しながら蓄電素子5を充電している状態を示している。この状態では、スイッチSW1-10は開、スイッチSW2-11は閉、スイッチSW3-12は開状態とする。外部電源20から外部電源接続端子18のa端子を通してセンサ回路部3に電源が供給され無線式センサとしての動作を継続する。そして、外部電源20から外部電源接続端子18のc端子を通して蓄電素子5に電源を供給し、蓄電素子5を充電する。ここで、外部電源接続端子18のd端子は、蓄電素子5の端子電圧をフィードバックして蓄電素子5の充電制御するためのものである。 FIG. 1 shows a state in which the energy harvesting wireless sensor 1 is connected to the external power supply 20 to supply power to the sensor circuit unit 3 and charge the power storage element 5 while continuing the operation. In this state, switch SW1-10 is open, switch SW2-11 is closed, and switch SW3-12 is open. Power is supplied from the external power supply 20 to the sensor circuit unit 3 through the a terminal of the external power supply connection terminal 18, and the operation as a wireless sensor is continued. Then, power is supplied from the external power source 20 to the power storage element 5 through the c terminal of the external power supply connection terminal 18, and the power storage element 5 is charged. Here, the d terminal of the external power supply connection terminal 18 is for feeding back the terminal voltage of the power storage element 5 to control the charging of the power storage element 5.

抵抗器9は、蓄電素子5の端子電圧を、外部電源接続端子18の端子bを通して外部電源20の電圧計31に接続し、蓄電素子5の充電状態をモニタするためのものである。 The resistor 9 is for connecting the terminal voltage of the power storage element 5 to the voltmeter 31 of the external power supply 20 through the terminal b of the external power supply connection terminal 18 and monitoring the charging state of the power storage element 5.

電源回路部2は、環境発電素子17と発電・充電制御回路で構成され、蓄電素子5を充電すると共に、センサ回路部に電源を供給する。環境発電素子17は、例えば、太陽光発電素子である。発電・充電制御回路は、例えば、MPPT(Maximum Power Point tracking:最大電力点追従)制御回路と蓄電素子5の充電回路である。 The power supply circuit unit 2 is composed of an energy harvesting element 17 and a power generation / charge control circuit, charges the power storage element 5, and supplies power to the sensor circuit unit. The energy harvesting element 17 is, for example, a solar power generation element. The power generation / charge control circuit is, for example, an MPPT (Maximum Power Point Tracking) control circuit and a charge circuit of the power storage element 5.

センサ回路部3は、昇圧・定電圧回路と無線式センサ回路とシステム制御回路で構成される。昇圧・定電圧回路は、定電圧化されていない蓄電素子5の端子電圧を、無線式センサ回路およびシステム制御回路の動作電圧まで昇圧し定電圧化するものである。無線式センサ回路は、無線通信回路とセンサ回路で構成される。システム制御回路は、無線式センサ回路におけるセンサ回路の測定周期制御、無線通信回路の送信周期制御など、センサ回路部の全体の制御を行う。 The sensor circuit unit 3 is composed of a boost / constant voltage circuit, a wireless sensor circuit, and a system control circuit. The boost / constant voltage circuit boosts the terminal voltage of the power storage element 5 that has not been made constant to the operating voltage of the wireless sensor circuit and the system control circuit to make it constant. The wireless sensor circuit is composed of a wireless communication circuit and a sensor circuit. The system control circuit controls the entire sensor circuit unit, such as measurement cycle control of the sensor circuit in the wireless sensor circuit and transmission cycle control of the wireless communication circuit.

逆流防止ダイオード4は、センサ回路部3のみに電源を供給して、電源回路部2、蓄電素子5に電流が流れないようにするものである。この逆流防止ダイオード4は、電源回路部2、蓄電素子5の間に入っているので、環境発電無線式センサ1の通常動作の際にもその順方向電圧降下により損失となる。 The backflow prevention diode 4 supplies power only to the sensor circuit unit 3 to prevent current from flowing to the power supply circuit unit 2 and the power storage element 5. Since the backflow prevention diode 4 is inserted between the power supply circuit unit 2 and the power storage element 5, a loss occurs due to the forward voltage drop even during the normal operation of the energy harvesting wireless sensor 1.

しかし、近年、順方向電圧の非常に低いダイオードが開発され、センサ回路部の動作電流50mA程度では、順方向電圧は0.2〜0.3Vに抑えられるので、大きな損失にはならない。逆流防止ダイオード6は、外部電源20が異常状態となった場合等で、外部電源接続端子18のc端子とe端子が短絡状態になったときに、蓄電素子5の放電を防止するためのものである。蓄電素子5は、100Fを超える大容量のため、端子が短絡した場合には大電流が流れ、蓄電素子5が異常過熱し、蓄電素子5の破損あるいは発火の恐れがあるため、これを防止するためのものである。なお、通常動作とは、環境発電無線式センサ1としての検知機能を動作させており、外部電源20からの電源供給がないか、極めて小さい場合を指す。 However, in recent years, a diode having a very low forward voltage has been developed, and when the operating current of the sensor circuit unit is about 50 mA, the forward voltage can be suppressed to 0.2 to 0.3 V, so that a large loss does not occur. The backflow prevention diode 6 is for preventing the power storage element 5 from being discharged when the c terminal and the e terminal of the external power supply connection terminal 18 are short-circuited, such as when the external power supply 20 is in an abnormal state. Is. Since the power storage element 5 has a large capacity exceeding 100 F, a large current flows when the terminals are short-circuited, the power storage element 5 overheats abnormally, and the power storage element 5 may be damaged or ignite. Is for. The normal operation refers to the case where the detection function as the energy harvesting wireless sensor 1 is operated and the power is not supplied from the external power source 20 or is extremely small.

図1を用いて、環境発電素子17の交換作業手順およびそのための外部電源20からの電源供給処理を説明する。 The replacement work procedure of the energy harvesting element 17 and the power supply process from the external power source 20 for that purpose will be described with reference to FIG.

環境発電無線式センサ1は、利用者からの環境発電素子17の交換指示を受け付け、各スイッチの接続状態を図1に示す状態とする。これらスイッチの接続(開閉)は、利用者が手動で行ってもよい。この結果、無線式センサ回路を含むセンサ回路部3に外部電源20から電源が供給され、その動作を維持させる。また、外部電源20から蓄電素子5へも電源を供給する。 The energy harvesting wireless sensor 1 receives a replacement instruction of the energy harvesting element 17 from the user, and the connection state of each switch is set to the state shown in FIG. The user may manually connect (open / close) these switches. As a result, power is supplied from the external power source 20 to the sensor circuit unit 3 including the wireless sensor circuit, and the operation is maintained. In addition, power is also supplied from the external power source 20 to the power storage element 5.

環境発電素子17の代わりに、外部電源20もしくは蓄電素子5からの電源を利用できるため、環境発電素子17の交換が可能となる。より具体的には、利用者が外部電源20の電圧計31をモニタし、蓄電素子5の端子電圧が定格電圧に達し安定状態になったと判断すれば、蓄電素子5の充電完了である。そして、環境発電無線式センサ1は、蓄電素子5もしくは外部電源20から無線式センサ回路を含むセンサ回路部3へ電源を供給し、その動作を維持させる。このため、その動作を維持したまま、利用者の作業による環境発電素子17の交換が可能になる。 Since the power source from the external power source 20 or the power storage element 5 can be used instead of the energy harvesting element 17, the energy harvesting element 17 can be replaced. More specifically, if the user monitors the voltmeter 31 of the external power source 20 and determines that the terminal voltage of the power storage element 5 has reached the rated voltage and is in a stable state, the charging of the power storage element 5 is completed. Then, the energy harvesting wireless sensor 1 supplies power from the power storage element 5 or the external power source 20 to the sensor circuit unit 3 including the wireless sensor circuit, and maintains its operation. Therefore, the energy harvesting element 17 can be replaced by the user's work while maintaining the operation.

次に、環境発電無線式センサ1は、利用者の指定ないし交換終了を検知し、スイッチSW1-10を閉、スイッチSW2-11を開とする。そして、利用者が外部電源20を外すことが可能になる。なお、スイッチの開閉は利用者が行ってもよい。 Next, the energy harvesting wireless sensor 1 detects the user's designation or the end of replacement, closes the switch SW1-10, and opens the switch SW2-11. Then, the user can remove the external power supply 20. The user may open and close the switch.

蓄電素子5の充電のみを行う場合は、図1に示す接続状態で充電し、充電完了したら、スイッチSW1-10を閉、スイッチSW2-11を開として、利用者により外部電源20を外すことを可能とする。 When charging only the power storage element 5, charge the battery in the connected state shown in FIG. 1, and when charging is completed, close the switch SW1-10 and open the switch SW2-11, and the user must remove the external power supply 20. Make it possible.

次に、蓄電素子5の交換作業手順を、図2を用いて説明する。スイッチSW3-12は、蓄電素子5の交換の際に、交換前に蓄電素子5の蓄積エネルギーを放電させて、安全に取外し、取扱いができるようにするためのものである。 Next, the procedure for replacing the power storage element 5 will be described with reference to FIG. When the power storage element 5 is replaced, the switch SW3-12 discharges the stored energy of the power storage element 5 before the replacement so that it can be safely removed and handled.

図2は、環境発電無線式センサ1と外部電源20が接続している構成を示す。より詳細には、外部電源20が無線式センサ回路部に電源を供給しながら、蓄電素子5を交換するために、蓄電素子5に蓄積されているエネルギーを放電させているスイッチの接続状態を示す。このとき、環境発電無線式センサ1は、利用者の指定により、スイッチSW1-10およびスイッチSW2-11は開とし、スイッチSW3-12を閉として蓄電素子5の蓄積エネルギーを放電させる。このため、利用者は、外部電源20の電圧計31をモニタし、蓄電素子5の端子電圧が0Vになったら放電完了と判断し、スイッチSW3-12を開とするための指定を環境発電無線式センサ1に行う。 FIG. 2 shows a configuration in which the energy harvesting wireless sensor 1 and the external power supply 20 are connected. More specifically, the connection state of the switch that discharges the energy stored in the power storage element 5 in order to replace the power storage element 5 while the external power supply 20 supplies power to the wireless sensor circuit unit is shown. .. At this time, the energy harvesting wireless sensor 1 discharges the stored energy of the power storage element 5 by opening the switches SW1-10 and SW2-11 and closing the switches SW3-12 according to the user's designation. Therefore, the user monitors the voltmeter 31 of the external power supply 20, determines that the discharge is complete when the terminal voltage of the power storage element 5 reaches 0V, and specifies the energy harvesting radio to open the switch SW3-12. Perform on formula sensor 1.

続いて、蓄電素子5の交換の後の手順を説明する。環境発電無線式センサ1は利用者からの指定ないし蓄電素子5の交換を検知して、スイッチSW2-11を閉とすることで、蓄電素子5の充電を開始する。そして、利用者は外部電源20の電圧計をモニタし、蓄電素子5の端子電圧が定格電圧に達し安定したかを判定する。安定した場合、充電が完了するので、環境発電無線式センサ1は、スイッチSW1-10を閉、スイッチSW2-11を開とし、外部電源との接続を解除する。 Subsequently, the procedure after the replacement of the power storage element 5 will be described. The energy harvesting wireless sensor 1 detects the designation from the user or the replacement of the power storage element 5, and closes the switch SW2-11 to start charging the power storage element 5. Then, the user monitors the voltmeter of the external power supply 20 and determines whether the terminal voltage of the power storage element 5 has reached the rated voltage and is stable. When it is stable, charging is completed, so the energy harvesting wireless sensor 1 closes the switch SW1-10 and opens the switch SW2-11 to disconnect from the external power supply.

図3は、環境発電無線式センサ1の通常動作状態を示す。このとき、スイッチSW1-10を閉とし、スイッチSW2-11およびスイッチSW3-12は開状態となる。この構成により、環境発電素子17に加え、蓄電素子5の電源を無線式センサ回路で利用し、その機能を動作させることが可能になる。 FIG. 3 shows the normal operating state of the energy harvesting wireless sensor 1. At this time, the switch SW1-10 is closed, and the switch SW2-11 and the switch SW3-12 are in the open state. With this configuration, in addition to the energy harvesting element 17, the power source of the power storage element 5 can be used in the wireless sensor circuit to operate its function.

図4は、外部電源20の内部回路の1例を示す。図4において、21はバッテリー、22および27はトランジスタ、23および28は演算増幅器、24は基準電圧源、25、26、29、30は抵抗器、31は電圧計、32は接続端子である。このような回路により、環境発電無線式センサ1への電源供給が可能となるが、外部電源20の構成は電源を供給できる機能を有すればよく本回路に限定されない。 FIG. 4 shows an example of the internal circuit of the external power supply 20. In FIG. 4, 21 is a battery, 22 and 27 are transistors, 23 and 28 are operational amplifiers, 24 is a reference voltage source, 25, 26, 29 and 30 are resistors, 31 is a voltmeter and 32 is a connection terminal. Such a circuit makes it possible to supply power to the energy harvesting wireless sensor 1, but the configuration of the external power supply 20 is not limited to this circuit as long as it has a function of supplying power.

次に、図4、図5、図6を用いて、センサ回路部への電源供給および蓄電素子5への充電動作を説明する。 Next, the power supply to the sensor circuit unit and the charging operation to the power storage element 5 will be described with reference to FIGS. 4, 5, and 6.

図4に示すように、センサ回路部3への電源供給は、トランジスタ27、演算増幅器28、定電圧源24、抵抗器29、30からなる回路で、バッテリー21の電圧を定電圧化して行われる。蓄電素子5の充電回路は、トランジスタ22、演算増幅器23、定電圧源24、抵抗器25、26からなる回路で、バッテリー21の電圧を制御して行われる。接続端子32の端子dには、蓄電素子5の端子電圧を、図1の抵抗器7、8で分圧した電圧が入力され、演算増幅器23により蓄電素子5の端子電圧が、蓄電素子5の定格電圧になるように制御される。 As shown in FIG. 4, the power supply to the sensor circuit unit 3 is performed by converting the voltage of the battery 21 to a constant voltage in a circuit including a transistor 27, an operational amplifier 28, a constant voltage source 24, and resistors 29 and 30. .. The charging circuit of the power storage element 5 is a circuit including a transistor 22, an operational amplifier 23, a constant voltage source 24, and resistors 25 and 26, and is performed by controlling the voltage of the battery 21. A voltage obtained by dividing the terminal voltage of the power storage element 5 by the resistors 7 and 8 of FIG. 1 is input to the terminal d of the connection terminal 32, and the terminal voltage of the power storage element 5 is set by the operational amplifier 23 of the power storage element 5. It is controlled to reach the rated voltage.

図5は、蓄電素子5の充電回路を簡略化した図である。蓄電素子5が放電し切った状態から充電する場合は、充電回路が定電圧制御されていたとしても、蓄電素子5の静電容量が非常に大きいので、直ぐには蓄電素子5の定格電圧にはならず過渡状態が長く続く。この過渡状態は、図5に示すように、バッテリー21が抵抗器25で蓄電素子5に接続された状態で表される。ここで、図2の逆流防止ダイオード6の順方向電圧を0.7V、図4のトランジスタのVbeを0.7Vとすると、バッテリー21の電圧は、10.4Vとなる。そして、抵抗器25を4.7Ω、蓄電素子5の静電容量を100F、定格電圧を3Vとすると、蓄電素子5の端子電圧は、時間と共に図6のように上昇する。そして、蓄電素子の端子電圧が3Vに達すると定電圧制御が働き、3Vで固定される。 FIG. 5 is a simplified diagram of the charging circuit of the power storage element 5. When charging from a state in which the power storage element 5 is completely discharged, even if the charging circuit is controlled at a constant voltage, the capacitance of the power storage element 5 is very large, so that the rated voltage of the power storage element 5 is immediately reached. The transient state continues for a long time. As shown in FIG. 5, this transient state is represented by a state in which the battery 21 is connected to the power storage element 5 by the resistor 25. Here, assuming that the forward voltage of the backflow prevention diode 6 in FIG. 2 is 0.7V and the Vbe of the transistor in FIG. 4 is 0.7V, the voltage of the battery 21 is 10.4V. Assuming that the resistor 25 is 4.7Ω, the capacitance of the power storage element 5 is 100F, and the rated voltage is 3V, the terminal voltage of the power storage element 5 rises with time as shown in FIG. Then, when the terminal voltage of the power storage element reaches 3V, the constant voltage control works and it is fixed at 3V.

ここで、バッテリー21として、バイク用の12V、2.3Ahという小型のバッテリーを使用した場合の充電可能回数を概算する。蓄電素子5の静電容量を100F、定格電圧を3Vとすると、満充電するのに要するエネルギー量Eは、E=(1/2)×C×V2より、E=(1/2)×100×32=450ジュールとなる。これに対し、12V、2.3Ahのバッテリーのエネルギー量Ebは、Eb=12×2.3×60×60≒9.9×104ジュールとなる。図4の抵抗器25による損失を無視して、エネルギーの移動のみで考えると、このバッテリーで充電できる回数は、(9.9×104)/450≒220回となり、メンテナンス用としての使用に十分耐える。 Here, the number of chargeable times when a small battery of 12V and 2.3Ah for a motorcycle is used as the battery 21 is estimated. Assuming that the capacitance of the power storage element 5 is 100F and the rated voltage is 3V, the amount of energy E required to fully charge is E = (1/2) × C × V 2 and E = (1/2) ×. 100 x 3 2 = 450 joules. On the other hand, the energy amount Eb of the 12V, 2.3Ah battery is Eb = 12 × 2.3 × 60 × 60 ≒ 9.9 × 10 4 joules. Ignoring the loss caused by the resistor 25 in Fig. 4, and considering only the energy transfer, the number of times this battery can be charged is (9.9 x 10 4 ) / 450 ≒ 220 times, which is sufficient for maintenance use. ..

なお、工場での試験用としては、図4のバッテリー21は、AC100Vを電源とした直流電源装置とするとよい。 For factory tests, the battery 21 in FIG. 4 may be a DC power supply device powered by AC100V.

以上の本実施例によれば、より高速に環境発電無線式センサを立ち上げることが可能になる。また、環境発電素子の発電電力によらずに、外部電源から蓄電素子に急速充電が可能となる。このため、例えば、工場における組立の際の試験、出荷時の試験および設置後の試験、運転を速やかに実施することができる。つまり、立ち上げの際の動作開始など、様々な状況においても環境発電無線式センサの動作を維持、継続することが可能になる。 According to the above embodiment, it is possible to start up the energy harvesting wireless sensor at a higher speed. In addition, the power storage element can be quickly charged from an external power source regardless of the power generated by the energy harvesting element. Therefore, for example, a test at the time of assembly in a factory, a test at the time of shipment, a test after installation, and an operation can be carried out promptly. That is, it is possible to maintain and continue the operation of the energy harvesting wireless sensor even in various situations such as the start of operation at the time of startup.

さらに、設置、稼動後の環境変化により十分に環境発電量が得られない場合の設置場所変更作業、蓄電素子、環境発電素子劣化時の交換作業においても、動作電力を供給しながら装置を停止させずに作業可能とすることができる。 Furthermore, even in the installation location change work when the amount of energy harvesting cannot be sufficiently obtained due to environmental changes after installation and operation, and the replacement work when the power storage element and the energy harvesting element deteriorate, the device is stopped while supplying operating power. It can be made possible to work without.

1…環境発電無線式センサ、2…電源回路部、3…センサ回路部、4、6…逆流防止ダイオード、5…充電素子、7、8、9、13…抵抗器、18…外部電源接続端子、10…スイッチSW1、11…スイッチSW2、12…スイッチSW3、14、15…蓄電素子接続端子、16…環境発電素子接続端子、17…環境発電素子、18…外部電源接続端子、20…外部電源 1 ... Environmental power generation wireless sensor, 2 ... Power supply circuit section, 3 ... Sensor circuit section, 4, 6 ... Backflow prevention diode, 5 ... Charging element, 7, 8, 9, 13 ... Resistor, 18 ... External power supply connection terminal , 10 ... Switch SW1, 11 ... Switch SW2, 12 ... Switch SW3, 14, 15 ... Power storage element connection terminal, 16 ... Environmental power generation element connection terminal, 17 ... Environmental power generation element, 18 ... External power supply connection terminal, 20 ... External power supply

Claims (5)

物理量を検知するセンサ部と、
前記センサ部に対して、環境発電により発電された電源を供給する環境発電部と、
外部電源と接続する外部電源接続部とを有し、
前記センサ部は、前記環境発電部との電気的な接続が切断された場合、前記物理量の検知を、前記外部電源接続部を介して供給された電源を利用して行うことを特徴とする環境発電式センサ装置。
A sensor unit that detects physical quantities and
An energy harvesting unit that supplies power generated by energy harvesting to the sensor unit,
It has an external power supply connection part that connects to an external power supply,
The sensor unit is characterized in that when the electrical connection with the energy harvesting unit is disconnected, the physical quantity is detected by using the power supply supplied through the external power generation connection unit. Power generation sensor device.
請求項1に記載の環境発電式センサ装置において、
さらに、前記外部電源接続部を介して供給される電源を蓄電する充電部とを有し、
前記センサ部は、前記環境発電部との電気的な接続が切断された場合、前記物理量の検知を、前記充電部に蓄電された電源を利用することを特徴とする環境発電式センサ装置。
In the energy harvesting type sensor device according to claim 1.
Further, it has a charging unit for storing power supplied via the external power supply connection unit.
The sensor unit is an energy harvesting type sensor device characterized in that when the electrical connection with the energy harvesting unit is cut off, the power source stored in the charging unit is used to detect the physical quantity.
請求項1に記載の環境発電式センサ装置において、
さらに、前記外部電源接続部を介して供給される電源を蓄電する充電部とを有し、
前記センサ部は、前記環境発電部との電気的な接続が切断された場合、前記物理量の検知を、前記外部電源接続部からの直接供給される電源を利用することを特徴とする環境発電式センサ装置。
In the energy harvesting type sensor device according to claim 1.
Further, it has a charging unit for storing power supplied via the external power supply connection unit.
The sensor unit is an energy harvesting type that uses a power source directly supplied from the external power generation connection unit to detect the physical quantity when the electrical connection with the energy harvesting unit is disconnected. Sensor device.
請求項1乃至3のいずれかに記載の環境発電式センサ装置において、
前記センサ部が前記外部電源接続部を介して供給された電源を使用している際に、前記環境発電部と前記センサ部の接続を切断するためのスイッチを有し、
前記スイッチにより接続が切断された際に、前記環境発電部の交換を可能とすることを特徴とする環境発電式センサ装置。
In the energy harvesting type sensor device according to any one of claims 1 to 3.
It has a switch for disconnecting the connection between the energy harvesting unit and the sensor unit when the sensor unit uses the power supply supplied via the external power supply connection unit.
An energy harvesting sensor device characterized in that the energy harvesting unit can be replaced when the connection is disconnected by the switch.
請求項1乃至4のいずれかに記載の環境発電式センサ装置において、
前記センサ部と前記環境発電部は、逆流防止ダイオードを介して接続されることを特徴とする環境発電式センサ装置。
In the energy harvesting type sensor device according to any one of claims 1 to 4.
An energy harvesting sensor device characterized in that the sensor unit and the energy harvesting unit are connected via a backflow prevention diode.
JP2019164097A 2019-09-10 2019-09-10 Energy harvesting wireless sensor with charging terminal Pending JP2021044895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019164097A JP2021044895A (en) 2019-09-10 2019-09-10 Energy harvesting wireless sensor with charging terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019164097A JP2021044895A (en) 2019-09-10 2019-09-10 Energy harvesting wireless sensor with charging terminal

Publications (1)

Publication Number Publication Date
JP2021044895A true JP2021044895A (en) 2021-03-18

Family

ID=74864515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019164097A Pending JP2021044895A (en) 2019-09-10 2019-09-10 Energy harvesting wireless sensor with charging terminal

Country Status (1)

Country Link
JP (1) JP2021044895A (en)

Similar Documents

Publication Publication Date Title
US10396590B2 (en) Variable power energy harvesting system
US9442505B2 (en) Electric power control apparatus, electric power control method, and electric power feeding system
US4888702A (en) Photovoltaic system controller
US9306082B2 (en) System for managing and controlling photovoltaic panels
US8421400B1 (en) Solar-powered battery charger and related system and method
US6194793B1 (en) Apparatus and method for charging an energy storage source
KR101003072B1 (en) Photovoltaic illumination controlling method thereof
JP2010535011A (en) Solar power device
US11054850B2 (en) Portable solar power management system
CN101741124A (en) Battery charging circuit and power supply device
JP7182555B2 (en) Battery with voltage regulator
US20190199128A1 (en) Mobile electric power genera ting and conditioning system
CA3055454A1 (en) An apparatus, method and article for maximizing solar charge current through the use of split wire(s) in a solar array with solar panels connected in the combination of series andparallel
KR200402306Y1 (en) Device of controlling charge and discharge using solar cell
CN117220399B (en) Lithium battery, solar power supply conversion circuit and conversion control method
JPH11332108A (en) Connection equipment for supplying power generated by wind power generator
JP2021044895A (en) Energy harvesting wireless sensor with charging terminal
KR101661260B1 (en) Hybrid power supply device
JP2004064855A (en) Power supply device using photoelectric cell
KR20180086579A (en) A Wireless Monitering Control Unit of Solar Generater
CN203980118U (en) A kind of photovoltaic fire-fighting emergent identification lamp
AU2019360880A1 (en) Smart balancing energy charging control system
KR101012673B1 (en) Auto control device for solar power generation
CN210199274U (en) Power supply management device
KR20130080633A (en) Apparatus, lighting system and method for controlling charging-discharging of impedance matching type solar